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Dynamics of Electrons in Solids in External Fields. II
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Further applications of the kq representation to the dynamics of electrons in solids are carried out. The
Bloch theory of conduction electrons is reformulated in the new representation. The symmetry of the prob-
lem is discussed in light of the kq representation. In particular, the motion of an electron in both a periodic po-
tential and a constant magnetic field is developed on a Grm quantum-mechanical basis. A complete and
orthonormal set of magnetic Bloch functions is defined. These functions are shown to obey the magnetic
translation symmetry, and it is for this reason that they are very useful in describing the motion of a Bloc&
electron in a magnetic Geld.

I. INTRODUCTION effective-Hamiltonian theory to any order in the mag-
netic field. In Sec. IV it is shown that the set of functions
de6ned in this paper obey the magnetic translation sym-
metry. This is pointed out as a very important reason
for the usefulness of these functions. By using them,
the effective-Hamiltonian theory becomes very trans-
parent and straightforward.

' 'N a recent publication' (to be referred to as I) the
& - kq representation was used for describing the motion
of electrons in solids in external fields. It was shown
that well-known results of the dynamics can be repro-
duced by using this representation in a very simple and
natural way. The reason for this is that k and q are
the most natural coordinates for problems connected
with periodic potentials. Indeed, the quasimomentum
k gives the momentum of an electron in the crystal
within K, a vector of the reciprocal lattice. k is a con-
served quantity and is of very great importance in the
Bloch theory of conduction electrons. The coordinate

has the meaning of a quasicoordinate and gives the
location of the electron inside a unit cell of the Bravais
lattice without specifying in which of the unit cells the
electron is. Such a specification of the position is very
closely connected with the motion in a periodic poten-
tial because the latter is a function of the quasicoordin-
ate g only. The kq representation uses therefore the
natural coordinates k and q of a crystal and the very
important concepts of unit cells in the direct and re-
ciprocal lattice. One is to expect that the dynamics of
electrons in solids will assume the simplest form when
described in terms of the quasimomentum k and the
quasicoordinate g.

In this paper further applications of the kq repre-
sentation to the Bloch theory of conduction electrons
are given. In Sec. II the motion of an electron in a
periodic potential is described in the new representa-
tion. This section serves also as an introduction to the
later material and gives a general view on conserva-
tion laws in the motion of electrons in solids. Section
III deals with the problem of a Bloch electron in a
magnetic field. ' ' The use of the kq representation leads
to a definition of a complete and orthonormal set of
functions. These functions are used in developing an
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II. MOTION OF AN ELECTRON IN A
PERIODIC POTENTIAL

Let us start this section by reviewing the main fea-
tures of the kq representation. As was shown in I,
translations in direct and reciprocal spaces

(1)

(2)

T(R„)=exp(ip R„),
T(K )=exp(ir K ),

form a complete set of commuting operators and can
therefore be used for specifying a complete set of states
in quantum mechanics. The eigenstates Pz «(r) of
operators (1) and (2) for a special choice of phase are
[1(30)]

P~,(r) = [r/(2m. )']'ie QR„exp(ik R„)8(r—il—R„). (3)

The basic operators y and r then become [I(31), (32)]

k and q, the quasimomentum and quasicoordinate in
(3), assume values in the erst Brillouin zone and the
unit cell of a Bravias lattice correspondingly. Any func-
tion f(r) in the r representation is connected to its
kq transform C(kq) as follows:

lt (r) = dk 4 C(ke)lt e.(r) (6)

The inverse transformation is

(6')C(kQ) = p(r)pe, (r)dr.

Because of the structure of fqe(r), Eq. (3), the bound-
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a» conditions on C(kq) «e D(4O), (41)]

C(k+ K„,q) = C(kq),

C(k, q+R„)= exp(ik R„)C(kq) .
(7)

(g)

h and kg have di8erent roles, this being the reason for
their diferent notation. It is also easy to check that
C sa(kq) in (13) is an eigenfunction of the translation
operator T(R„):

Schrodinger's equation for a Bloch electron in magnetic
and electric 6elds H and R in the k(f representation is

P(36)]

8 8 8—i—+—HX i—+q
c)q 2c Bk

2m+ V(q)

+es (i—+q) c(kq}=,c(ks) (9)

1( 8
+V(q) C(kq) = eC(kq).

aq

This equation is the same as in the r representation

1(r 8—
I

—i—+V(r) ~t(r)=W(r)
2m& ar

The latter has as its solutions Bloch functions

It is important to point out that no matter what
physical problem one considers, the boundary condi-
tions on C(kq) are the same )conditions (7) and (8)].

In this section we limit ourselves to the discussion of
the motion of a Bloch electron in the absence of external
6eMs. Equation (9) then will become

T(R )C„s~(kq)=exp(i' R„)C„s,(kq) . (14)

This is the Bloch theorem written in the kq representa-
tion. It is interesting to discuss this theorem in more
detail in the light of the k and q variables.

