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and by optical methods are not important. v may
actually be smaller at infrared frequencies and cannot be
determined to better than 10%.The fact that our values
of v do not increase monotonically as E decreases,
contrary to expectation for ionized impurity scattering
when only one type of impurity is present, is probably
due to considerable compensation in our samples.

We can obtain values of rw*/m. from the values of to~

that fit the re6ection spectra. For samples 1—3 at 78'K
we nnd that m*/m, is 0.0668, 0.0726, and 0.0770, re-
spectively. To compare these with the values of DeMeis
and Paul" and of Spitzer and %helan" one must in-
crease them by about 4% to correct for the change in m*

due to increasing the temperature from 78 to 300'K."
To put our values on the same basis as those of Refs. 12
and 13 we must use 3=1.The values of E in Table I

must then be multiplied by (1.08) ' and the values of
m~/m, listed above must be multiplied by (1.08) 'ls,

just cancelling the temperature correction. Our values
of ives/m, thus "corrected" fall about 0.03 units below
the data of Ref. 12, obtained by a method similar to
ours, and range from 0.03 units below the data of
Ref. 13 (sample 1) to about 0.05 units above them
(sample 3).Agreement is "satisfactory, " except for the
unusually large dependence of mrs*/mrs. on A" that we
seem to have. This cannot be considered significant,
however, because only three samples were used.
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Optical excitations involving the simultaneous production of two or more excitons by a single photon in
alkali halides are considered. The electron-electron interaction is approximated by a term derived from
Toyozawa's theory of the electronic polaron. Using a Lee-Low-Pines transformation for the c.m. motion and
the Hartree approximation for the internal motion of an exciton, dipole matrix elements are calculated for
many-exciton transitions. Specifically, for typical alkali halides we 6nd the oscillator strength ratio
f&»/f&» 10 ', in disagreement with the ratio 1.5 obtained by Miyakawa for LiF. Ultraviolet and x-ray
data in the two-exciton region are briefly discussed.

I. INTRODUCTION

HE optical properties of insulating solids (e.g. ,
alkali halides'' and rare-gas solids~ have been

extensively studied, both experimentally and theoreti-
cally, near the fundamental absorption edge. ' For large-

gap systems, the spectra are dominated by exciton
absorption bands' above and below threshold. Structure
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at high energies has been identified with (1) Frenkel
excitations' and charge transfer states, ' (2) interband
edges above the energy gap, ' (3) metastable or "kine-
matic" exciton resonances, ' (4) plasmon creation, "
(5) core excitations, "and (6) two-exciton transitions'" rs

caused by electronic correlation. In this paper we present
a calculation of contribution (6) to high-energy absorp-
tion in typical alkali halides, where the effects are
expected to be most prominent.

Calculations of two-electron transitions have been
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previously reported by several authors" "for molecular
crystals. For these systems, characterized by negligible
intermolecular overlap, two-electron transitions take
place in two steps: (1) An intermediate state is reached
from the ground state by (a) photon absorption or (b)
two-electron transition due to intermolecular correla-
tion and (2) the final state is created by (a) inter-
molecular correlation or (b) photon absorption; the
amplitudes A~ and A2 for steps j. and 2 are additive,
according to second-order time-dependent perturbation
theory. The basic result is that two-electron transitions
are two orders of magnitude weaker than are the familiar
one-electron transitions; however, strong evidence for
the higher-order process has been found by Varsanyi
and Dieke for PrC13,"in a spectral region where one-
electron excitations are not expected to occur.

In alkali halides the Frenkel model is not valid. Thus
intermolecular correlation, the effects of which were
studied by the above authors, must be replaced by the
Iong-range electron-electron interaction, suitably
screened by valence shell polarization. An earlier calcu-
lation, that of Miyakawa, "treated%annier is excitons
in I.iF, omitting polarization and approximating the
second-order matrix element for two-exciton production
by a term derived from Toyozawa's theory of the elec-
tronic polaron (i.e., an electron clothed by a cloud of
virtual excitons). "The result, that double excitations
are about as favorable as single excitations, seems un-

