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Semiconductors which are slowly graded in composition can be shown to have position-dependent band
gaps and position-dependent effective masses, describable in terms of an effective Hamiltonian in an effective-
mass equation. The effective Hamiltonian previously obtained is, in the present work, rendered Hermitian.
Electronic minority-carrier transport for graded systems is described in terms of an effective field which
includes the electrostatic field plus a term in the gradient of the band edge and another in the gradient of the
effective mass. The local radiative-recombination lifetime and local density of states for inhomogeneous
semiconductors are discussed. The equation for the excess minority-carrier concentration in an inhomo-
geneous semiconductor is deduced and is found to differ from that in an homogeneous system, by the effec-
tive field replacing the electric field, by the position dependences of lifetime and mobility, and by terms in
the mobility gradient. Some phenomena specific to graded mixed semiconductors are considered on the basis

of the theoretical analysis.

I. INTRODUCTION

EVERAL unique phenomena and device applica-
tions have been described for semiconductors which
are slowly graded in composition, based on the assump-
tion that such graded systems exhibit graded band
gaps.}~® Of interest here is the phenomenon of anti-
Stokes radiative emission. Van Ruyven and Williams*
have proposed field-enhanced minority carrier transport
and recombination in graded band-gap systems as an
anti-Stokes mechanism. The present paper examines
theoretically the two basic features of the mechanism
and advances the theory of inhomogeneous semicon-
ductors in general. Thus we will be primarily concerned
with the concept of a graded band gap and with minor-
ity-carrier transport in such systems.

A model one-electron Hamiltonian for graded mixed
semiconductors has previously been introduced, and the
applicability of the concept of a graded band gap demon-
strated by the authors.> We considered systems whose
components have the same structure and lattice con-
stant. The perturbation Hamiltonian was taken to be
L(x)S(r), where L(x) is the slowly varying composition
factor varying in one dimension only and S(r) is the
difference of the one-electron potentials of the compo-
nents of the mixed system and is periodic with the same
periodicity as the components. The perturbation
Hamiltonian is equivalent to assuming a slowly varying
virtual crystal, where the virtual-crystalapproximation®
consists of replacing a statistical mixture of unit-cell
potentials by averaged unit cells. Our analysis is re-
stricted to a virtual crystal in which the slow variation
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in average unit cell is entirely in the unit-cell potential
with no change in lattice constant.

Assuming that L(x) varies slowly over the spatial
extent of the Wannier functions of the homogeneous
systems, and that interband coupling of S(r) can be
neglected, we obtained an effective masslike equation®
which is valid for states near each band edge

[1/2mn*+BnL(x) J(— VA F (1) +anL(x) Fa(r)

=E.Fa(r), (1)
where F,(r) is the effective mass wave function, m,*
is the unperturbed effective mass, and a, and B, are
matrix-element components specific to each band and
defined by

/ o DS sdt—ant Bk . (2)

Here ¢»x(r) is the Bloch function of the unperturbed
system.

II. EFFECTIVE HAMILTONIAN

The effective Hamiltonian of Eq. (1) is not, as
written, Hermitian. Thus the reality of eigenvalues and
the orthogonality of eigenfunctions generated by the
effective Hamiltonian are in question. The Hermitic
property of an operator is defined, of course, only with
respect to a particular class of functions; therefore, the
boundary conditions are important. We consider that
on each side of the inhomogeneous region in the direc-
tion of the grading, L(x) becomes constant, and to be
quite specific to insure Hermiticity we take L(x) to be
the same constant on both sides, and can thus impose
the Born—von Kédrmén boundary conditions. The lack
of Hermiticity is a result of an approximation used in
obtaining Eq. (1), and can be readily remedied. The
matrix element involved is

(L) i = / 0 (= R) LS Daw (t—Ry)dr, (3)
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where a,(r—R;) is the Wannier function for band » and
lattice site R;. Since L(x) is everywhere positive, the
mean value theorem can be applied to the matrix ele-
ment (LS)nn;j5, yielding