In quantum mechanics one can measure precisely
either the coordinate r of a particle or its momentum y.
Both of them cannot be measured simultaneously be-
cause they do not commute. The same is true, in general,
about a function of r and a function of y. If, however,
one is interested in partial information about, say, the
coordinate„ then one could at the same time also measnre
to some extent the momentum. An example of such a
partial information about the coordinate r and the mo-
m.entum y are the quasicoordinate q and the quasi-
momentum k. The latter carry the most information
one can get simultaneously about r and y. In the Bloch
theorem one speciies states by both the eigenvalues of
the energy operator (11),which is a function of r, and
the eigenvalue of translation operators (1), that depend
on p. Tllc dependence of tllc Ham)lton1an (11) oil I' can
be expressed by means of the translation operators
T(K„) in reciprocal space (2). This is achieved by ex-

panding the periodic potential V(r) in a Fourier series

B=ps/2m++ V(K„) exp(iK r)

P sn(r) = exp(ik)s r)u„sa(r), (12)
=ps/2III+p V(K )T(K„),

where ks is the quasimomentum of the state and Is is the
band index (the reason for using a notation kII is ex-

plained below). By using formula (6') one 6nds

C sa(kq) = «0-s (r)A.'(r)

=it„„(q)P S(k—k —K„)

=it„s(q) P ()(k—ks —K ). (13)

Relation (13) gives the Bloch functions in the kq re-

presentation. It is easy to check that if f„ss(r) is a
solution of Eq. (11) corresponding to the energy s (ks),
so will C„»(kq) be a solution of Eq. (10) for the same

energy. The physical meaning of solution (13) is very
simple: C„ss(kq) does not vanish only when k (which

is an independent coordinate) equals kI) (which is a con-

stant of the motion and ls used fol speclfylng a Bloch
state) within a vector of the reciprocal lattice K . Both
k and ks specify eigenvalues of the translation operators
in direct space, (1), and, as such there is no difference

between them. In the description of C„ss(kq), however,

where V(K„) are the Fourier eoef6cients of the periodic
potential V(r). As was mentioned before, in general, a
function of r (the Hamiltonian) and a function of

yLT(R„)] do not commute and they do not have com-

mon eigenstates. In the special case considered here,
it is because of the commutativity of T(R„) and

T(K ) )relations (1) and (2)] that the translations

T(R ) commute with the Hamiltonian and that the
Bloch theorem holds. We see therefore that the funda-
mental operators T(R ) and T(K„) are of very great
signidcance in the Bloch theorem.

Because of the Bloeh theorem, ks is a conserved

quantity in the quantum-mechanical description of the
motion of an electron in a periodic potential. Is there

any classical anlog for this conservation lamP It is

known in classical mechanics' that any function of r
and y that gives vanishing Poisson brackets with the
Hamiltonian is a constant of motion. The spatial sym-

metry of a classical system can be expressed. in terms
of infinitesimal transformations: Generating functions
6 of infinitesimal transformations that leave the Hamil-

s Herbert Goidstein, Claszccai Mcchalics (Addison-)Vesley
PIIbiiShing Co, , Inc., Reading, Mass. , 1950),
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tonian invariant are constants of motion. For example,
an infinitesimal translation in the x direction is gener-
ated by G= p, . There is, however, no such theorem in
classical mechanics with respect to Rnite transforma-
tions. The invariance of the classical Hamiltonian for
a periodic potential V(r) with respect to a 6nite transla-
tion, r -+ r+R, does not lead to any conservation law.
In order to see better the fundamental diBerence be-
tween the quantum-mechanical and classical description
of the problem let us consider the operators 2'(R„) and
2"(K ). As was mentioned before, it is because of the
commutativity of these operators that the Bloch
theorem holds and therefore that k~ can be dered in
quantum mechanics. Classically, there are no functions
of the form (1) and (2) that give vanishing Poisson
brackets. ' It is for this reason that ks cannot be in-
troduced classically. The conclusion is that the quasi-
momentum kz is a purely quantum-mechanical con-
cept that has no classical analog.

In some cases it can be more convenient to work with
the function U(kq) that is connected to C(kq) by the
relation )I(42)]

It is interesting to compare Eq. (17) with the usual
equation for the periodic part N„qs(r) of the Bloch
function (12). From (11) and (12) one has

i——+k~
~

2m+ V(r) ~.a,(r)
ar i

= e„(k,)e„„(r). (23)

The energy in Eq. (23) is periodic in ks with the period
of the reciprocal lattice vectors K„. However, neither
the Hamiltonian in (23) nor the functions u„q~(r) have
such periodicity. This difhculty is avoided. in Eq. (17)
and solution (18) which are periodic in ks.