physical in the context of the results cited above for
molecular crystals. In particular, Miyakawa's result
would imply a matrix element of the correlation poten-
tial with the magnitude of the energy gap and the
electron-electron self-energy would also be comparable
to the energy gap, so that a consideration of renormaliza-
tion effects would be essential. In addition, to satisfy
the oscillator-strength sum rule" the amplitude of one-
electron transitions would have to be decreased sub-
stantially relative to the result expected without correla-
tion. Using Huang-Rhys theory" as a guide (but sub-
stituting longitudinal excitons for LO phonons) the
Debye-%aller factor e ~, where S is the Huang-Rhys
factor (=1.5 in Ref. 11) should multiply the zero-
exciton line strength (i.e., for one-electron transitions).
Since e 8 contains all powers of the electron-exciton
coupling, a nonperturbative approach is necessary.

The approach of the present paper is based upon the
canonical transformation introduced by I,ee, l,ow, and
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Pines" for the lattice polaron. In this connection we
note that the coupling constant e, appropriate to the
electron-exciton interaction in alkali halides is about
unity, so that intermediate coupling theory is valid.
The theory is outlined in Sec. II. Many-electron matrix
elements of the electric dipole operator are determined
in Sec. III, and a brief discussion of relevant optical
data is given in Sec. IV.

p (a ts 1K'rg —a s+cK'Ii) (2.1)

where ri is the electron coordinate and a„t (a„) is the
boson creation (annihilation) opera, tor for the longi-
tudinal exciton field. The scattering amplitude V„
for momentum transfer A„ to the electron and produc-
tion of an exciton with wave vector x is given by

V,=i

t' A' '" 1 1)es 1
R=/ n= 1——

i

——,— (2.2)
(2nz, Es 2 e„JR Rs

in terms of the (longitudinal) exciton energy Es, the
electron-exciton coupling constant o., and R, the semi-

classical "radius" of the electronic polaron; V is the
crystal volume and e„=n' is the optical dielectric
constant.

Ke emphasize that the electronic polaron model is
dehcient in the treatment of screening at long wave-
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II. APPROXIMATE MANY-ELECTRON
WAVE FUNCTION

As is well known, the basic excitation of an insulating
solid is the electron-hole pair or exciton. ' The interac-
tion of this quasiparticle with the polarization 6eld of
the crystal has been treated in various ways to derive
self-energies" "" and r-dependent dielectric con-
stants" " which screen the electron-hole Coulomb
interaction. A simple approach, due to Toyozawa, "
is to replace the many-electron field of valence charges
(ionic screening may be neglected for tightly bound
excitons) by a single dispersionless boson field consisting
of longitudinal excitons, and renormalizing the coupling
constants to reproduce the electrostatic polarization
potential of a point charge. " The effective electron-
exciton interaction which results is
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and Schottky, " that the eGective Hamiltonian for an
electron-hole pair interacting with the polarization 6eld
according to By can be written within the effective-mass
approximation as

P2
&=~e+ + +Z isk isk+p

22221 22222 ~r1—rs)t

+p p' $g 't(e ik rr— &-ik rr) i2 (&ik rr &sk rr) j (2 3)

FIG. 1. Electronic factor 0 (x} for hydrogenic Is states. Here
x=-,'sIE0r0 in terms of the excitonic Bohr radius ro and the usual
momentum-space cutoff Es=2rr/a; rr is a kinematic factor slightly
less than unity for narrow valence bands. For large x, 0(x}
approaches unity asymptotically.

ALE I. Exciton parameters for typical alkali halides. The
e8ective Bohr radius ro for Is states is calculated neglecting
screenings The optical dielectric constant e=e'; n and E are
given in Eq. (2.2).

RbCl
KC1
KBr
KI

2.19
2.13
2.33
2.69

0.53
0.49
0.54
0.614

r0(a.u.)

2.N
2.22
2.57
2.76

E(a.u.)

1.88
1.88
2.17
2.42

lengths k —+0, where plasmon effects are important,
since the electron-hole continuum is not properly
included. Thus many-body effects such as two-quantum
excitations are overestimated in this model, particularly
in the case of shallow excitons, where the Bohr radius
is large compared with the lattice parameter. Plasmon
corrections are probably unimportant in Inolecular
crystals, where most of the oscillator strength of the
electronic polarization field is contained in deep exciton
states. At the other extreme are the semiconductors,
whose many-body effects can safely be calculated
neglecting electron-hole attraction in the treatment of
screening; transformation to collective plasmon coordi-
nates would be convenient for this case. Alkali halides
are intermediate to these limits, and so are very diflicult
to treat accurately. However, since we are mainly
interested in finding an upper bound to two-quantum
transition rates, and especially since our computed
rates are small compared with typical one-quantum
rates, we omit plasmon corrections in this paper.
Qualitatively, we expect that as the exciton radius
increases the two-quantum rate decreases, in opposition
to the calculated trend shown in Fig. 1.

