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Further applications of the kg representation to the dynamics of electrons in solids are carried out. The
Bloch theory of conduction electrons is reformulated in the new representation. The symmetry of the prob-
lem is discussed in light of the kg representation. In particular, the motion of an electron in both a periodic po-
tential and a constant magnetic field is developed on a firm quantum-mechanical basis. A complete and
orthonormal set of magnetic Bloch functions is defined. These functions are shown to obey the magnetic
translation symmetry, and it is for this reason that they are very useful in describing the motion of a Bloch

electron in a magnetic field.

I. INTRODUCTION

N a recent publication! (to be referred to as I) the
kq representation was used for describing the motion
of electrons in solids in external fields. It was shown
that well-known results of the dynamics can be repro-
duced by using this representation in a very simple and
natural way. The reason for this is that k and q are
the most natural coordinates for problems connected
with periodic potentials. Indeed, the quasimomentum
k gives the momentum of an electron in the crystal
within K, a vector of the reciprocal lattice. k is a con-
served quantity and is of very great importance in the
Bloch theory of conduction electrons. The coordinate
q has the meaning of a quasicoordinate and gives the
location of the electron inside a unit cell of the Bravais
lattice without specifying in which of the unit cells the
electron is. Such a specification of the position is very
closely connected with the motion in a periodic poten-
tial because the latter is a function of the quasicoordin-
ate q only. The kg representation uses therefore the
natural coordinates k and q of a crystal and the very
important concepts of unit cells in the direct and re-
ciprocal lattice. One is to expect that the dynamics of
electrons in solids will assume the simplest form when
described in terms of the quasimomentum k and the
quasicoordinate q.

In this paper further applications of the kq repre-
sentation to the Bloch theory of conduction electrons
are given. In Sec. IT the motion of an electron in a
periodic potential is described in the new representa-
tion. This section serves also as an introduction to the
later material and gives a general view on conserva-
tion laws in the motion of electrons in solids. Section
IIT deals with the problem of a Bloch electron in a
magnetic field.!~* The use of the k¢ representation leads
to a definition of a complete and orthonormal set of
functions. These functions are used in developing an
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effective-Hamiltonian theory to any order in the mag-
netic field. In Sec. IV it is shown that the set of functions
defined in this paper obey the magnetic translation sym-
metry. This is pointed out as a very important reason
for the usefulness of these functions. By using them,
the effective-Hamiltonian theory becomes very trans-
parent and straightforward.

II. MOTION OF AN ELECTRON IN A
PERIODIC POTENTIAL

Let us start this section by reviewing the main fea-
tures of the kg representation. As was shown in I,
translations in direct and reciprocal spaces

T(R.)=exp(ip-R,), (1)
T(K..)=exp(ir-K,), (2)
form a complete set of commuting operators and can
therefore be used for specifying a complete set of states

in quantum mechanics. The eigenstates ¥y 4(r) of
operators (1) and (2) for a special choice of phase are

[Z(30)]

Yro(r)=[7/(2m)"]"* Lr, exp(ik-R,)é(r—q—R,).  (3)

The basic operators p and r then become [1(31), (32)]
p=—1(9/9q), (4)
r=4(3/0k)+q. (5)

k and q, the quasimomentum and quasicoordinate in
(3), assume values in the first Brillouin zone and the
unit cell of a Bravias lattice correspondingly. Any func-
tion ¥(r) in the r representation is connected to its
kq transform C(kq) as follows:

00)= [ i Clrayustd. ©
The inverse transformation is
Clha)= [ W@ (©)

Because of the structure of ¥4(r), Eq. (3), the bound-
1151
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ary conditions on C(kq) are [1(40), (41)]
C(k+K,, 9)=C(kq), (7)
C(k,q+R.)=exp(ik-R,)C(kq). (8)

Schrodinger’s equation for a Bloch electron in magnetic
and electric fields H and E in the kg representation is

[1(36)]
{[—i—%—l—iﬂ)((iaik-lﬂ)]z / 2m+V(g)

+eE~(i§{+q)]c<kq>=eC(kq>. ©)

It is important to point out that no matter what
physical problem one considers, the boundary condi-
tions on C(kq) are the same [conditions (7) and (8)].

In this section we limit ourselves to the discussion of
the motion of a Bloch electron in the absence of external
fields. Equation (9) then will become

I:i(—i%)2+ V(q)]C (kq)=eC(kq).  (10)

2m

This equation is the same as in the 7 representation

1 d\?
[——(—i—) +V0) po=er).
2m ar
The latter has as its solutions Bloch functions
Vnip(t) = exp(ikp- 1)tnrp(r) (12)

where kg is the quasimomentum of the state and # is the
band index (the reason for using a notation kg is ex-
plained below). By using formula (6") one finds

Coralka)= f It V(W)
~Ya®) ¥ 85— =Ko

=¥ai(q) :; d(k—ks—Ku). (13)

Relation (13) gives the Bloch functions in the &g re-
presentation. It is easy to check that if ¥,is(r) is a
solution of Eq. (11) corresponding to the energy e.(ks),
so will C,i5(kq) be a solution of Eq. (10) for the same
energy. The physical meaning of solution (13) is very
simple: Cnry(kq) does not vanish only when k (which
is an independent coordinate) equals kz (which is a con-
stant of the motion and is used for specifying a Bloch
state) within a vector of the reciprocal lattice Kn. Both
k and kp specify eigenvalues of the translation operators
in direct space, (1), and as such there is no difference
between them. In the description of Carg(kq), however,

ZAK
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k and kg have different roles, this being the reason for
their different notation. It is also easy to check that
Crirp(kq) in (13) is an eigenfunction of the translation
operator T'(R,):

T(Ra)Crip(kq)=exp(iks: Ra)Crrp(kq).  (14)

This is the Bloch theorem written in the k¢ representa-
tion. It is interesting to discuss this theorem in more
detail in the light of the k and q variables.