To complete this section let us consider the Bloch
representation in addition to the r representation and
the kq representation that were already considered
here. The wave function B (k~) in the Bloch representa-
tion (ek~ representation) can be obtained by expanding
U(kq)LC(kq) or f(r)] in Bloch functions U &~(kq)

U(kq) = P B„(k~)U„l„(kq)

C(kq) = exp(ik q) U(kq) . (16) =p B„(k)g.g(q), (24)

According to (13)
Eq. (17) are

2m+ V(q) U(kq) = eU(kq) . (1'/)

and (16), the Bloch solutions of

For an electron in a periodic potential, U(kq) satisfies
the equation

4(r) = Z B.(k~)4-~a(r) . (25)

where the last equality was obtained by using the ex-
plicit form (18) for U q~(kq). The simple relation (24)
(with no integral over k!) was already used before
LI(47)] in the derivation of an effective Hamiltonian
for a Bloch electron in a magnetic held. For comparison
let us write the expansion of P(r) in Bloch functions

U„p~(kq) =N„g(q) P 8(k—k~ —K„), (18)

y= —i(8/Bq)+ k,

r= i(8/Bk) .
(19)

(2O)

Accordingly, the translation operators T(R„) and
T(K„) will be

.(
T(R ) =exp i~

—i—+k
~

R„
aq i

(21)

where u &(q) is the periodic part of the Bloch function.
The phase transformation (16) will also change the ex-
pressions for the basic operators y and r $(4) and (5)].
They will become

e (k~)B.(kg) = eB.(k~) . (26)

The solution of Eq. (26) for the energy a=e&(ka') is

B„'»'(kg) =/„( P b(k~-k~'-K ). (27)

In the latter expansion there is also the integration
over k~ which may complicate the calculations con-
siderably LIt is clear that if expansion (24) would be
performed for C(kq), the result on the right-hand side
would contain P q(q), again without integration over
k.]It follows from relation (24) that the transformation
between the kq representation and the eke representa-
tion is given by U„q~(kq) in (18). In the Bloch repre-
sentation Eq. (17) becomes

T(K )= exp i~ i
~

K~
4 aki

(22)

One can easily check that U„&~(kq) in (18) is an eigen-
function of T(R„) with the eigenvalue exp(iks R„),
which is to be expected according to the Bloch theorem.

'A general discussion of this problem is given in a paper by
Yakir Aharonov and Aage Petersen (private communication).

The function (27) will clearly give for U(kq) in Eq.
(24) the function U~I,~.(kq) which one should expect
to get.

In summary, the connections between functions P(r),
C(kq), and B„(k)(in the r representation, kq representa-
tion, and nk representation correspondingly) are given
by the following relations: The function P(r) is con-
nected to the function C(kq) by relation (6),the function
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f(r) is connected to B„(k) by relation (25), and C(kq)
is connected to B„(k) by (24) with u &(q) replaced by
0"(q)

( a e a
i

—i—+k+—HXi— 2'+ V(q) U(kq)
aq 2c ak

= e U(kq) . (28)

The idea of an effective Hamiltonian' 4 is to write

Eq. (28) in a Bloch-type nkB representation and to keep
to some approximation only one-band terms. Assume
that a general transformation is performed from the
wave function U(kq) in the kq-representation to the
wave function B (kB) in the nkB representation

U(kq) = P (kq~nkB)B„(kB),
nkgg

(29)

where (kq~nkB) is the transformation matrix. It was

already shown [relation (24)] that if the proper Bloch
functions were used in transformation (29), (kq~nkB)
would be replaced by U iB(kq) and (29) would go over

to (24). Imagine, however, that some modified Bloch
functions are used in (29), like the Kohn-Luttinger
.functions, ' ' or the Roth functions. ' Then (kq~nkB) is

different from U ~B(kq). Let us assume that (kq~nkB)
form an orthonormal set of functions. One also has to
make sure that (kq~nkB) form a complete set of func-
tions because otherwise expansion (29) would not be
valid. Ke therefore require that

dk dq (nkB
~
kq)(kq

~

n'kB') = a ~(kB kB ) (30)

P (kq~nkB)(nkB~k q ) 'a'(k=k )—a(q 'q )—. '(31)

Relation (30) expresses orthonormality, while (31) gives

completeness. By using relations (29) and (30), Schrod-
inger's equation (28) in the modified Bloch representa-

tion, uk~, will become

P H„„.(kBkB')B„.(kB')=eB„(kB).
n'kg'

(32)

III. EFFECTIVE HAMILTONIAN FOR A BLOCH
ELECTRON IN A MAGNETIC FIELD

In paper I it was shown that the kq representation
is very convenient for deriving an effective Hamiltonian
for a Bloch electron in a magnetic field. The well-known
result was obtained for the zero order in magnetic field
effective Hamiltonian, ' ' and the higher-order terms
were shown to coincide with the corresponning terms
in Roth's paper. ' Because of its clear nature and
simplicity, the kg representation makes it possible to
develop a very simple and straightforward effective
Hamiltonian theory to any order in magnetic field.