The many-electron interaction BIhas three important
effects: (1) It contributes a sizable self-energy Z 2-3
eV to band states (the imaginary part of Z is zero below
Ep+ (Ep—6) by energy conservation, where 6 is the
transverse-longitudinal exciton splitting at 22= 0), (2)
the efI'ective mass of electrons or holes is slightly
increased (&10%), and (3) it makes possible many-
electron excitations through optical absorption above
2Ep —A. To study these effects we assume, as did Haken

in terms of the effective mass 2Nt (2I2) and radial
coordinate r1 (rs) for the electron (hole); here p; is the
momentum operator for particle i and Eg is the one-
electron energy gap.

The Hamiltonian (2.3) is harder to treat than is the
usual polaron problem because of the strong coupling
between electron and hole. The approach of Haken and,

Schottky was to expand the wave function in polaron
pairs, using intermediate coupling wave functions" for
the electron and (separately) the hole. However, this
product form is appropriate only when the exciton
Bohr radius ro&)E. Table I shows that this condition is
not well met in typical alkali halides. Moreover, since
the boson field responds instantaneously to the coordi-
nate r1 (or rs) in the intermediate coupling wave
function, the exciton emission amplitudes for electron
and hole cancel as ~r1—rs~ —+0 and hence many-
electron optical transitions are forbidden in this model.
To treat the case where the Bohr radius is comparable
with the radius of the electronic polaron and especially
the limit r1~ rs (where the polarization Geld cannot
follow the very rapid internal motion of the exciton)
we adopt the Hartree approximation for polarization
eGects due to the relative motion of the electron and
hole. Ke begin by transforming to c.m. coordinates in
(2.3);

R=
222 1rl+ 2222r2

281+2222

(2.4)
r=rI —r2.

Thus we have the separable form

P2 p2 es
&=~g+ +———+2 &P&kt&k

2M 2p. r

+g pk/gkt&
—s1r ~ R(S—isrk ~ r tsisrk r)

is esk ~ R(eisrk r e isrk r)g -(2 5)

where p= (2221 '+2222 ') ' is the reduced mass,
M=ns~+m2 is the total mass of the exciton, and
s;=pm; '(1.Here the momentum of the c.m. is repre-
sented by the operator P= shB/BR and —the relative
momentum operator p= shB/Br S—ince the .coordinate
R does not appear in the electron-hole interaction, it
can be eliminated from (2.5) by the unitary
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transformation
&~&new= U'1

Ul ——expI —i P aktakk Rj.
k

Both the polarization potential

(2 6) Viol(r) 2 VkLalsk8(e
ia—rk r eisrk ~ r)

(eisrk ~ r e is—rk ~ r)j (2 13a)
We Gnd easily

fi2 ( 8 ) 2

e.,„=
I

2 ——p kayak
I
+g @oak&ak+zg

aR ~ )

and the intraband scattering term for the c.m.

Va(a) Q Vk(ak pak akpak ) (2.13b)

V' g 2(e-isrk. r eisa'k ~ r'l
C C ! (2 7'l

must be determined self-consistently. Here

The eigenfunctions of Bhave the form

C = e'»'" exp(+i Q aktakk R)C, (r,a),
and

(2.8)

Ck= (».»(a) I akl » "(a))

dorIIt, (r) I2(e-iark r easrk r)

(2.14a)

(2.14b)

gk(eiark r e-isrk ~ r)] (2 9)

The total momentum q of the system is a constant of the
motion due to the commutation of the operator

t9

P = i k +Q—Ilikaktak
BR

(2 1o)

and the full Hamiltonian B; the second term on the
right side of (2.10) is the exciton recoil momentum
operator. The Hamiltonian for the bound (electronic)
polaron is obtained from H~ by neglecting the kinetic
energy of the c.m. in (2.9) (M —+ oo); in alkali halides
M 10es,.