In quantum mechanics one can measure precisely
either the coordinate r of a particle or its momentum p.
Both of them cannot be measured simultaneously be-
cause they do not commute. The same is true, in general,
about a function of r and a function of p. If, however,
one is interested in partial information about, say, the
coordinate, then one could at the same time also measure
to some extent the momentum. An example of such a
partial information about the coordinate r and the mo-
mentum p are the quasicoordinate q and the quasi-
momentum k. The latter carry the most information
one can get simultaneously about r and p. In the Bloch
theorem one specifies states by both the eigenvalues of
the energy operator (11), which is a function of r, and
the eigenvalue of translation operators (1), that depend
on p. The dependence of the Hamiltonian (11) on r can
be expressed by means of the translation operators
T(K,) in reciprocal space (2). This is achieved by ex-
panding the periodic potential V(r) in a Fourier series

H=p*/2m+> V(K,) exp(iK,. 1)
Km

=p2/2m+KZ V(Kn) T (K, (15)

where V(K,,) are the Fourier coefficients of the periodic
potential V(r). As was mentioned before, in general, a
function of r (the Hamiltonian) and a function of
p[T(R.)] do not commute and they do not have com-
mon eigenstates. In the special case considered here,
it is because of the commutativity of T'(R,) and
T(K,) [relations (1) and (2)] that the translations
T(R,) commute with the Hamiltonian and that the
Bloch theorem holds. We see therefore that the funda-
mental operators 7'(R,) and T'(K.) are of very great
significance in the Bloch theorem.

Because of the Bloch theorem, kg is a conserved
quantity in the quantum-mechanical description of the
motion of an electron in a periodic potential. Is there
any classical anlog for this conservation law? It is
known in classical mechanics® that any function of r
and p that gives vanishing Poisson brackets with the
Hamiltonian is a constant of motion. The spatial sym-
metry of a classical system can be expressed in terms
of infinitesimal transformations: Generating functions
G of infinitesimal transformations that leave the Hamil-

5 Herbert Goldstein, Classical Mechanics (Addison-Wesley
Publishing Co,, Inc., Reading, Mass., 1950),
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tonian invariant are constants of motion. For example,
an infinitesimal translation in the « direction is gener-
ated by G= p,. There is, however, no such theorem in
classical mechanics with respect to finite transforma-
tions. The invariance of the classical Hamiltonian for
a periodic potential V (r) with respect to a finite transla-
tion, r — r+R,, does not lead to any conservation law.
In order to see better the fundamental difference be-
tween the quantum-mechanical and classical description
of the problem let us consider the operators 7'(R,) and
T(K.). As was mentioned before, it is because of the
commutativity of these operators that the Bloch
theorem holds and therefore that ks can be defined in
quantum mechanics. Classically, there are no functions
of the form (1) and (2) that give vanishing Poisson
brackets.® It is for this reason that ks cannot be in-
troduced classically. The conclusion is that the quasi-
momentum kg is a purely quantum-mechanical con-
cept that has no classical analog.

In some cases it can be more convenient to work with
the function U(kq) that is connected to C(kq) by the
relation [1(42)]

C(kq)=exp(ik-q)U (kq).

For an electron in a periodic potential, U(kq) satisfies
the equation

(16)

[(—%ﬂ)z / 2m+V(q)]U(kq)=eU(kq)- an

According to (13) and (16), the Bloch solutions of
Eq. (17) are

Unka(kq) = unk(q) KZ 6(1{—' kB— Km) ) (18)

where #.:(q) is the periodic part of the Bloch function.
The phase transformation (16) will also change the ex-
pressions for the basic operators p and r [(4) and (5)].
They will become

(19)
(20)

p=—1(8/9q)+k,
r=1(9/9k).

Accordingly, the translation operators I'(R,) and
T(K,) will be

T(R,)= exp[i( -—i%—i—k) . Rn] ,

T(Ky)= exp[i(i;—k) . K,,.] .

One can easily check that U,xz(kq) in (18) is an eigen-
function of T'(R.) with the eigenvalue exp(ikz-R.,),
which is to be expected according to the Bloch theorem.

@1

(22)

¢ A general discussion of this problem is given in a paper by
Yakir Aharonov and Aage Petersen (private communication).
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It is interesting to compare Eq. (17) with the usual
equation for the periodic part #aig(r) of the Bloch
function (12). From (11) and (12) one has

[<_i£;+k3)z / ot V(f)]%nkg(r)

= e,(kp)thnrp(r).

The energy in Eq. (23) is periodic in kg with the period
of the reciprocal lattice vectors K,. However, neither
the Hamiltonian in (23) nor the functions #,x,(r) have
such periodicity. This difficulty is avoided in Eq. (17)
and solution (18) which are periodic in ka.

