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Some New Approaches to Shallow Impurity States*
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A variational calculation of shallow surface impurity states including image-charge and anisotropic
mass sects was performed using two di6erent sets of orthogonal functions. The 6rst set was obtained by
varying the Bohr radius in the hydrogenic functions, separately for each state. In the second set the Bohr
radius was allowed to become anisotropic and the elements were separately treated as variational parameters.
In each case it was shown that with certain restrictions on the variational parameters the set remained
complete and orthogonal. General expressions for the energy eigenvalues for both the bulk and surface
problem obtained from the 6rst set of functions are presented, and numerical results for Si and Ge are given
for each set of trail functions. Previously published bulk eigenvalues for Si and Ge were corrected for
orthogonality.

I. INTRODUCTION
' 'N 1965, Levine' introduced the problem of shallow
- - donor impurity levels in semiconductors when the
ion is on the surface. He used a (kr) ' potential in the
material, and approximated the work function as being
extremely large on the vacuum side. Bell et al.' used this
potential and anisotropic wave functions to obtain
eigenvalues, effective Bohr radii, and crude transition
probabilities. Then Petukhov et al.' showed that image
charges were very important, and Schechter et a/'. 4 5

corrected Petukhov's potential and calculated some
eigenfunctions for Si and Ge. All this work showed that
for both Si and Ge the problem belonged in the energy
range about 3 as large as for the bulk semiconductor
shallow donor impurity problem. Also the boundary
conditions ruled out the 1s state as the ground state, and
introduced polarization eBects in any potential electro-
magnetic study.

Now it seems necessary for guiding our experimental
work to use Schechter's image-charge potential and
improved trial functions to obtain more accurate eigen-

values, to learn something of completeness and orthogo-
nality of the wave functions, and generally to see the
influence of certain parameters. Our calculation is based
on the variational principle as previous calculations
have been, but there are two important distinctions.
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First, we use a Hamiltonian containing both the image-
charge potential correctly introduced by Schechter4 and
the anisotropic effective mass used by Bell et ut. ' Second,
our trial functions form a complete, orthogonal set. The
results presented here are therefore more rigorous than
previously published results.

Two different sets of functions are used, both being
related to the hydrogenic functions. In the first set the
Bohr radius is determined by the variational principle
separately for each state. Since the variational parame-
ter depends only on the angular momentum quantum
numbers and is independent of the principle quantum
number, orthogonality and completeness are main-
tained. This calculation has the advantage of simplicity
and is surprisingly accurate except for large mass
anisotropies.

The second set of functions is the same as those used
by Hell et al.' (see also Ref. 5) except that these func-
tions were completely orthogonalized and the resulting
set is shown to be complete. This calculation is believed
to be very accurate, but it is considerably more complex
than the single-parameter calculation.

28 e'(e—1)

e+1 2e(e+1)
(2)

We are assuming here that the c axis is in the s direction
and that this direction is normal to the surface, since the
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II. HYDROGENIC WAVE-FUNCTION SOLUTION

The Hamiltonian for the surface-impurity problem is
assumed to be

P'+Pe' P' ~ PB= + —-+-,
21~i

where
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where

and

II=Hp+H',

Hp ——p'/2m* —(n y)/r—

problem becomes exceedingly complex for other orien-
tations. ' The potential-energy terms in Eq. (1) were
derived by Schechter. 4 The 6rst is the potential due to
the ion plus its image, while the second term is the
repulsion due to the electron image. The kinetic energy
is the usual expression for an ellipsoidal eGective mass. 7

The boundary condition f(x,y,0) =0 may be satisfied
identically by choosing only those angular momentum
eigenfunctions having 1+m=odd. ' In particular, no s
states are allowed in the surface-state problem, so the
ground state becomes the 2po.

An exact solution for the eigenvalue problem,

(3)

cannot be obtained for the Hamiltonian of Eq. (1), so
Eq. (3) will be approximately solved using the varia-
tional principle. We first split the Hamiltonian into two
terms

Ci„——(I'i„i 1/costi I'i„), (12)

Y~ being the spherical harmonics.
Minimizing Eq. (10) with respect to m*(n —p) then

gives

m*(n y) =—(oi pC—i ) —i

——iAi
m, km, mi~

and

(13)

Operating with the Hamiltonian of Eq. (1) on the
functions P„i and performing the volume integrations

gives

&0-i-IHIP-i-)
1m*(n y—) ' 1 1 1)——[Ai„

am m, m, m, )
m*(n —y)