We now make the Hartree approximation for the
electron-hole internal motion. This approximation
assumes that the valence charge polarization field
responds to the static charge distribution of the exciton;
i.e., C» in (2.8) has the product form

( )=II"(") ~ ( ) (2 11)

where v is the principle quantum number and 12; refers
to all boson coordinates ak and akt. The Hartree wave
function (2.11) makes it possible to separate the
coordinate I' from the boson coordinate, resulting in two
effective wave equations coupled together by the re-
quirement that f(r) and. »2(a) be determined. self-
consistently in both equations. Applying the variational
principle we find the equations satisfied by ip and»2:

(tp2/2I2 e'/r+ Vo, l (r)gP„(r) =E„»P—„(r), (2.12a)

—(iI—Z aktakk)2+Eo Z aktak
2M k

+Q V„(a„tp„k—akp„k*)22„((a)= o„»q„»(a). (2.12b)

where C, is the eigenvector of the transformed
Hamiltonian

A'

H» = (2I
—g a„'akk)'+Q Soak'ak

2M k

+pg+p2/2pI e2/r+p vkI akt(e
—islk r eisrk r)

k

are the charge density form factors for the boson 6eld
and the internal exciton motion, respectively.

The equation of motion (2.12b) is equivalent to the
equation for free polarons" with Vk replaced by the
more complicated term t/kp„k which approaches zero as
k at long wavelengths (unlike Vk which diverges as
k ') and decreases more rapidly than IkI ' for

large
I
kI. This behavior is a direct consequence of the

fact that an exciton is electrically neutral and is
characterized by a Bohr radius that is comparable to
a lattice spacing for alkali halides. Equation (2,12b)
describes ietraband scattering of the exciton due to
valence shell polarization; ieterbaed scattering has been
included within the Hartree approximation (i.e.,
static screening of the electron-hole interaction).

To solve (2.12b) we note that the coupling constant
0.&1, so that we may employ the Lee-l.ow-Pines
transformation. "

tp.»(a) = emL& gk(«'+ak)3 I (»)),

(g t)ask

I(»&)=II I0),
k (22k!)'"

(2.15)

where IO) is the vacuum or ground state of the crystal
and gk is the variational displacement of the kth oscil-
lator. Substituting ap„, into (2.12b) we find

h~

2„((»})= (2I—Q k»)' —p (Vkp„„gk+C.C.)2' k

+ (X Ir I'~)'+2 Ir. l'(»—2' k k

6'k q A,2

+—k'
M Zlr

1
+Q»k —P Igk I'k'. (2.16)

As usual the nondiagonal terms (corrections to inter-
mediate coupling theory) have been omitted in (2.16).
Applying the variational principle, the oscillator dis-
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placement for the electronic state iP„ is

—~~p,~
go=

Ep+ b2k2/2~ —(bmk/~) ~ (q—Pz, »,k') (1—q)

(2.17)
l v, l2lp„, l2k

nq=Z
~o+ &'k'/2~ —(&'k/~) (q—2' » k') (1—~)

The approximate orthogonality of excited states q„,
corresponding to different free boson states

l (»)) can
be shown if the exciton bandwidth lV«EO. Since lV is
roughly given by the valence bandwidth, the assump-
tion is valid for alkali halides. We may therefore neglect
the recoil terms in (2.17) and replace the energy de-
nominator by Ep. In turn„ the mass enhancement
(M"/M —1)& 1% of the c.m. is neglected in the follow-

ing discussion. Within these approximations the total
energy of the system is found from Eqs. (2.9), (2.15),
and (2.17):

A2

&"((»&)=&0+ (q—2»k)'+&0 2 N.2'
+E„Z,. (2.18)—

The 6rst two terms give the kinetic energy of the
(transverse) exciton relative to the valence band edge
(hq is the total momentum), the third term is the total
energy of the free bosons (later we specialize to the
case P~» 1), E„ the (neg——ative) Coulomb energy of
the electron-hole pair in the state |b„,

(2.19)

and Z„ is the exciton-exciton self-energy due to Bq,

and conduction bandwidth have been neglected com-
pared to Ep. For typical alkali halides we And Z,H &Z„,
suggesting that the Haken-Schottky variational ansatz
for the exciton is better, on the average, than is our
Hartree approximation. As emphasized above, however,
the former theory is not accurate near the origin, and
predicts zero amplitude for many-electron excitations.
Our theory, which gives an exciton binding energy some
20% less than does the Haken-Schottky theory, is more
accurate near the origin; this theory will be applied in
Sec. III in a calculation of two-excition optical transi-
tions. Both self-energy theories lead to an eGective Bohr
radius ro that is only slightly larger ( 10%) than the
unscreened value p ' (a.u.).