The Schrodinger equation in the kq representation
for a Bloch electron in a magnetic field is [I(43)]:

The following notation was used in (32):

H..(kBkB') = dk Q (nkB~ kq)

a e a)'
X —i—+k+—HXi—

i

aq 2c ak)
2m+ V(q)

X (kq
~

n'kB') . (33)

Let us also introduce a notation that was used in I.
Given a function S(kB) [or S(k)] one can define [I(59)]

[S(kB)], (34)

where [H„(kB)] operates on the a function. If relation
(35) is satis6ed, Eq. (32) becomes an effective-Hamil-
tonian equation

[H.(kB)]B„(kB)= eB„(kB). (36)

The main idea of an effective Hamiltonian is that Eq.
(36) is a one-band equation and that [H„(kB)] is a
function of kB+(e/2c)HXi(a/akB) This . is a very
attractive result and it is known' ' that [H„(kB)] in

(36) can be constructed to any order in the magnetic
field H. It is interesting to compare the exact equation
(28) with the eRective Hamiltonian equation (36). In
the first of them there are derivatives with respect to k
only to second order, while the latter equation is a dif-
ference equation and contains therefore derivatives
with respect to kB to any order. To see this difference

better let us write down the Hamiltonian of Eq. (36)
in a more explicit form. By definition

[H.(kB)]=2 H-(Ri)

e a )
Xexp i kB+—HXi

~
Ri, (37)

2c akBI

where H„(Ri) are the Fourier coeflicients of the ex-

pansion of H„(kB) and the reason that there is a sum

over Bravais lattice vectors Ri is because H„(kB) turns
out to be periodic with respect to vectors K of the
reciprocal lattice' (see also the proof at the end of Sec.
III). It is clear that an operator (37) leads to a difference

equation in (36). Being a difference equation, Eq. (36)
connects B„(kB) with different kB in the Brillouin
zone. On the contrary, Eq. (28) [or any exact equation

(32)] is diagonal in k because it is known that the
Hamiltonian of a Bloch electron in a magnetic field is

where the rectangular brackets mean that S(kB) was
first symmetrized as a function of kB and then kB
replaced by kB+(e/2c)HXi(a/akB). In notation (34)
the existence of an effective Hamiltonian for Eq. (32)
is expressed by the requirement that

H„„(kBk'B)= 8„„.[H„(kB)]g a(kB—kB'—K ), (35)
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diagonal in k with respect to any Bloch-type states. '41
There is therefore a qualitative difference between the
effective Hamiltonian equation (36) and the exact
equation (28).

To lowest order in magnetic field H(", it is easy to
check that Eq. (35) is satisfied by )see definition (33)j

(kq~IIkI))=tN„), (q)j p ()(k—kI)—K ), (38)

H„(kII) = e„(ks) .

In Eq. (38), I I(q) is the periodic part of the Bloch
function (18), and LN ),(q)g operates on the () function.
e„{kII)in (39) is the one-band energy of the solid under
consideration ln tile absence of a Dlagne tie field. In
order to verify that (38) and (39) satisfy relation (35),
we use the multiplication rule for functions in rec-
tangular brackets, I(61) Lsee also Appendix I, (A1)—
(A4)]. The left-hand side of Eq. (35) will become, to
zero order in

dq fm„l,*(q)jLH(he) j(N„)„(q)j g 8(kI)—kII' —K )

=8..Le.(kS)) p B(kII—kII' —K ), (40)

Eq. (17) for a Bloch electron. The only difference
between these two equations is that in the former
k+(e/2c)HXI'(8/Bk) appears instead of k in Eq. (17).
We know, however, that if U„),~(kq) in (18) is used as a
'tlaIlsfollllRtloll fiillctloli 111 (29) Lol (24)j, Blocll s
equation (17) assumes the form (26). One shouM there-
fore expect that the transformation function (38), where
k in I„),(q) is replaced by k+ (e/2(;)IX I'(8/Bk), will lead
from Eq. (28) to the effective Hamiltonian Eq. (42).
This is straightforwardly checked by expanding U(kq)
in (28) according to relation (29) with the transforma-
tion function (38), multiplying both sides of Eq. (28)
by (nks~kq), integrating over k and q, and using the
multiplication rule (A1). Of course, one wouM have to
check orthonormality and completeness of (38) to zero
order in the magnetic field. The discussion that followed
expansion (29) will, however, be needed for deriving an
effective-Hamiltonian equation to higher order in the
magnetic 6eld.