To complete this section let us consider the Bloch
representation in addition to the 7 representation and
the kg representation that were already considered
here. The wave function B, (kg) in the Bloch representa-
tion (nkg representation) can be obtained by expanding
U (kq)[C(kq) or ¢(r)] in Bloch functions U .;(kq)

U(kq)= 3~ B.(kg)Unrp(kq)

nkB

= Z Bn(k)unk(q) ’

(23)

(24)

where the last equality was obtained by using the ex-
plicit form (18) for Uniz(kq). The simple relation (24)
(with no integral over k!) was already used before
[I(47)] in the derivation of an effective Hamiltonian
for a Bloch electron in a magnetic field. For comparison
let us write the expansion of ¥(r) in Bloch functions

Y(O) =2 Ba(k)¥nis(r). (25)

nkB

In the latter expansion there is also the integration
over kz which may complicate the calculations con-
siderably [It is clear that if expansion (24) would be
performed for C(kq), the result on the right-hand side
would contain ¥.x(q), again without integration over
k.] It follows from relation (24) that the transformation
between the kg representation and the nkp representa-
tion is given by Uarz(kq) in (18). In the Bloch repre-
sentation Eq. (17) becomes

en(kp)B,(kp)= eB,(kz).
The solution of Eq. (26) for the energy e=e(ks’) is
B8 (kg)=0,; Y. d(kp—ks'—Kn). (27)

Kn

(26)

The function (27) will clearly give for U(kq) in Eq.
(24) the function Ui, (kq) which one should expect
to get. N

In summary, the connections between functions ¥ (r),
C(kq), and B, (k) (in the » representation, kg representa-
tion, and nk representation correspondingly) are given
by the following relations: The function ¥(r) is con-
nected to the function C(kq) by relation (6), the function
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¥(r) is connected to B,(k) by relation (25), and C(kq)
is connected to B,(k) by (24) with #.x(q) replaced by

III. EFFECTIVE HAMILTONIAN FOR A BLOCH
ELECTRON IN A MAGNETIC FIELD

In paper I it was shown that the kg representation
is very convenient for deriving an effective Hamiltonian
for a Bloch electron in a magnetic field. The well-known
result was obtained for the zero order in magnetic field
effective Hamiltonian,>* and the higher-order terms
were shown to coincide with the corresponning terms
in Roth’s paper.? Because of its clear nature and
simplicity, the kg representation makes it possible to
develop a very simple and straightforward effective
Hamiltonian theory to any order in magnetic field.

The Schrédinger equation in the kg representation
for a Bloch electron in a magnetic field is [1(43)]:

( ST ’6)2 -V }Uk
{ —151‘[‘ +§; X1£ / m~+V(q) (kq)

=eU(kq). (28)

The idea of an effective Hamiltonian?* is to write
Eq. (28) in a Bloch-type nkg representation and to keep
to some approximation only one-band terms. Assume
that a general transformation is performed from the
wave function U(kq) in the kg-representation to the
wave function B,(kg) in the nkp representation

nkp

(29)

where (kq|nkg) is the transformation matrix. It was
already shown [relation (24)7] that if the proper Bloch
functions were used in transformation (29), (kq|#kz)
would be replaced by U ,x,(kq) and (29) would go over
to (24). Imagine, however, that some modified Bloch
functions are used in (29), like the Kohn-Luttinger
functions,®* or the Roth functions.® Then (kq|nkg) is
different from U,.4(kq). Let us assume that (kq|nks)
form an orthonormal set of functions. One also has to
make sure that (kq|zkg) form a complete set of func-
tions because otherwise expansion (29) would not be
valid. We therefore require that

/ dk do (k| ka) (k| w'ks') = 6, d(ks—ks'),  (30)
Y (kq|nks)(nks|kq')=6(k—k)é(g—q). (31)

nkp

Relation (30) expresses orthonormality, while (31) gives
completeness. By using relations (29) and (30), Schrod-
inger’s equation (28) in the modified Bloch representa-
tion, #kp, will become

Z Hnn'(kBkB/)Bn’(kE,) = éBn(kB) .

n’kB’

(32)

ZAK
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The following notation was used in (32):

Hm.l(kBkB’) = fdk dq (nkB]kq)

EINDE)
i ke —HX /2 % ]
16q 2c 1¢9k V@)

X (kq|n'ks). (33)

Let us also introduce a notation that was used in L
Given a function S(kg) [or S(k)] one can define [1(59)]

[S(ks)], (34)

where the rectangular brackets mean that S(kgz) was
first symmetrized as a function of kz and then kg
replaced by kg (e/2c)HXi(9/dkg). In notation (34)
the existence of an effective Hamiltonian for Eq. (32)
is expressed by the requirement that

Hm,r(kBkIB) = B,mIEHn(kB)] Z 3(kB“‘kB/— Km) 5 (35)

where [ H,(kz)] operates on the & function. If relation
(35) is satisfied, Eq. (32) becomes an effective-Hamil-
tonian equation

[Hn(kB)]Bn(kB) = EBn(kB) .