As is well known, central cell corrections for deep
exciton states are large. '4 In particular, (1) the non-
parabolicity of the conduction band and (2) the
orthogonality requirement each leads to sizeable cor-
rections to the hydrogenic result for the binding energy
of j.s states. However, as demonstrated explicitly for
rare-gas solids in Ref. 24, the quantum defects due to
(1) and (2) substantially cancel one another; for this
reason, and because we are primarily interested in
calculating the order of magnitude of many-body
effects, we omit the difficult numerical computation of
the microscopic corrections (1) and (2). In addition we
do not attempt to calculate local field corrections
(umklapp processes) not included in the Toyozawa
model.

III. MULTIEXCITON OSCILLATOR STRENGTHS

In this section the approximate wave functions
derived above are used to calculate dipole matrix
elements for multiexciton transitions in optical absorp-
tion. The electron-photon interaction p A is propor-
tional to the transition operator

l
vol'lp„gl'

Z„=g (2.20) 2 =Z b.,+,»»(«+~l ('p)." leak) (3.1)

P„(r)=I 1/(~r.') & je- I o, (2.21)

neglecting the exciton band width compared to Ep.
Calculations of the internal energy E„—Z„were

carried out for variational is states

acting between the valence band P and the conduction
band n, where bt (b) is the creation (annihilation)
operator for Bloch electrons, k is the photon wave
number, and e is the polarization vector perpendicular
to x. The k dependence of the dipole matrix element,

using the Hartree formula as well as the Haken-
Schottky self-energy"

P„=(%+owl (e p)e'"'lpk), (3.2)

g Hs —2Q (1 p (I))

Here the electronic form factor

(2.22)
is neglected in the following.

Optical absorption is given according to the Born
approximation by a sum over excited states

l vq)":

~(~)=~(b )-' 2 l(~qlTI»l'&(~„—b ), (3.3)
fnQ}vq

p go&= d'r e'"'lp„(r) l' (2.23)

approaches 1 as k~0 by normalization of ip„;p„zo&
should be compared with Eq. (2.14b), and the valence

where A is a constant,
l 0) denotes the ground state of

the solid, and E„~ is the energy of the excited state
relative to the ground state. From Eqs. (2.8), (2.11),
and (2.15) we have, in the Bloch representation, the
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result
~.q)= PC„„( )k.„tf„,~o), (3.4a)

tion (we omit trivial factors)

where C~,I„ is the Fourier transform of the "envelope
function" (2.8):
(."& "exp (+o P a),ta),k.R)P„(r)

Xexp~ go(a), +a„)]~{no))

g g~( z &—ho &o)C
&

( o) ~0) (3 4b)

S,=Z g~(a~'+a~) (3.6)

is an operator which depends on the internal quantum
state P„ through the form factor p„)„and. the!) function
expresses momentum conservation. The usual result of
effective-mass theory, ""n ~f„(0)~', is obtained by
replacing the boson matrix element by unity (i.e., by
neglecting corrections to Hartree-Fock theory). Note
that the transition probability for one-exciton absorp-
tion (n), ——0 for all lr) is reduced from Klliott's result by
the factor

where

v=
I «I exp( —S.)I» I'

= exp( —S„)(1, (3./)

Using the orthonomality of Bloch functions and assum-
ing momentum-independent matrix elements (3.2), the
transition amplitude for optical excitation of the state

~
vq) is calculated from Eqs. (3.1) and (3.4):

(oq~ T!0)=P„Q„(0)({no)[exp( S.)—[0)l)(x—q), (3.5)

where f (2)/f o) —S (3.11)

whereas the absolute rate for the two-quantum excita-
tion is

f (o) f(o)& B„S— (3.12)