(pC, —~), (10)
A'n'

where
2 (P—m')+2/ —1

Ag ——

(2l—1)(21+3)

p, '+p„'~ 1 1 p,')1 1 ~ P+—
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—I+-—,(6)
2 1 mi m* 2 (mi m*) z r

where m* and 7 are parameters to be determined.
Clearly, the eigenstates of Bo are the hydrogenic
functions

=~nlm=—
(~ pCi-)'—

-1 (1 1~
2A'e' —

~ IA
m, km, mi)

(14)

where

and

a- -(,0,~) =&- (~)& -(e,~),

p =2rh'/Nm" (n —y)

E„o= m* (n—y)'/2—h'I'

(7)

(g)

Equation (14) gives the energy eigenvalues for surface
states (3+m=odd) and may also be used for bulk
states by letting P =0 and n —+ e'/e.

Clearly, if we choose

7=pCim

The functions iP„i will now be used as approximate
eigenstates of the total Hamiltonian II. It appears from
the equations above that we have introduced two
variational parameters; but that really is not true be-
cause the wave functions and the energy depend only on
the product m~(n —y), so the parameters are not
independent Lsee Eq. (10)].

The parameters m~ and y are chosen to minimize the
expectation value of H, separately for each state. This
gives only a value for the product m*(n y) In o—rder .to
give a physical meaning to the separate parameters, we
also require that no* be independent of the potential and
that p be independent of the mass anisotropy. Thus, the
m* obtained will be the correct variational choice for
any potential, and 7 gives the variationally correct
potential for any mass.

' Since there are equivalent minima in the conduction bands of
Si and Ge in other directions in K space, the Hamiltonian of Eq.
(1) will not give all of the surface impurity levels for these ma-
terials. Other levels may be obtained by rotating the e6ective-
mass ellipsoid while maintaining the potential as given in Eq. (1).
See Sec. IV for further discussion of this point.' W. Kohn, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc., New York, 1957), Vol. 5, p. 257.

and
1 1 p1 1q

m* mi Em i miI

then Eq. (13) is satisfied, m* is independent of the
potential, and y is independent of the mass. Values for
the parameters C~ and A~ are shown in Table I for
some of the low-lying levels.

The effective mass given by Eq. (16) is the correct
value to use if one wishes to approximate the anisotropic
eGective mass in the Hamiltonian by an isotropic
eGective mass. That is, this approximati. on gives the
correct expectation value for the kinetic energy in any
angular momentum eigenstate. It is interesting to note
that Eq. (16) reduces to the usual expression

2

m* 3Im, mi)
(17)

for spherically symmetric states (Aoo ——s) but not in
general for other states. Thus, the use of Eq. (17) in the
Hamiltonian may give energies that are either higher or
lower than the true values, depending upon which
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TABLE I. Values of the parameters A &~ and C&~ for a number of
low-lying levels. The value of A ~~ determines the appropriate
eftective mass for either bulk or surface states. Values of C~~ are
given only for allowed surface states since this parameter does not
appear in the bulk problem.

State

Now the hydrogenic functions are known to be complete
and the spherical harmonics are linearly independent.
Therefore, it is always possible to express the coefB-
cients ft (r) in the form

S

po
P+&
dp

dy1
dy2
fo
f+i
f+s
f+I

11/21
3/7
1/7
23/45
7/15

~ ~ ~

15/8
~ ~ ~

49/24
~ ~ ~

35/16
~ ~ ~

ft~(r) = P A.tM. t(r,yt, mt~*)
e l+1

(21)

for any 6xed value of p and no*. Clearly, then,

A t lt"t (red) (22)

F(r,8,&)= Q Q Q A t~„t (r,yt, mt„*)Y)„(8,$)
n, sesl+1 $M mess l

where H&' and H&' are the kinetic- and potential-energy
terms, respectively, in Eq. (6). Thus we have obtained
a complete diagonalization of the total Hamiltonian
correct to erst order in ea,ch of the perturbation contri-
butions. Since only second-order perturbations remain,
one would expect the results to be unusually accurate.
If, for example, we had used the same Hamiltonian,
these results would be considerably better than the re-
sults obtained by Petukhov et al.' by a perturbation
calculation. In fact, it is only the extreme mass anisot-
ropy of Ge which introduces a sizeable error.