(L) i =L(®) / 0¥t~ R)S(aw —Ry)dr, (4)

where £ is the appropriate value of the x coordinate of
the crystal. We then make use of the localized character
of the Wannier functions by assuming that a,(r—R;)
is negligible for |r—R;| greater than some band-
dependent critical radius X,. Then (LS)an,;; essen-
tially vanishes for |R;—Rj| greater than 2X, or
2X,+, whichever is larger; and, in addition, the main
contribution to the matrix element comes from the
regions near the lattice sites R; and R;.

The statement that L(x) varies slowly is now
explicitly taken to mean that

dL(x)

2| XK1
dx

d 5
o z‘dL(x) ®

Xn’<<1 .

dx

Then L(R;) does not differ appreciably from L(R;). To
make the effective Hamiltonian Hermitian, it is only
necessary to make the approximation

L(&)=3LR)+3L(Ry) (6)

instead of the choice, £=R;, made in Ref. 5. Equation
(1) is now replaced by the following equation:

[— V¥/2mn*— 58, (V2L (x)+L(x) V?) ]
XEu(0)+anL(x)Fu(r)=E.Fu(r). (7)

The effective Hamiltonian of Eq. (7) can be shown to be
Hermitian by making use of the previously described
boundary conditions. Within the scope and approxi-
mations of the analysis, the Hermitian Hamiltonian of
Eq. (7) appears to be unique.

The expression in the large square brackets corre-
sponds, for a classical system, to P?/2m.,*(x), where

1/2m.*(x)=1/2m*+B.L(x). (8)

In going from the corresponding classical to the actual
quantum mechanical system one would symmetrize the
the product of P? and 1/2m,*(x) because these factors
do not commute. One symmetrization corresponds ex-
actly to Eq. (7), as should have been expected from our
choice of L(£). Other symmetrizations are of course
possible.

The effective potential term of Eq. (7) involves the
factor a, which is different for each band, as well as the
composition factor L(x). It is this band-dependent po-
tential term that leads to the graded band gap. The
fact that a, is different for each band means that the
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effective potential an electron experiences depends on
the band it occupies. Thus a,L(x) determines an en-
velope of classical turning points, and this is the sense
in which a position-dependent band edge can be de-
fined. That is, beyond the classical turning point, the
effective mass function decreases exponentially. In the
quantum mechanical sense, the band edge is “fuzzy”
because an electron will have small but nonzero prob-
ability of penetrating beyond the classical turning
point.

The density of states in a graded system will, simi-
larly, have to be defined in a different sense than applies
to homogeneous systems. Since Eq. (7) allows a quasi-
continuum of eigenvalues, it is clear that no constraints
on density of states have been imposed in the formalism.

While interband matrix elements of S(r) have not
been considered here, they can be included in a straight-
forward generalization.

III. MINORITY-CARRIER TRANSPORT

Our discussion of the minority-carrier-transport equa-
tions will treat a nondegenerate, strongly #-type graded
mixed semiconductor. The effects of space charge can
be separated. For example, it is always possible to grow
graded mixed semiconductors that are space charge free
in equilibrium by proper inhomogeneous doping.” The
effects of the Dember field, that is, the field due to the
space charge from nonequilibrium charge carriers, can
be neglected for low levels of excitation.

The density of minority-charge-carrier states (posi-
tive hole states, in this case) near the band edge is as-
sumed to display the usual dependence on energy and
effective mass appropriate to parabolic bands:

2.(E)=const(m,*)**(E,— E)1/2. 9)

Hereafter, m,* designates the position-dependent effec-
tive mass, and E, the position-dependent valence band
edge as determined through Egs. (2) and (7). The hole
concentration reflects this effective mass dependence,
and is taken to be

p=const(m,*)3? exp[ (E,— E;)/kT],

where E; is the quasi-Fermi level for holes.