As required. by the sum rule" the total absorption is
unchanged by correlation effects:

f (m+1) f (0)

m=0
(3.13)

The emission factor S„can be written, using Eq. (3.8),
as a product of two factors

S.=Soo v, (3.14)

f.'"""= « 2 l(~el 2'I 0)I'~(E .—») (3 9)
vq(&Q}

where Z),n), ——m for each set {n),}
Using Feynman operator techniques" and Eqs. (3.3)

and (3.5), we have the result

m+() f (o)e s~(S )"/m! (3.10)

where f„(')= [P„~'~f„(0)[' is the one-exciton line
strength according to Elliott's theory, apart from un-
important factors. The quantity S„is a kind of Huang-
Rhys factor" for the electron-exciton coupling, specify-
ing the relative probabilities for the mth sideband corre-
sponding to the emission of ns longitudinal excitons
during the optical excitation of the )th (transverse)
%annier state. In particular, the ratio of transition
probabilities for the two- and one-exciton processes is
simply

S.=Z lg~l' Sp——4(LR/a (3.15)

1 1~ )e'~ d'k
lc"I',„i(Ep) ko

(3.8)

depends only on parameters of the polarization 6eld
Lsee Eq. (2.2)] and a, the lattice parameter, and p.„ is
an electronic factor which depends upon the form factor
p„),. For hydrogenic 1s states (2.21) o has the form

using Kqs. (2.17) and (2.2), and neglecting the exciton
bandwidth compared to Ep. As usual, the lr-space
integration in (3.8) is restricted to the central Brillouin
zone. The quantity 7 is a kind of Debye-%aller factor
for the electron-exciton interaction, giving the reduction
of oscillator strength in the main exciton peak due to
the zero-point motion of the electronic polarization field
(for the solids of interest kT((Ep). Physically, this
reduction is necessary in order to satisfy the optical-
absorption sum rule, which is obeyed in the presence of
electron-electron interactions. The analogous reduction
of intensity on the zero-phonon line associated with

impurity excitations is well known.
Oscillator strengths f.( +" for (no+I)-exciton transi-

tions (no longitudinal, one transverse exciton with

quantum number ) ) can be calculated from the deini-

'7 R. J. Klliott, Phys. Rev. 108, 1384 (1957).
"C. Kittel, Qeuntens Theory of Solids (John Wiley R Sons,

Inc., ¹wYork, 1963), p. 302.

o(,=1+
6(1+xpo)' 24(1+so')'

11( 1 tan —'go
(3.16)

16(1+xo' xo

where xo——-,'s~Eyo is a dimensionless parameter with
sq= p/no(& I, and ICp=2)r/a is the average "radius"
of the Brillouin zone for the fcc structure. The k-space
cutoff Ko is the one used in the usual polaron problem. "
The "bare" factor So is listed in Table II for typical
alkali halides: RbC1, KCl, KBr, and KI, substances for
which conduction-band masses have been inferred, "
using Feynman's theory of the lattice polaron, " from

"R.P. Feynman, Phys. Rev. 80, 440 (1950).
'0 J. W. Hodby, J. A. Borders, F. C. Brown, and S. Foner, Phys.

Rev. Letters 19, 952 (1967)."R.P. Feynman, Phys. Rev. 97, 660 (1955); D. C. Langreth,i''. 159, 717 (1967).
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TABM D. Multiexciton parameters for typical alkali halides.
The relative amplitude S for two-quantum excitation is the
product of a bare polarization factor So and a term r(xo) related
to the charge density form factor of the exciton.

RbCl
KCl
KBr
KI

a(a.u.)

12.36
11.86
12.44
13.36

So so a(xo}

0.323 0.495 0.03 0.009
0.310 0.535 0.045 0.014
0.376 0.591 0.055 0.021
0.436 0.591 0.055 0.024

IV. DISCUSSION

We have merged two well-known theories in this
work: (1) Toyozawa's theory of the electronic polaron"
and (2) intermediate coupling theory based on the
Lee-Low-Pines variational wave function. " This per-
mitted the calculation of multiexciton optical transition
rates for Wannier excitons in insulating solids. Like the
earlier result for molecular crystals, " '7 we Gnd that
two-exciton absorption is nearly two orders of mag-
nitude weaker than is the familiar one-exciton process
discussed by Elliott."We emphasize that our theory
leads to an upper limit for the double excitation rate in
the Toyozawa model, since the valence charge polari-
zation Geld has been "renormalized" into a single
longitudinal exciton branch, In reality, in alkali halides
the oscillator strength below threshold is an order of
magnitude less than that above threshold, for excita-
tions of the valence shells. In other words, the coupling
constant 0. used in the calculations is too large, and the
rate of double excitations has been overestimated.