The main idea of an effective Hamiltonian is that Eq.
(36) is a one-band equation and that [H.(ks)] is a
function of kp+(e/2c)HXi(d/3ks). This is a very
attractive result and it is known?* that [H.(ks)] in
(36) can be constructed to any order in the magnetic
field H. It is interesting to compare the exact equation
(28) with the effective Hamiltonian equation (36). In
the first of them there are derivatives with respect to k
only to second order, while the latter equation is a dif-
ference equation and contains therefore derivatives
with respect to kg to any order. To see this difference
better let us write down the Hamiltonian of Eq. (36)
in a more explicit form. By definition

[Hn(kB)]=zl: H,(Ry)

(36)

e d
Xexp[i(kB-l“—HXi———) 'Rz:l , (37
26 6k3

where H,(R;) are the Fourier coefficients of the ex-
pansion of H,(ks) and the reason that there is a sum
over Bravais lattice vectors R; is because H,(kg) turns
out to be periodic with respect to vectors K, of the
reciprocal lattice? (see also the proof at the end of Sec.
TII). Tt is clear that an operator (37) leads to a difference
equation in (36). Being a difference equation, Eq. (36)
connects B,(kp) with different kz in the Brillouin
zone. On the contrary, Eq. (28) [or any exact equation
(32)] is diagonal in k because it is known that the
Hamiltonian of a Bloch electron in a magnetic field is
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diagonal in k with respect to any Bloch-type states.?47
There is therefore a qualitative difference between the
effective Hamiltonian equation (36) and the exact
equation (28).

To lowest order in magnetic field H©®, it is easy to
check that Eq. (35) is satisfied by [see definition (33)]

(kq| nks) =[#r(q)] KZ dk—kz—K,),  (38)

Hn(kB) = Gn(kB) N (39)

In Eq. (38), #.1(q) is the periodic part of the Bloch
function (18), and [#.1(q) ] operates on the & function.
ex(ks) in (39) is the one-band energy of the solid under
consideration in the absence of a magnetic field. In
order to verify that (38) and (39) satisfy relation (35),
we use the multiplication rule for functions in rec-
tangular brackets, I(61) [see also Appendix I, (A1)-
(A4)7]. The left-hand side of Eq. (35) will become, to
zero order in H,

[ da Dt @ T ) Tt @] 80~ )
=sunCenll] £ sk~ o), (40)

which coincides with the right-hand side of Eq. (35).
It is also easy to check that the transformation func-
tion (38) satisfies the completeness (31) and the ortho-
normality (30) conditions to zero order in the magnetic
field. Take, for example, the completeness condition
(31): To zero order in H we have [see formulas (A1),
(A3), (A4) in Appendix I7]:

21;3 (kq|nkz) (nks | k'q’)
=2 [otni(@) JLuni*(@)] KZ 3(k—k'—Kn)

=d(k—k)o(q—q"). (41)
For arriving at result (41) the completeness of the
#ax(q) was used. The orthonormality of (38) to zero
order in magnetic field can also be easily checked. Since
the transformation function (38) satisfies Eq. (35) and
the conditions (30) and (31) to zero order in magnetic
field, it will lead, when used in expansion (29), from
Eq. (28) to the effective Hamiltonian Eq. (36):

Len(ks)1Ba(ks)= eBu(ks). (42)

Result (42) gives the well-known effective Hamiltonian
equation to zero order in magnetic field.* Let us point
out that if our only task would be to arrive at Eq. (42),
we could do it in a very simple way without developing
all the arguments that follow expansion (29). Compare
Eq. (28) for a Bloch electron in a magnetic field with

7 E. I. Blount, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc., New York, 1961), Vol. 13.
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Eq. (17) for a Bloch electron. The only difference
between these two equations is that in the former
k+(e/2c)HXi(8/ k) appears instead of k in Eq. (17).
We know, however, that if U,z,(kq) in (18) is used as a
transformation function in (29) [or (24)], Bloch’s
equation (17) assumes the form (26). One should there-
fore expect that the transformation function (38), where
kin #,x(q) is replaced by k+ (e/2¢)H X i(8/0k), will lead
from Eq. (28) to the effective Hamiltonian Eq. (42).
This is straightforwardly checked by expanding U (kq)
in (28) according to relation (29) with the transforma-
tion function (38), multiplying both sides of Eq. (28)
by (nkg|kq), integrating over k and q, and using the
multiplication rule (A1). Of course, one would have to
check orthonormality and completeness of (38) to zero
order in the magnetic field. The discussion that followed
expansion (29) will, however, be needed for deriving an
effective-Hamiltonian equation to higher order in the
magnetic field.

Before going to higher-order terms let us show that
the transformation functions (38) coincide with the
Roth functions,® ®.x,(r), that were used in the deriva-
tion of an effective Hamiltonian. For showing this, let
us find the kg transform [see relations (6’) and (16)]
of ®,,(1)

UnkBR(kQ) = eXP(_ ik- q)anBR<kq)
=exp(—1k-q) / Porp()Yr o (r)dr

The superscript R in (43) stands for Roth’s function and
in the derivation of result (43), the definition of ®,(r)
[Ref. 3, Eq. (10)] and expression (3) for ¥ 4(r) were
used. We see therefore that (kq|zkg) in (38) is just the
kq transform of Roth’s function ®,1,(r). In Ref. 3 it
was assumed that ®,z,(r) form a complete system of
functions. In I and in relation (41) this was shown to be
correct to zero order in the magnetic field. It is clear,
that for developing an effective Hamiltonian theory to
higher-order terms, one has to make sure that the
functions (kq|#kz) used in expansion (29) form a com-
plete system of functions to the desired order in the
magnetic field.