Before going to higher-order terms let us show that
the transformation functions (38) coincide with the
Roth functions, ' q 1~(r), that were used in the deriva-
tion of an effective Hamiltonian. For showing this, let
us find the kg transform /see relations (6') and {16)j
of C„~()r)

= 8(k—k') 8(q—q') . (41)

For arriving at result (41) the completeness of the
N„),(q) was used. The orthonormality of (38) to zero
order in magnetic 6eld can also be easily checked. Since
the transformation function (38) satisfies Eq. {35)and
the conditions (30) and (31) to zero order in magnetic
field, it will lead, when used in expansion (29), from
Eq. (28) to the effective Halllll'tolllRII Eq. (36):

Le.(l ~)ja„(k,)=.a.(1 s). (42)

Result (42) gives the well-known effective Hamiltonian
equation to zero order in magnetic field. ' 4 Let us point
out that if our only tash would be to arrive at Eq. (42),
we could do it in a very simple way without developing
all the arguments that follow expansion (29). Compare
Eq. (28) for a Bloch electron in a magnetic field with

E. I. Blount, in SOQd State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc. , New York, I96I), Vol. 13.

wlllcli colncldes with the right-hand side of Eq. (35).
It is also easy to check that the transformation func-
tion (38) satisfies the completeness (31) and the ortho-
normality (30) conditions to zero order in the magnetic
field. Take, for example, the completeness condition
(31):To zero order in H we have (see formulas (A1),
(A3), (A4) in Appendix Ij:
g (kq ~

ekII)(lkII
~

k'q')

=Q LN„),(q)j|u„1*(q)1 g ()(k—k' —K„)

U„),s~(kq) =exp( —ik q) C„1sII(kq)

=exp( —ik q) C 1 (r)pl *(r)dt

=pg I(q)j g B(k—kII —K„). (43)

E&-.(&)j=f4 E~.a'(a) jE~.a(e)j. (44)

The matrix LE(k)j can be given another form by using

The superscript 2 in (43) stands for Rath's function and
in the derivation of result (43), the definition of C)„I~(r)
LRef. 3, Eq. (10)j and expression (3) for Pq~(r) were
used. We see therefore that (kq ~nkII) in (38) is just the
k(t transform of Roth's function C„),~(r). In Ref. 3 it
was assumed that O'„I~(r) form a complete system of
functions. In I and in relation (41) this was shown to be
correct to zero order in the magnetic field. It is clear,
that for developing an effective Hamiltonian theory to
higher-order terms, one has to make sure that the
functions (kq~ nkI)) used in expansion (29) form a com-
plete system of functions to the desired order in the
magnetic field.

As was already checked, the transformation func-
tions (38) form a complete and orthonormal set of func-
tions to zero order in magnetic field. I,et us now show
that for suKciently small magnetic 6elds it is possible
'to coils'tl'lie t R se't of fullc'tiolls I'~ygI)(kq) wlllcll RI'e

orthonormal and complete to any order in magnetic
6eld. Define a matrix'
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the matrix [S(k)] that was defined in paper I [I(55),
(59)] (See formula (Ai) in Appendix I)

[&(k))=[S(k))'[S(k)]
=IMP &»(k)]+P/(»(k)]+ " (45)

where

and

c/S(k)' c/S(k)
E(»(k) = i—h s

Bk~ 8kp

O'S(k)t 8sS(k)
&")(k)= —s&-)si&.ss.

k iBk «~kei~k

[S „(k)]= dq I s*(q)[g„s(q)].

(45')

(46)

where

[g(k)]-1/s —{I+PI(i) (k)]+.P'(s) (k)]+ ~ ~ ~ )
=I—s[S&') (k)]—s [E"'(k)]

+ ss[&'"(k))'+ " (47')

As will be seen below the matrix [$(k)] '/' in (47)
serves as an "orthonormalization factor, " and it can

be checked that the functions C ss(kq) form an ortho-

normal (30) and, complete (31) set of functions. Ortho-

normality of (47) follows at once:

())k dq (rsk lkq)(kqlrs'k ')

={Pl(k ))- /'[S(k ))'[S(k ))[S(k )) '")..
XP 8(kn —kn' —K )

=S„„.3(k -k, '), (4S)

where formulas (A3), (A4), (45), and (46) were used.