As a erst application of these results, the strong peak
near 15 eU in LiF discussed by Miyakawa" probably
cannot be attributed to the production of two excitons

"M. Mikkor, K. Kanazawa, and I. C. Brown, Phys. Rev.
Letters 15, 489 (1965);J.Borders snd J.Hodby (to be published).

cyclotron resonance experiments. ""Note that So
increases monotonically with Z, the halide atomic
number, since valence shell polarizability, and with it
the electron-exciton coupling strength, increases along
this direction in the periodic table.

The electronic factor 0-, shown in I'ig. 1, has the
property that (1) as x~ ee, o(x)~1 and (2) as
x —+0, o(x) —+ 0; also, the slope of o has a maximum
near x= 1 (Eers 1). Thus, small-radius exciton states
have smaller emission probabilities S„ than do large-
radius states (indeed, as x-+ 0 the multipole fields of
the exciton vanish and so cannot polarize the back-
ground). The saturation behavior of o for large x is due
to the momentum-space cutoff Kp.

The Huang-Rhys factors S are listed in Table II for
VVannier is states in RbCl, KCl, KBr, and KI. These
numbers were calculated assuming rlr = 10', (sr =0.9)
and the effective Bohr radius

r p
——p-'(a. u.) (3.1/)

(given in Table I) since screening corrections were found
small for these tightly bound excitons. As noted above
for So, the exciton emission probability S„ increases
with electron-exciton interaction strength u (or Z).

by a single photon. ~ In addition, anomalies in recent
x-ray data on alkali halides involving core excitations
are not explicible in terms of this process; as shown by
Muto and Okuno, "Wannier states associated with core
excitations have Bohr radii, and hence S factors in our
theory, only slightly diferent (smaller) than the radii
of valence excitations. Of course, the approximate theory
presented here does not accurately describe micro-
scopic details of the polarization potential in the core
region, since it is based on Toyozawa s dipole approxi-
mation. It is possible that core excitations are more
strongly coupled to the polarization Ge1d than our theory
allows, since the hole charge density is localized near
the origin. However, an increase of S by several orders
of magnitude, which mould be required to explain the
data of Ref. 12, seems unlikely.

The one-electron background near 2Eg in the absorp-
tion spectra of large-gap insulators is weak, due to
exhaustion of the oscillator strength by exciton e6ects
near Eg. Thus two-quantum excitations, though weak
compared to optical transitions below the gap, may be
observable in the spectra of alkali ha1ides. Unfor-
tunate1y, the complexities of structure near 2E|.-,35

together with the availability of several theoretical
mechanisms, prevent explicit identiGcations at present.
We emphasize that since the exciton bands have dis-
persion the two-exciton peaks are expected to be broader
than peaks below threshold (the total momentum
Kt+ K2=0 for the two excitons). Auto-ionization
broadens the bands still further.

Photoemission data can perhaps be used to distinguish
double excitations from one-electron transitions (to
high-energy excitons). Since the vacuum level lies
above the energy gap, photoemissive yield drops sharply
at the two-exciton threshold (neither electron has
enough energy to leave the solid) and increases sharply
beyond the two-exciton region, whose width in energy
is determined by spin-orbit splitting of the 1s state (we
assume higher states of the Rydberg series make negli-
gible contribution since f„&'&o.v '), excitonic densities
of state, lifetime broadening, " and auto-ionization. "
Strong evidence for a two-exciton process can be said
to exist when the yield has a signiGcant dip in the energy
region where the absorption coeKcient has a peak (or
peaks). When a dip occurs without corresponding
absorption structure, it is possible that Auger excitation
of an electron-hole pair (by a single photoelectron near
2Eo) is primarily responsible for the dip. Even when
two-exciton absorption is important, the Auger process
must be considered as a possible contributor. Indeed the
probability for the latter process, like the former,
increases with valence polarizability in an electronic
polaron model, since the same coupling constant governs
both phenomena. We do not calculate Auger lifetime

N Although the conduction band mass in LiF is unknown, a
reasonable guess is one-half the free-electron mass. This leads to
{the upper limit) S=0.032.