The hole current can be expressed by an effective-
field term plus the usual diffusion term, and its com-
ponent in the direction of the composition gradient is

(10)

Jo= ePMpr"‘kTﬂp(dP/dx) ’ (11)
where
IrdE, 3 kT dm,*
F,,=(‘o’+—|: - ] . (12)
eLde 2m,* dx

The effective field, which is band-dependent, contains
the usual field term plus terms in the band edge and
effective-mass gradients. Physically, the term in the

7L. J. Van Ruyven and F. E. Williams, Am. J. Phys. 35, 705
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effective-mass gradient is due to the effect of density of
states on diffusion. Kroemer! had previously described
the band-edge gradient as a “quasifield”, and recently
Marfaing and co-workers® have independently recog-
nized the role of the effective-mass gradient. Both in-
vestigators took these gradients to be undetermined
material properties, while they have here been related
to the matrix element of Eq. (2). A determination of
mobility depends on knowing the dominant scattering
processes involved in graded mixed systems, which may
contain large numbers of scattering centers. In the case
of phonon-scattering-limited mobility, a first approxi-
mation consists of relating mobility to effective mass
(and, hence, position) by the Bardeen-Shockley defor-
mation potential analysis.® Such a treatment transfers
part of the problem of the position-dependent mobility
to the position dependences in the elastic constant and
deformation potential parameter. Also, the effects of
the anisotropy of these parameters for graded composi-
tion materials must be considered.

The other equation fundamental to carrier transport
is that of continuity

p/dt+(1/e) divjp=—(p—po)/ 75, (13)

where 7, is the position-dependent radiative recom-
bination lifetime and p, is the positive-hole concentra-
tion at equilibrium. We neglect all other recombination
mechanisms. In every part of the graded system 7, has
the same value as a homogeneous system of the local
composition; that is, the band-edge and effective-mass
gradients do not influence the local r, except, of course,
to make it position-dependent. This follows because 7,
is defined in terms of the thermal-equilibrium properties
of the system. Thermal equilibrium insures that the
effects of these gradients are exactly balanced by a
concentration gradient. For nonequilibrium conditions,
the excess carriers not only decay with the lifetime 7,
in a particular local region but also have a net flow into
or out of that region in accordance with the divergence
term of Eq. (13).

The reciprocal lifetime in the nondegenerate, strongly
n-type system under consideration is R/po, where R is
the recombination rate in thermal equilibrium and can
be expressed by means of the van Roosbroeck-Shockley
analysis' in terms of the optical properties of the sys-
tem. For large band gap or low temperature (conditions,
however, for which radiative recombination may be of
less importance than other mechanisms of deexcitation)
R~exp(—AE/ET). This assumes that band-to-band
recombination dominates. Also,

po=const(m,*)*? exp[ (E,— E°)/kT].  (14)

8 G. Cohen-Solal, Y. Marfaing, and P. Kamadjiev, in II-VI
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Thus, for the special case of the Fermi level E;° at a
constant energy from the conduction band edge,

7= const(m,*)3? exp[ (E.— E;°)/kT ]« (m,*)3/2. (15)

When the Fermi level varies rapidly with respect
to the conduction band, 7, varies exponentially with
position.

Combining the current and continuity equations, we
obtain the following equation for excess minority-car-
rier concentration as a function of position in the direc-
tion of the composition gradient:

0A 1 dF du
! +AP[—+M p+Fp——”]

ot Lr, Tds | Tdw
dAp kT dp kT d*Ap
=2 p, == 0 10
x e dx e dx?

This equation differs from that appropriate to a homo-
geneous system by the following: the presence of the
effective field (which includes the gradients of both the
valence band edge and the effective mass); the position-
dependence of lifetime and mobility; and the terms in
the mobility gradient.