As was already checked, the transformation func-
tions (38) form a complete and orthonormal set of func-
tions to zero order in magnetic field. Let us now show
that for sufficiently small magnetic fields it is possible
to construct a set of functions ®,xz(kq) which are
orthonormal and complete to any order in magnetic
field. Define a matrix®

[V ()] = f da L@ @], (44)

The matrix [V (k)] can be given another form by using
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the matrix [S(k)] that was defined in paper I [I(55),
(59)] (See formula (A1) in Appendix I)

[V ]=LSR) TS ()]

=I+[NO®I+[NPK) ]+, (45)
where
3aS(k)t a5 (k)
NO(K)=—ihog—— )
Oks  Okg
(45")
3:S(k)t 92S(k)
N® (k) = -%houﬁlhazﬁz )
0k, Okay Okp,0kp,
and
CSun9]= [ @Eos@]. )

The superscripts in (45) and (45") denote the order of
the magnetic field. The existence of an inverse matrix
for [N (k)] is of very great importance to what follows.
In order to be able to define [NV (k) ™! we assume that
the magnetic field is sufficiently small so that the com-
mutator expansion in (45) holds. The assumption of a
commutator expansion is very crucial in the entire
theory of effective Hamiltonians.2* By making this
assumption, the matrix [V (k)] can be inverted

[N = {I+[NO®)H N DOk ]+ - - )
_—_I-—[N(l)(k)]__[N(z)(k)]+[N(1)(k)]2+_ .

Let us use this inverse matrix for defining functions
Bnip(kq) = (kq|rks)
=§ Lo (@) JLV (R 17112
XY o(k—ks—Kn), (47)
where
[N ()T V2= {I+[NOK)J+H[N O (k) ]+ - - -}
= -3V O ]3IV O[]
+HINO (K P (47)

As will be seen below the matrix [N (k)T!/2 in (47)
serves as an ‘‘orthonormalization factor,” and it can
be checked that the functions ®,x;(kq) form an ortho-
normal (30) and complete (31) set of functions. Ortho-
normality of (47) follows at once:

/ dk dq (ks | ke) (k| k")

= {[ NV (kz) T[S (ks) LS (km) ILN (ki) T2}
X Y 8(kz—ks'—Kn)
Km
=bnwd(ks—ks), (48)

where formulas (A3), (A4), (45), and (46) were used.
The left-hand side of the completeness condition (31)

is given by

ZAK
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5 @@ LS TN QTSR v
X KZ dk—K—K,). (49)

This means that in order to prove completeness, one
has to prove the relation

LS IIV () LS =1, (50)

where I is a unit matrix. It is easily seen that any
power of the matrix on the left-hand side of (50) equals
the matrix iteslf. Such a matrix can be either zero or
I. Zero is excluded because relation (50) was proven
before [see proof (41)] to zero order in magnetic field.
It follows therefore that relation (50) holds to any
order in magnetic field. This proves that the functions
(47) form a complete set of functions to any order in
magnetic field.8

The complete and orthonormal set of functions (47)
will now be used in constructing effective Hamiltonians
to higher order in magnetic field. It was already shown
that expansion (29) leads to Eq. (32) [with notation
(33)] when the transformation functions (kq|xkg)
form an orthonormal set. It was also shown that in
order to arrive at an effective Hamiltonian, Eq. (36),
to some order in the magnetic field one has to prove
that the Hamiltonian (33) can be given the form (35)
to the same order in magnetic field. By using expres-
sion (47) for the transformation function, the Hamil-
tonian (33) in its matrix form becomes (k is used
instead of kg)

H(kk)=[U)TLHU) LU X s(k—k~Kn), (51)

where the following notation was assumed:

LU ]=[SH) LN (k) 172,

Ho ()= / ) ((—%ﬁk)z /

2m+V(q) ] uno(q). (53)

(52)

Having the Hamiltonian (51) in the nk representation
(k is used instead of kg), one can write the equation for
B,(k) in (29)

Z ALV ITEM) LUK B nn Ba (k) =eBa(k).  (54)

This equation is a multiband effective-Hamiltonian
equation for a Bloch electron in a magnetic field. It has
a significant advantage over this type of equation in

8 In previous work (Refs. 3 and 4) completeness was assumed
to any order in magnetic field. This is not at all obvious. A dis-
cussion of this problem with Professor Laura M. Roth and Dr.
E. L Blount and their comments were very much appreciated.
The author is in particular grateful to Professor Roth for pointing
out in a private communication the possibility of defining the
inverse matrix [N (k)]
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Ref. (1) [1(65)] and in other publicatons?™* in that on
the right-hand side of (54) there is only a diagonal
term. This fact makes the diagonalization procedure
of Eq. (54) very simple because any unitary transforma-
tion of (54) will keep the right-hand side diagonal.

Let us describe the diagonalization procedure of
Eq. (54). By using the commutator expansion (A1), the
Hamiltonian of Eq. (54) can be written as a power series
in the magnetic field

LU TTH) LU (k) 1= [Ho(k)]
=[HO &) +[HD (k)]

+[H(2)(k)]+ ceey, (553.)
where (see Appendix IT)
HO®K) =0 (k), (55b)
HO (k)= (STHS) O —{N D (k),e®(k)}, (55¢)
HOKk)=(StHS)®— {N(“(k),(STHS) )
— (VR —TO®), €O K)
2

Here, the curly brackets of any two functions 4 (k) and
B(k) denote a symmetrical product

{4(k),B(k)} = 3[4 (k) B(k)+B(k)4 (k)].