'4 T. Muto and H. Okuno, J.Phys. Soc.Japan 11,633 (1956).
'~ P. H. Metzger, I. Phys. Chem. Solids 26, 1879 (1965).
36 Y. Toyozawa, Progr. Theoret. Phys. (Kyoto) 20, 53 (1958).
'r U. Fauo, Phys. Rev. 124, 1866 (1961).



effects because intermediate coupling theory is not
valid near 2Ea (the variational displacement gK of
the Kth oscillator diverges due to a vanishing energy
denominator). However, it is highly plausible that the
trends in photoemissive yield predicted by our theory
would be unchanged by these e8ects.

The main feature of the calculated two-quantum
rates is that their ratio with one-exciton absorption
increases with valence shell polarizabilities; i.e.,
f"'/f&" increases in the sequence KC1, KBr, KI.
Turning to Metzger's data, "we see that these qualita-
tive predictions are consistent with the trends observed.
The dip near 2Et-.becomes more prominent towards the
iodides, for all alkalis, and is nearly indistinguishable in
RbF and CsF, which solids are characterized by large
gaps and weak electron-exciton coupling.

The two-exciton process in solid rare gases is also
weak. These crystals have very small Bohr radii and
small coupling constants due to their large energy gaps
and small dielectric constants. On the other hand, semi-
conductors correspond to values of x much larger than

unity in Fig. 1. Our theory might well predict
f&'&/f"&=1 for some systems characterized by small

energy gaps. However, as noted above, the Toyozawa
model breaks down for these crystals because the oscil-
lator strength for the (longitudinal) exciton field is
spread over a wide energy range compared. to Ez,"
and so cannot properly be renormalized into a single
exciton band below threshold. Moreover, the one-
exciton line is often dificult to resolve in semicon-
ductors, and the much broader two-exciton structure
will likely elude identi6cation.
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The generation of Frenkel defects in KBr and KBr-KCl mixed crystals after x irradiation at 66'K has
been investigated. The growth of the optical absorption bands induced by the defects was studied, and the
volume expansion was measured with the photoelastic technique. The relative defect production rate at 66
and 87'K can be explained simply in terms of the thermal stability of the vacancy-interstitial pairs. The
energy required to produce a Frenkel defect pair at 66'K does not depend upon the quality of the x rays
used to irradiate the crystals. The variation in the a/F ratio indicates that recombination luminescence is
not an important factor in determining this ratio at 66'K. The volume expansion associated with the Ii-
center Frenkel pair in pure KBr agrees with. the results due to Luty et ul. for KBr-KH, indicating that the
interstitial Br atom causes little expansion. No volume expansion could be attributed to the V4 center;
thus, it cannot be the exact antimorph of the I" center, but must involve a localized hole as in Kanzig's
ts'y center or Itoh's model of the V4 center. Analysis of the o.-center expansion data yielded an expansion at
66'K caused by the interstitial bromine ions which was smaller than that produced at 5'K. The expansion
caused by F-center Frenkel pairs was larger in KBr—KCl crystals than in pure KBr. This indicates that the
P-center production process involves the displacement of Cl ions from their substitutional sites. The ex-
pansion induced by Ot-center Frenkel pairs in the mixed crystals was half that observed in KBr. Possible
explanations for this anomalous result would appear to be aggregates of 0. centers which are not additive in
their eftect and overlap to change the bulk compressibility of the crystal in their vicinity, or a similar change
produced by the vacancy-interstitial pairs.

r. Im'RODUCT~Om
' 'T is now well established that the coloration induced
& ~ in alkali halide crystals exposed to ionizing radiation
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at low temperatures arises from the creation of Frenkel
defects and self-trapped holes in the perfect lattice. ' '
In this process halide ions are displaced from their

'I. M. Schulman and W. D. Compton, Color Centers in Solids
(Pergamon Press, Inc. , London, 1962).
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