The left-hand side of the completeness condition (31)
is given by

The superscripts in (45) and (45') denote the order of
the magnetic 6eld. The existence of an inverse matrix
for [$(k)] is of very great importance to what follows.
In order to be able to define [$(k)] ' we assume that
the magnetic field is su%.ciently small so that the com-
mutator expansion in (45) holds. The assumption of a
commutator expansion is very crucial in the entire
theory of effective Hamiltonians. ' 4 By making this
assumption, the matrix [S(k)] can be inverted

[&(k)) '={I+[&"'(k))+[&"'(k))+"} '
=I—[1V(')(k)]—[X(')(k)]+[X(')(k)]'+

Let us use this inverse matrix for defining functions

c„s,(kq) = (kq l nkvd)

=Z [ (q))[&-(k))-"'

XQ b(k-ks-K ), (47)

P N„(q) ...'(q') {[S(k)]Pr(1))- [S(k))t)„,

X P &(k—1'—K ). (49)

This means that in order to prove completeness, one
has to prove the relation

[S(k)][&(k)] '[S(k))t=I (50)

where I is a unit matrix. It is easily seen that any
power of the matrix on the left-hand side of (50) equals
the matrix iteslf. Such a matrix can be either zero or
I. Zero is excluded because relation (50) was proven
before [see proof (41)] to zero order in magnetic field.
It follows therefore that relation (50) holds to any
order in magnetic field, This proves that the functions
(47) form a complete set of functions to any order in
magnetic field. '

The complete and orthonormal set of functions (47)
will now be used in constructing e6ective Hamiltonians
to higher order in magnetic 6eld. It was already shown
that expansion (29) leads to Eq. (32) [with notation
(33)] when the transformation functions (kq l nkvd)

form an orthonormal set. It was also shown that in
order to arrive at an effective Hamiltonian, Eq. (36),
to some order in the magnetic Q.eld one has to prove
that the Hsmiltonian (33) can be given the form (35)
to the same order in magnetic field. By using expres-
sion (47) for the transformation function, the Hamil-
tonian (33) in its matrix form becomes (k is used
instead of kn)

&(kk') =[~(k))t[&(k))[~(k)]Z ~(k—k' —K ), (51)

where the following notation was assumed:

[U(1 )]= [S(k)]P (k)]-»s

8a &k) dq. ~ 0="&q) (
—~—yk

Bg

(52)

2~+ V(q) ss„p(q) . (53)

This equation is a multiband effective-Hamiltonian
equation for a Bloch electron in a magnetic 6eld. It has
a significant advantage over this type of equation in

s In previous work (Refs. 3 and 4) completeness was assumed
to any order in magnetic field. This is not at all obvious. A dis-
cussion of this problem vrith Professor Laura M. Roth and Dr.
E. I. Blount and their comments secre very much appreciated.
The author is in particular grateful to Professor Roth for pointing
out in a private communication the possibility of defining the
inverse matrix L/V(k)g '.

Ha»ng the Hamilton&an (51) in the /sk representation
(k is used instead of ks), one can write the equation for
B.(k) in (29)

2 {[&(k))t[ff(k)l[U(k)))-&- (k) = e&-(k) (54)



Ref. (1) [I(65)]and in other publicatonso e in that on
the right-hand side of (54) there is only a diagonal
term. This fact makes the dlagonallzatlon procedure
of Kq (54) very SIIIlple bccallsc ally 1111ltary tI'RIisfoI'IIia-

tion of (54) will keep the right-hand. side diagonal.
Let us describe the diagonalization procedure of

Kq. (54). By using the commutator expansion (A1), the
Hamiltonian of Eq. (54) can be written as a power series
in the magnetic field

[fI(k)7[H(k) j[U(k)j=LHo(k) j
= [H")(k)j+LH"'(k) j

+[H &'&(k)$+ (55a)
where {see Appendi~ II)

H &'&(k) = e&'&(k),

H&»(k) (yHS)(i& {$(I)(k)e(o)(k)}

H(e) (k) —(gl'HS') (e) fg (»(k) (g'HS') (I)}
—{&"'(k)--'(&'"(k))',e'"(k)}

BE(')(k) 8e(o)(k)
+ih p

{9kN Bkp

(55b)

(55c)

(55d)

Here, the curly brackets of any two functions & (k) and
B(k) denote a, syinmetrical product

{a(1),Il(I )}=x[a(k)fl(k)+f1(k)&( )j.
In (55b), e«)(k) is the energy spectrum in the absence
()f the msgnetjc field [in (39) and (42) it is denoted by
e(k)$. The nots tjon [Ho(k) j of the Hamiltonian (55a)
expresses the fact that the latter is diagonal to zero
order in Inagnetic Geld, and to the lowest order one ob-
tains again the effective Hamiltonian equation (42).
The higher-order terms in (SSa) contain nondiagonal
elements and. , as is shown below', their removal to any
oldel ln the 1Tlagnetlc Geld can be achieved by a unitary
transformation. Let us start with removing nondiagonal
terms in (55a) to first order in magnetic field. Define
a unitary transformation

cxp{i[T(')(k)$}=I+1[T(')(k)j+ . , (56)