A few words are in order at this point concerning the
orthogonality and completeness of these wave functions.
One may readily show orthogonality by noting the
explicit dependence of the wave functions on the
variational parameters. This is

4-t-(rA4) =2t'. t (r,v~.,mt. *)Y.(ey) . (19)

Clearly, states having di6erent I or m are orthogonal
because the spherical harmonics are orthogonal. Fur-
thermore, states having difI'erent e are orthogonal be-
cause if l and m are the same these are eigenstates of the
same hydrogenic Hamiltonian —and such states are
known to be orthogonal.

Completeness is shown as follows. Consider an arbi-
trary function F(r,e,&). Since the spherical harmonics
form a complete set, we may expand this function in the
series

F(r,e,e) =Z Z f~-(r) Yt-(tlat)
l=0 to~i

(20)

angular momentum states one is dealing with. The
effective mass given by Eq. (16), on the other hand,
will never underestimate the kinetic energy, since it
was obtained by the variational principle.

It is interesting to note that the combination of Kqs.
(14)—(16) yields F.„P of Eq. (9).Thus it is clear that the
values of y and m" given by Eqs. (15) and (16) may also
be obtained by the requirement that'

and since F was assumed arbitrary, completeness is
established.

III. ANISOTROPIC WAVE-FUNCTION SOLUTION

(23)

(24)

(25)

x/ap -+ Ax,

y/ap -+ Ay,

s/ap —& Ijs,
and

(26)

where a0 is the Bohr radius, while A and 8 are varia-

tional parameters.
It was noted in Ref. 2 that the first few functions

obtained in this manner are orthogonal but that
orthogonality is lost at the higher quantum numbers. A

way has now been found to make these functions a com-

plete, orthogonal set; therefore, one now has a rigorous

justi6cation for the use of the variationa, l principle with

these trial functions. Thus the only remaining disad-

vanta. ge of the use of these functions is that the calcula-

tions are very much more cumbersome than those
described in Sec. II.

In order to establish orthogonality and completeness,
consider the transformations

x=A p sllltp cosf )

y=A p sinu s111@,

g=8 p cosa.

(27)

(2g)

(»)

The solution given in Sec. II is quite accurate except
in materials such as Ge with extreme mass anisotropy.
In order to test the accuracy of those results and to
obtain more accurate results for Ge, we have computed
the two lowest-energy levels in Si and Ge by a diferent
method. This method involves the use of the trial
functions used by Bell et ulP in their calculation of the
bulk and some surface eigenstates for Si and Ge (see
also Ref. 5). This set of functions is obtained from the
hydrogenic functions by the replacements

r/a, ~ /As(xs+ys)+Bsssj'is

s Wayne E. TeGt, BulL Am. Phys. Soc. 13, 710 (1968l. Then the functions represented by Eqs. (23)—(26) are
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transformed to the hydrogenic functions;

U ~-(~ X,s) =~.~(p)l'~-(MA). (30)

8(*,X»)
- sln0) .

8 (p,a),P) A2B
(31)

Clearly, then, if A and 8 were held Axed, we could
express the inner product of any pair of these functions

(&- - l~. -)
1

R;p (p)R.((p)p'dp
A'8

It is obvious from the form of the transformation Eqs.
(27)—(29) that for any given point in space the coordi-
nate p depends on the values of both A and 8, the
coordinate &u depends only on the ratio A/B, while the
coordinate p is independent of both parameters.

The Jacobian of the transformation is easily shown
to be

and
a„-=A(„/Bi (l odd) (34)

depend only on ns.
The erst requirement (independence of e) is not re-

strictive since it was shown in Ref. 2 that values of A
and 8 obtained by the variational principle are auto-
matically independent of e. The second restriction
actually affects only one of the states (do) calculated in
Ref. 2 and, as will be shown in Sec. IV, the energy for
this state was changed by only a small amount. Further-
more, for either the bulk or the surface-state problem,
no state which may be reached from the ground state by
an allowed optical transition is affected by this
restriction.

The proof of completeness follows in much the same
way as for the functions of Sec. II.Consider an arbitrary
function F(r,8,&), which can always be expressed as the
sum of two functions

F(r,8,$)=F++F-, (35)

one of which has even parity and the other odd parity.
Clearly, either of these functions may be expressed as

0 0

Yr„.*(~,y) 1'(„(~,y) sm~ der @. (32) F+(r 8,y)= P f +(r 8)e'"~. (36)

u +=A~ /B~ (l even) (33)

Note that the upper limit on the co integration is given
as x, which is correct for the bulk problem. This limit
becomes -,'~ for the surface problem because the func-
tions are then assumed identically zero for s&0.