IV. DISCUSSION OF THE CONCEPT OF
LOCAL DENSITY OF STATES

It would be desirable to obtain the local density of
states for graded systems directly from the formalism
of Secs. I and II, rather than having to assume the
relation appearing in Eq. (9). We believe that the local
density of states is implicitly built into the eigenfunc-
tions of the effective Hamiltonian of Eq. (7). For ex-
ample, for a one-dimensional system with constant band
edge but position-dependent effective mass, the square
of the effective mass wave function is found to depend
on [m*(x)]V2. The power of m*(x) results from the
Hermitization. This suggests that the form of the den-
sity of states assumed in Eq. (9) may be justified di-
rectly from the effective Hamiltonian. The local density
of states obtained with this interpretation is consistent
with the density of states for the homogeneous material
of the same composition as each local region of the
graded mixed semiconductor.

V. SOME PHENOMENA SPECIFIC TO GRADED
MIXED SEMICONDUCTORS

The concepts and analyses developed in the preced-
ing sections advance the theoretical foundation for
understanding the following phenomena specific to
graded mixed semiconductors.

The position-dependent band gap and radiative re-
combination of graded zinc-cadmium sulfide crystals
have been determined from position-dependent optical
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absorption and emission'; the position-dependence of
the band edge for majority carriers with respect to the
Fermi level, from position-dependent conductivity and
the photovoltaic effect.?

Hill and Williams'® have reported electric-field-
dependent luminescence spectra in graded zinc-cadmium
sulfide crystals. They have interpreted the linear shift
in the edge emission spectrum as field-enhanced minor-
ity-carrier transport between regions of different band
gaps. Shifts up to 45 A for band-gap gradients of a few
eV/cm were obtained with applied fields of the order of
10* V/cm. Solutions of Eq. (16) can be used to deter-
mine theoretically the field dependence of emission
spectra. Also, the density of states affects the field de-
pendence. From the inequalities (5), it is apparent that
much larger shifts can be predicted for mixed semicon-
ductors with larger composition gradients,

1L, J. Van Ruyven and I. Dev, J. Appl. Phys. 37, 3324 (1966).

2 Indradev, L. J. Van Ruyven, and F. Williams, J. Appl. Phys.
39, 3344 (1968).
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Electroluminescence could in principle be achieved by
a mechanism specific to graded-band-gap systems, a re-
gion of which has a near-zero band gap. Minority car-
riers thermally generated in the small-gap region would
be transported to a region of larger gap by an applied
electric field, followed by radiative recombination.!4

Finally, we propose that the behavior of excitons in
graded mixed semiconductors be investigated. For
proper systems, the valence and conduction-band gradi-
ents can induce motion in the same direction for both
electrons and holes. Thus graded-gap systems have
unique advantages for the study of exciton transport.
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Radiation associated with shallow donor-acceptor electron transfer in silicon has been examined in the
liquid-helium temperature region for various combinations of group-V donors and group-III acceptors. The
spectra for all impurities are quite similar, exhibiting TA- and TO-phonon-assisted lines, as well as a no-
phonon line in all but the (Sb,B)-doped sample. A (P,In) sample exhibits an unusual extra line which is attrib-
uted to an LA-phonon-assisted transition. A theory analogous to that of Thomas, Hopfield, and Augustyn-
iak, modified to take account of anisotropic donor wave functions, is used to analyze the line shapes and de-
termine rate constants and the impurity-pair Coulomb energy for pairs that decay at different times after
impurity neutralization. This leads to a direct measurement of the indirect silicon energy gap of 1.166
=-0.0010 ¢V and an exciton binding energy of 0.0102-4-0.0015 eV, when combined with infrared-absorption
measurements near the indirect gap. The analysis also indicates that optically determined impurity ioniza-
tion energies are correct, and that the thermally determined impurity activation energies and their con-
centration dependence probably result from carrier redistribution effects rather than modification of the
impurity ionization energies of the majority of the impurities.

1. INTRODUCTION

ADIATIVE spectra and recombination kinetics
associated with electron transfer between shallow
donors and acceptors have been reported for several
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