In (55b), (k) is the energy spectrum in the absence
of the magnetic field [in (39) and (42) it is denoted by
e(k)]. The notation [Ho(k)] of the Hamiltonian (55a)
expresses the fact that the latter is diagonal to zero
order in magnetic field, and to the lowest order one ob-
tains again the effective Hamiltonian equation (42).
The higher-order terms in (55a) contain nondiagonal
elements and, as is shown below, their removal to any
order in the magnetic field can be achieved by a unitary
transformation. Let us start with removing nondiagonal
terms in (55a) to first order in magnetic field. Define
a unitary transformation

exp{i[ TO(K) ]} =I+i[TOK) ]+,  (56)

where [T® (k)] is a Hermitian matrix and is of first
order in magnetic field. By applying transformation
(56) to the Hamiltonian (55a), the latter will assume the
form (to first order in magnetic field)

Hy(k)=HO (k)+i(HO &) T (k)— T (k) H (k)
+HOEK) - .
One can now choose 7'M (k) in such a way that the non-

diagonal terms in (57) vanish to first order in magnetic
field

(7

Hnn’ @ (k)
O —en @)
Tn®(K)=0.

T O (k) =i '

(58)

(59
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It is easy to check that the matrix defined by (58) and
(59) is Hermitian and (56) is therefore a unitary trans-
formation. The notation H;(k) with the subscript 1
in (57) means that the transformed Hamiltonian is
diagonal to first order in magnetic field

Hy() = cO(k)+eD(K)+ -, (60)

where €@ (k)= (k) is the energy spectrum of the solid
in the absence of the magnetic field and ¢® (k) is the
diagonal part of HM(k) in (57) [or (55a)]. The diag-
onality of the Hamiltonian [Eq. (60)] to first order
in the magnetic field was achieved by starting with a
Hamiltonian (55a) which was diagonal to zero order in
magnetic field and by using a unitary transformation
(56). It is clear that the same process can now be used
for diagonalizing the Hamiltonian (60) to second and
higher order in magnetic field. Assume, for example,
that the Hamiltonian is already diagonal to pth order
in magnetic field

Hy(k) = e2(k)+ H @0/ (k)+ - - -, (61)

where €°(k) is the diagonal Hamiltonian containing
terms up to pth order in magnetic field

€@ (k)= @ (k)+ - - -+ (k) (62)

and H@'(k) has nondiagonal terms of the order
(p+1) in magnetic field. Let us show that a unitary
matrix can be defined

e[ T = T+ T )]+ (63)

that will make the Hamiltonian (61) diagonal to the
order (p+41) in magnetic field. Under transformation
(63) the Hamiltonian (61) will become ['to order (p+1)]

Hpia(k) = eP(k)+i(e© (k) T @0 (k) — 7@+ (k) e (k))
+HED (R4, (64)

Again, T (k) can be chosen in such a way that the
nondiagonal elements of H,.1(k) vanish to the order
p+1 in magnetic field

H . #HD/(K)
(k) — e (k)
T (k)=0.

T @O (k) =1

n'#Zn  (65)

(66)

The matrix 7@ (k) defined by (65) and (66) is
Hermitian and (63) is therefore a unitary matrix. This
completes the proof that a unitary matrix exists
[relation (63)] that transforms the Hamiltonian (61),

which is diagonal to pth order in magnetic field, into a
Hamiltonian

Hppi(k)= eP(k)+ ¢ (k)+-- - - (67)

which is diagonal to the order p+1 in magnetic field.
The term e®*(k) in (67) is the diagonal part of
H@'(k) in (61). Since p is completely arbitrary, the
above procedure can be used for diagonalizing the
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Hamiltonian (55a) step by step to any power in the
magnetic field. It is to be pointed out that the unitarity
of transformation (63) is of very great importance. It is
because of this fact that one does not have to worry
about the right-hand side of Eq. (54), which stays
diagonal automatically during the entire diagonaliza-
tion procedure. This leads to a significant simplification
of the previous methods®* where the diagonalization
procedure has to be carried out on both sides of the
multiband equation.

In conclusion of this section let us show that the
method developed here enables one to prove in a
straightforward way that the effective Hamiltonian is
a periodic function in k with the periodicity of the
reciprocal-lattice vectors.? A very simple formula was
given in Appendix IT [A(15)] for the product [S(k)]
X[HK)]LS(k)]. It was shown there that each term in
the rectangular brackets of formula (A15) is periodic in
k. The same argument can be used to show that each
term in the rectangular brackets of the expansion
(47) of [N(k)]/2 is periodic in k [see definition
(45)]. It follows therefore that all the expressions
(55b)-(55d) for the effective Hamiltonian are periodic
in k. This will be also true for the effective Hamiltonian
on each stage of diagonalization because the matrix
T(k) that is used in this diagonalization process
[formulas (58), (59) or, in general, (65), (66)] is itself
periodic in k. This completes the proof that both the
diagonal and nondiagonal terms in the effective Hamil-
tonian He:(k), to any order in magnetic field and at
any stage of diagonalization, are periodic in k with the
periodicity of the reciprocal-lattice vectors.