Now it is clear that since Eq. (32) is of the same form
as the orthogonality integrals for the hydrogen-atom
wave functions in spherical coordinates, orthogonality
is maintained for any two functions with the same
values of A and 8 and different values of any one of the
three quantum numbers e, 1, and m. Furthermore, since
@ is independent of both A and 8, any two functions
having different values of m are orthogonal even if these
parameters are not the same for both functions. For
orthogonality with respect to t we must consider two
cases. First, if two functions have different parities
(l+rn= even for one and odd for the other), they are
automatically orthogonal for all positive values of the
parameters, and since negative values merely reQect the
functions through the origin they are never needed. If
two functions have the same values of n and ns and
values of l differing by an even integer (the same
parity), then in general they will be orthogonal only if
the ratio A/B is the same for both. And 6nally, any two
functions having the same values of / and ns but
different values of e will, in general, be orthogonal only
if both A and 8 have the same values for both functions.
Thus we can obtain complete orthogonality by re-
quiring that A and 8 be independent of n and depend on
l only within the limitation that the ratios

Now for a 6xed value of m and a de6nite parity, the
transformation from (r,8) to (p,&o) is unique except for
the scale of p (which is proportional to B~ ).Therefore,
each of the coefEcients in Eq. (36) may be expanded in a
series of hydrogenic functions of (p,a&); consequently,

F+(r,8,$)= g P Q C„~~„~(p)I'~ (,4), (37)
n~l+1 l=(m[ m~

and therefore completeness is established.

IV. RESULTS AND DISCUSSION

Table II gives a comparison of shallow donor surface-
state energy eigenvalues and effective Bohr radii for
silicon and germanium obtained by three different
methods (see Ref. 7 for constants): the isotropic wave-
function solution using both the isotropic and aniso-
tropic effective-mass approximations, and the aniso-
tropic wavefunction-anisotropic effective-mass solution.
Since for each of these calculations the energy is pro-
portional to e ', one may readily find energy eigenvalues
for any state not listed which has the same angular
momentum quantum numbers as one of the listed
states. Note that the isotropic mass approximation,
which is correct for spherically symmetric states, can be
in error by as much as 40%%uo for other levels. Although
for the levels shown the error is always in the direction
of higher energies, this is not true in general. Examina-
tion of Eqs. (11) and (14) shows that errors in the
opposite direction will always be obtained. for states
having both l and

~ m~ large, the erst such level being
/=4, m=3 in the surface-state problem.
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TAME II. Surface states.

State

Isot.

(10 ' eV)

Hydro genic
e8. mass

Bohr
radius (A)

wave function
Aniso.
—z

(10-3 eV)

eB. mass
Bohr

radius (A)

Aniso. wave function
Aniso. eG. mass

jV Bohr radius (A)
(to 'evl 1/A 1/8

Si

Ge

2pp
3pp
38+1
4pp
SPQ
4d~1
4/p
6pp
4f~2
Sd~1

2pp
3pQ
3dpg
4pp
5pp
4d~1
4fp
6pp
4f~2
Sd~1

9.00
4.00
3.02
2.25
1.44
1.70
1.48
1.00
1.30
1.09

2.35
1.05
0.782
0.588
0.377
0.440
0.380
0.261
0.332
0.281

20.2
20.2
23.2
20.2
20.2
23.2
24.9
20.2
26.5
23.2

58.3
58.3
67.5
58.3
58.3
67.5
67.5
58.3
77.6
67.5

12.75
5.67
3.35
3.19
2.04
1.90
1.84
1.42
1.30
1.22

3.74
1.66
0.901
0.934
0.598
0.507
0.505
0.415
0.332
0.324

14.2
14.2
20.8
14.2
14.2
20.8
20.0
14.2
26.5
20.8

36.7
36.7
58.5
36.7
36.7
58.5
54.6
36.7
77.6
58.5

13.2
5.84
3.39
3.29
2.10
1.91
~ ~ ~

1.46
~ t ~

1.22

4.24
1.88
0.925
1.06
0.678
0.520

0 ~ 4

0.471
4 ~ 0

0.333

14.7
14.7
20.0
14.7
14.7
20.0

~ ~ ~

14.7
~ ~ ~

20.0

35.8
35.8
59.2
35.8
35.8
59.2

~ ~ ~

35.8
~ ~

59.2

12.4
12.4
1.9.8
12.4
12.4
19.8
~ ~ ~

12.4
~ ~ ~

19.8

24.8
24.8
58.8
24.8
24.8
58.8

~ ~ ~

24.$
~ ~ ~

58.8

TAsx,E III. Bulk state energies (10 ' eV).