H (k) —H(o)(k)+i(H«»(k) T&'&(k)—T(')(k)H("(k))
+8('&(k)+ . . (5&)

One can now choose T&'&(k) in such a way that the non-
djagonal terms jn (5 i) vanish to first order in magnetic
Geld

H„„,(»(k)
T„„,&»(k)=i—,n'WN..& &(k)- .("(k)

(SS)

(59)T„„('&(k)=0.

where [T(»(k)] js a Hermitian matrix and is of first
order in magnetic field. By applying transformation
(56) 'to tile Hamjltonjan (55R), thc Iaftci will RssllIllc t11C

form (to Grst order in magnetic Geld)

It is easy to check that the matrix defined by (58) and
(59) is Hermitian and (56) is therefore a unitary trans-
formation. The notation Hi(k) with the subscript 1
in (5"I) means that the transformed Hamiltonian is
diagonal to Grst order in magnetic field

Hi(k) = e"'(k)+e"'(k)+. ",
where e&'&(k) = e(k) is the energy spectrum of the solid
in the absence of the Inagnetic Geld and e&'&(k) is the
(llago11R1 pal't of H( )(k) 111 (57) [01' (SSR)j. Tllc diag-
onality of the Hamiltonian [Eq. (60)$ to first order
in the magnetic Geld was achieved by starting with a
Hamiltonian (SSa) which was diagonal to zero order in
magnetic Geld and by using a unitary transformation
(56). It is clear that the same process can now be used
for diagonalizing the Hamiltonian (60) to second and
higher order in magnetic Geld. Assume, for example,
that the Hamiltonian is already diagonal to pth order
in magnetic Geld

H„(k)=en(k)+H(~»'(k)+", (61)
whci'c e (k) is thc diagonal HR11111to111RI1coIltalI11Ilg
terms up to pth order in magnetic field

e(n) (k) = e"&(k)+ +e(» (k), (62)

and H(~"'(k) has nondiagonal terms of the order
(p+1) in magnetic Geld. Let us show that a unitary
matrix can be deGned

exp{i[T"""(k)j}=I+i[T(~')(~)]+" (63)
that will make the Hamiltonian (61) diagonal to the
order (p+1) in magnetic Geld. Under transformatjon
(63) the Hamiltonian (61) will become [to order {p+1)j
H~I(k) = en(k)+i(e(o)(k) T(~')(k)—T(~')(k) e(o)(k))

+H(~')'(k)+ . (64)

Again, To~i)(k) can be chosen in such a way that the
nondiagonal elements of H~I(k) vanish to the order
p+1 in magnetic Geld

H„„,(WI) I(k)
T.;(~')(k)=i —, ~'~e (65)

e„(o)(k)—e &'&(k)

T„„9+I)(k) —0

Thc matrix T(~I)(k) defincd by (65) a„d (66)
Hermitian and (63) is therefore a urntary matrjx. Thjs
completes the proof that a unitary matrix exists
[relation (63)j that transforms the Hamiltonian (61),
which is diagonal to pth order in magnetic field, into a
Hamiltonian

H~I(k) = e (k)+e(~"(k)+, (67)

which is diagonal to the order p+1 in magnetic field.
The term e(i ')(k) in (67) is the diagonal part of
H(~')'(k) in (61). Since p is completely arbitrary, the
above procedure can be used for diagonalizing the
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Hamiltonian (55a) step by step to any power in the
magnetic field. It is to be pointed out that the unitarity
of transformation (63) is of very great importance. It is
because of this fact that one does not have to worry
about the right-hand side of Eq. (54), which stays
diagonal automatically during the entire diagonaliza-
tion procedure. This leads to a signihcant simplification
of the previous methods'4 where the diagonalization
procedure has to be carried out on both sides of the
multiband equation.

In conclusion of this section let us show that the
method developed here enables one to prove in a
straightforward way that the eRective Hamiltonian is
a periodic function in k with the periodicity of the
reciprocal-lattice vectors. ' A very simple formula was

given in Appendix II [A(15)] for the product [St(k)]
X[H(k))[S(k)]. It was shown there that each term in

the rectangular brackets of formula (A15) is periodic in

k The same argument can be used to show that each
term in the rectangular brackets of the expansion
(47') of [N(k)]-"' is periodic in k [see definition

(45')]. It follows therefore that all the expressions

(55b)—(55d) for the effective Hamiltonian are periodic
in k. This will be also true for the eRective Hamiltonian
on each stage of diagonalization because the matrix

T(k) that is used in this diagonalization process

[formulas (58), (59) or, in general, (65), (66)] is itself

periodic in k. This completes the proof that both the
diagonal and nondiagonal terms in the eRective Hamil-
tonian EI,«(k), to any order in magnetic field and at
any stage of diagonalization, are periodic in k with the

periodicity of the reciprocal-lattice vectors.