IV. DISCUSSION

The effective-Hamiltonian theory in this paper was
developed by using an orthonormal and complete set of
functions ®.z5(kq) [Eq. (47)]. In order to define these
functions the assumption was made that the magnetic
field is sufficiently small so that the inverse matrix
[N (k)T can be defined. After making this assumption,
one gets a multiband effective-Hamiltonian equation
[Eq. (59)] which is correct to any order in magnetic
field. The diagonalization procedure becomes then
straightforward and very simple. It is interesting to
ask the question what is so special about the func-
tions ®,5(kq) that makes the entire theory look so
elegant and straightforward. The answer lies in their
symmetry. As was pointed out before,® the Bloch func-
tions or Kohn-Luttinger functions? with the proper
symmetry of Schrédinger’s equation in the absence of
external fields cannot serve as a suitable basis for ex-
panding solutions of Eq. (28) for a Bloch electron in a
magnetic field. The reason for this is that the symmetry
of Schrodinger’s equation in the absence of a magnetic
field [Eq. (10)] is completely different from the sym-

9 7. Zak, Phys. Rev. 136, A776 (1964).
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metry of Eq. (28). The latter equation has the sym-
metry of the magnetic translation group!® while Eq.
(10) is invariant under the regular translations [Eq.
(1)]. As is known,? the regular translation group and
the magnetic translation group have a completely dif-
ferent structure. The behavior of Bloch functions
[Eq. (13)] under regular translations 7'(R,) [Eq. (21)]
is given by relation (14). Let us check how the functions
®,15(kq) in (47) behave under magnetic translations!®:

9 e d
(R,)= exp[i(—i-+k*“HXi—)'Rn:| - (68)
dq 2 ok
One finds

7(Ro)®rrp(ke) = exp(ikn: Ru)®uipr o/20mxr, (kQ) . (69)

The last relation is obtained by using the fact that any
function of k+4(e/2c)HXi(9/0k) commutes with
k—(e/2c)HXi(9/0k). As seen from relation (69), the
functions ®,;(kq) transform into one another accord-
ing to the symmetry required by the magnetic transla-
tion group.!! It is for this reason that the functions
®,1.5(kq) form the proper set for expanding the solution
of Schrédinger’s equation for a Bloch electron on a
magnetic field.® The kp in ®,.1,(kq) specifies the mag-
netic translations and plays a similar role to the kg
vector in the Bloch functions [relation (14)], where it
specifies the regular translations. One can therefore
call ®,1,(kq) the magnetic Bloch functions.
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APPENDIX I: COMMUTATOR EXPANSIONS

As was shown by Roth? the following formula holds
for any two functions 4 (k) and B(k):

[A(K)]LB(k)]
=[exp{—i(e/20)H-ViX Vi } A(K) B(K') | & —ic]
94 (k) 0B(k)
ke Okg ]
94(k) 9°B(k)
_%hu a’ B’
et [akaaka, 6k56k,;r:|

L4 (k)B(k)]—maﬁ[

where the rectangular brackets mean that the function
inside is first symmetrized with respect to the com-
ponents of k and then k is replaced by k+(e/2c)H

10 ], Zak, Phys. Rev. 134, A1602 (1964).
17 Zak, Phys. Rev. 134, A1607 (1964).
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Xi(9/0k) [see formula (34)], and
hag= eaﬁ.,eHV/Zc ,

with eas, being the antisymmetric unit tensor. [In I
a factor 3 is missing in the third term of formulas I(61)
and (63).] In a way similar to the proof of formula
(A1), one can prove that

[A(K) I [B(k)I=[exp{i(e/2c)H- Vi X Vi}
XAK)BW)|w=x]", (A2)

where [ ]~ mean that the function inside is first
symmetrized with respect to the components of k and
then k is replaced by k— (e/2¢)HX4(/ k).
It can be checked that
[4(ks) T o(k—kp)=[4 (k) Jo(k—kz).  (A3)

In order to prove (A3) let us write its left-hand side
explicitly

[4 (k) ]-8(k—ks)

= / anAQ) exp[i(kg—i—:;HXi—i) -x} 8(k—ks)

ks
- / B AG) exp{i(k—l—iz—eﬂHXi%)'l} 8(k—kz)

=[4(k)Jo(k—ksz),
which is equal to the right-hand side of (A3). In the
last proof A () is the Fourier transform of A4 (kg).
Another formula that was used in the text [see
derivation of (40), (41), (48), and (49)] is that if

(kq| nkg)=[ttar(@)] 14(‘: d(k—kz—Ku)
=Zl w10(Q)[Sin (k)] KE 8(k—kz—Ka),

then its complex conjugate (#kg|kq) is given by
(nkp|kq)=[w*u(@) 1 KZ 8(k—kp—K.)
=3 u*1(q)[S*1.(kz)] § o(k—kz—K.,). (Ad)
i m
The proof of (A4) is as follows:

(nkp|kq) = (kq |nkp)*
= [sn(@) J* ;Z, s(k—kz—K.,)

a
= / w*a(q) exp[—i(k—iiﬂ Xz———):ldl
2¢ ok

X s(k—kp—K.)
=[w*a(g) ]~ KZ 3(k—kz—Ka).
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#a2(q) here is the Fourier transform of #,;(q). The last
equality of (A4) follows from the definition of S(k)
[relation (46)] and from (A3).