Si

Ge

State

1$
2pp
2p
3dp
3d y1,
3d +2

1s
2pQ
2p
3dp
3fgy1
3d y2

Hydrogenic wave
function aniso.

eff. mass

—24.5—8.69—5.35—3.45—3.05—2.25

—6.32—2.51—1.33-0.95—0.81—0.56

Aniso. wave
function aniso.

e6. mass

—28.6—10.7—5.81—4.47—3.56—2.38

—9.02—4.38—1.59—1.67—1.16—0.62

One expects a two-parameter calculation, such as the
anisotropic wave-function solution, to give better re-
sults than a one-parameter calculation, such as the
isotropic wave-function solution. An examination of
Table II shows that this is indeed the case, the aniso-
tropic wave-function solutions always yielding some-
what lower energies than the isotropic wave-function
solutions. Note, however, that for Si, with a mass ratio
m~/m, =5, the difference is at most 3%, while for Ge,
with a mass ratio m~/m&=20, the difference is 12% or
less. Thus, one concludes that the simpler calculation is
adequate for any material having a mass ratio of 5 or
less.

An energy-level diagram based on the anisotropic wave
function solution is shown in Fig. 1. Since the selection
rules for optical transitions are Am= +1 and El=~1,
only the 2+1 levels are accessible from the 2pe ground
state. The transition energies for the first few allowed
transitions are shown in Fig. 1. A comparison of the

energy levels shown here with the corresponding bulk
values of Ref. 2 shows the importance of the image
charge in the surface problem. The 2p, energy in Si, for
example, goes from 10.7/10 ' eV in the bulk to
13.2X 10 ' eV in the surface because of the image charge
potential.

A comparison of the levels shown in Fig. 1 with the
results of Refs. 4 and 5 shows that Schechter's method
has two serious drawbacks. First, because of the use of
an isotropic effective mass, the energy levels have
sizeable errors, particularly the ground state. Second,
and even more serious, because of the nature of his wave
functions, a number of levels are missed entirely by his
calculation. One could correct these deficiencies by
using a better Hamiltonian and better wave functions,
but the calculation would then become extremely com-
plex and the results would probably not be very much
better than those obtained here.

A comment is in order concerning central-cell cor-
rections. ~ Although these are known to be of importance
in the ground state for the bulk problem, a way has yet
to be found to correctly calculate the effect. Further-
more, since the s states are not allowed in the surface
problem, central-cell corrections are expected to be of
far less importance here than in the bulk. Consequently,
the neglect of these corrections in this calculation should
not introduce any serious errors.

In order to further compare the calculations, energy
eigenvalues for the bulk states are presented in Table III.
The anisotropic wave-function results are those given
in Ref. 2, except that the 3do level was made orthogonal
to the ground state as discussed in Sec.III.As expected,
this correction increased the energy of this level,
although the change was not very large.
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FIG. 1.Energy-level diagram for
surface states. The wave function
and effective mass are anisotropic.
All energies in 10 ' eV. Arrows
show the allowed optical transi-
tions from the ground state.
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Two features should be noted in the bulk results.
First, when isotropic wave functions are used, the re-
sults for isotropic versus anisotropic mass are in the
same ratio as in the surface problem. This was to be
expected from the discussion of Sec. II. Second, the
errors caused by the use of isotropic wave functions are
considerably larger than in the surface problem. The
reason for this is that in the surface problem the s '
repulsion tends to cancel the anisotropic mass effect for
this particular problem. If the mass anisotropy had
been in the opposite direction (mt/m~(1), or if the
relation between the crystallographic axes and surface
had been chosen differently, the surface results with
isotropic wave functions would have been less accurate
than the bulk results. One has here an important ex-
perimental implication for the measurement of surface
states. Because of the symmetry of Si,' the surface

' J. Ziman, 8/ectrons and I'honons (Oxford University Press,
London, 1962), p. 119.

impurity eigenstates include not only solutions of the
Hamiltonian of Kq. (1), but also solutions of a Hamil-

tonian in which the axis of the effective-mass ellipsoid

lies in the surface rather than being normal to the
surface. From the argument above it is clear that the
energies of the latter levels will be considerably different

than the energies that we have calculated. In Ge there
are eight equivalent directions, ' so the problem is even

more complicated. Consequently, it may be necessary
to extend the calculation to these other states in order
to completely interpret experimental results. Such an
extension is now being contemplated for a future
publication.
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