APPENDIX II: GENERAL EXPRESSION
FOR THE HAMILTONIAN

Let us now give a commutator expansion of the
Hamiltonian (55a). By using definition (52) for [U (k)],
one has

[H (k) ]=[N (k)T LSk)IJTH(K)]

XS NI T2, (AS)
An expansion for [S(k) J'[H(k)J[S(k)] to second order
in magnetic field was already given in I [1(66)]. It is
possible to derive a general formula for this triple

product to any order in magnetic field. Since [H (k)]
in (AS) is a quadratic function of [k] [relation (53)]

one has y .
oH a5

[H<k>][s<k>3=[H(k)S(k)J—maﬂ[ ® ()]
oke  Okg

a*H(k) 92S(k)
""%halmhazﬁzI: ] (A6)
OkayOk ay Okip kg,

There are no higher-order terms in (A6). The matrix
S(k) is unitary [I(54)] and any term in (A6) can be
multiplied inside the brackets by the products .S(k)ST (k)
= St(k)S(k)=1. The first term will become S(k)e© (k),
because, as was pointed out before [I(51a)], S(k)
diagonalizes H (k). ¢ (k) here is the energy spectrum
of the solid in the absence of the magnetic field. For the
second and third terms in (A6) define the following
quantities®:

%a(K) pnr = z( St(k) aS (k)) |

FYR
Ot k(‘l)
=1 / w*a(q) dy,
ok

a

(AT)

0H (k)

s =(5109°— =509

a nn’

-—;fu ik q)(—ta—qa+ a)un'k((l)d‘I- (A8)

Expression (A6) can now be written in the following
form:

LH(R)ILS (k) ]=[S(k)e® (k)]
FLSWED W) I+LSRED(K)], (A9)

where
E® = —hapvq(k)ws(k),

1 9xs(k)
E®@ =——kaahaﬂ'(i d
2m ok

(A10)

+xﬂ,<k>xﬂ<k>). (AL1)
"
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The terms in (A9) are of zero, first, and second order in
magnetic field, correspondingly. For obtaining ex-
pression (A11), the relation was used

325 (k) 9x4(k)
St(k) =—3 xg(k)x.(k).
Oko0ks kg

(A12)

The last equality is straightforwardly obtained from
definition (A7). By using expression (A9) one has

LS'(k) JLH (k) ILS (k) ]

[<°>(k) ih 050 @ (SK)e® (k) —Fharpiht
=€ % aﬂ_a;a_ ok € 2701810 azfs

St(k) o2
SKeOK)+E- - -+ D (k)
akalakaz akﬁlakﬁz

_aST(k) @
- 1haﬂ“'—_ "—(S (k)E(l) (k))"‘ %halﬁxhazﬂz
ka Okg

ast(k) 92
Oty ag Ok,

aSt(k) o
- ihaﬁ"—'— _(S (k)E o (k)) - %‘kanﬂlham
Oky kg

SMEDE)+ -+ E@(K)

925* (k) 92
0k 0k ay Okp0ks,

SOEO@ - |- 319
In order to write expression (A13) in a compact form
let us define a matrix

(=)
Ngpgerpn ™ (k) =

halﬁxhazﬂz"-hanﬁn
n!

dmSt(k) 9=mS(k)
akcu‘ o akan aﬂm+1 te aﬁn

, (A14)

where summation is understood on repeated indeces.
The matrix (A14) is of the nth order in magnetic field
and is a generalization of the definition (45) in the text.
By using definition (A14), the expression (A13) can
be given the following simple form:

O EF:(ONNON
) ™ E(k)
- mz-o Eo Cn I:Nﬁxﬁz"'ﬁm( )(k)akmakﬁg. . -ak,g,,,] ’
(A15)

where C,™ is the binomiél coefficient of the (m-+1)
term and

E(k)= ¢ (k)+EDk)+E> (k). (A16)
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The form (A15) is very useful and enables one to
write a general expression for the nth-order term in

LS*(I) LA (LS (k) ]:
ameO(K)

2. CamNiipyeropn™ (k) ———————
m=0 akglakpg‘ . ékﬁ,,,

n—1 M EM(k)
+ Z CnmlmN&Bz‘--ﬂm(n—l)(k)m
m=0 akplakgz‘ . akg,,,
n—t dm E® (k)
+ 2 Ca2™Npioeerpn ™2 (k). (A17)
o Ok, 0kpy - - Oig,,

For example, to second order in magnetic field, ex-
pression (A15) becomes
(ngs)(o)=€(o)(k), (A18)

(K
(S*HS)(D=N(1)e(°)(k)+Nﬂl(1) ¢

+EM(k), (A19)
Jepy

9e%(k)
(STHS) @ =N®(k)e® (k)+ 2N, (k)

B1

320 (k)

+ Naupa (k) k- N EO (k)

fha B2
QEW

+Np O (k)——+E®(k). (A20)

B1

Having the general formula (A15) and by using the
expansion (47") for [N (k) ]~!/2 one can get an expression
for the Hamiltonian (AS) to any order in magnetic
field. To second order in magnetic field this is given in
text [formulas (55a)-(55d)].

In conclusion of this Appendix let us show that
Nggpee-8, ™ (k) in (A14) and E(k) in (A16) are periodic
in k with the periodicity of the reciprocal lattice vectors.
By using the definition of S(k) [formula (46)] one has

( I ™St(k) a<n—m>5(k))
ey * - Ohan Vepmys - Okl 1

I™Mup*(@) " ™up(q)
= / dg.

(A21)
k0K oy« Okap Ok -+ Ok,

From the behavior of the periodic part of the Bloch func-

tion, %1 (q), as a function of k, it follows that the expres-

sion (A21) is periodic in k. In a similar way one shows

that E(k) [A(16), (A10), A(11)] is periodic in k [see

definition (A7) and (A8)].