IV. DISCUSSION

The eRective-Hamiltonian theory in this paper was

developed by using an orthonormal and complete set of
functions C'„»(kq) [Eq. (47)). In order to define these

functions the assumption was made that the magnetic
Geld is sufficiently small so that the inverse matrix

[$(k)] ' can be defined. After making this assumption,

one gets a multiband eRective-Hamiltonian equation

[Eq. (59)] which is correct to any order in magnetic

field. The diagonalization procedure becomes then
straightforward and very simple. It is interesting to
ask the question what is so special about the func-
tions 4»(kq) that makes the entire theory look so

elegant and straightforward. The answer lies in their

symmetry. As was pointed out before, ' the Bloch func-

tions or Kohn-Luttinger functions' with the proper
symmetry of Schrodinger's equation in the absence of
external fields cannot serve as a suitable basis for ex-

panding solutions of Eq. (28) for a Bloch electron in a
magnetic field. The reason for this is that the symmetry

of Schrodinger's equation in the absence of a magnetic
field [Eq. (10)] is completely different from the sym-

9 J. Zak, Phys. Rev. 136, A776 (1964).

metry of Eq. (28). The latter equation has the sym-
metry of the magnetic translation group" while Eq.
(10) is invariant under the regular translations [Eq.
(1)]. As is known, ' the regular translation group and
the magnetic translation group have a completely dif-
ferent structure. The behavior of Bloch functions
[Eq. (13)) under regular translations T(R„) [Eq. (21)]
is given by relation (14).Let us check how the functions
C»(kq) in (47) behave under magnetic translations":

f 8 s 8)
r(R.)=exp i( —i—+k——HXi—

(
R„. (68)

aq 2c

akim

One finds

&(R.)C'.»(kq) = exp(ik& R„)C„»+(,»,»&&R„(kq) . (69)

The last relation is obtained by using the fact that any
function of k+ (e/2c) HX i(8/Bk) commutes with
k—(e/2c)HXi(B/Bk). As seen from relation (69), the
functions C„»(kq) transform into one another accord-
ing to the symmetry required by the magnetic transla-
tion group. " It is for this reason that the functions
C»(kq) form the proper set for expanding the solution
of Schrodinger's equation for a Bloch electron on a
magnetic field. ' The kii in C' »(kq) specifies the mag-
netic translations and plays a similar role to the k&
vector in the Bloch functions [relation (14)], where it
specifies the regular translations. One can therefore
call C„»(kq) the magnetic Bloch functions.
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ej'A(k) O'B(k)—~h ph p +' ' '

—l9k~8k~l Bkpgkp&
(A1)

where the rectangular brackets mean that the function
inside is first symmetrized with respect to the com-
ponents of k and then k is replaced by k+(e/2c)H

"J.Zak, Phys. Rev. 134, A1602 (1964).
J. Zak, Phys. Rev. 134, A1607 (1964).

APPENDIX I: COMMUTATOR EXPANSIONS

As was shown by Roth' the following formula holds
for any two functions 2 (k) and B(k):

[A (k)][B(k))
=[exp{ i(e/2c)H—VsX&s IA(k)B(k') ~~. s]

BA(k) aB(k)-
=[A(k)B(k)]—sh p

Bk~ Bkp
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Xi(a/ak) [see formula (34)], and

h p
~——p,eH&/2c,

with p p, being the antisymmetric unit tensor. )In I
a factor 2 is missing in the third term of formulas I(61)
and (63).] In a way similar to the proof of formula
(Ai), one can prove that

[A(k)]—[B(k)] =[exp(i(e/2c)H V'kXVki

)&2 (k)B(k ) i ke=k], (A2)

where f ] mean that the function inside is first
symmetrized with respect to the components of k and
then k is replaced by k—(p/2c)H&(i(a/ak).

It can be checked that

[A(k,)]-a(k—l,)= fA(k)]a(k —k,). (A3)

Ill order to pl'ovc (A3) lct lls wl'ltc its left-hand side
explicitly

[A (kp)]-a(k —kp)

p a )Ak)leep e(. ke —e—HXe' --:
~

k 8(k—ke)
2c ah, )

e a
(D. A(z) exp i~ k+i H&(—i X—a(k—ks)

2c ak

=[a(k)]a(k—k,),
which is equal to the right-hand side of (A3). In the
last proof A(X) is the Fourier transform of A{kp).

Another formula that was used in the text [see
derivation of (40), (41), (48), and (49)] is that if

(kql~ks)=[~„, (q)] Z ~(k—kp —K„)

=p Nlo(q) fsl.(k)] p a(k—ks —K ),

N„k(q) here is the Fourier transform of N„k(q). The last
equality of (A4) follows from the definition of S(k)
fl'clatloI1 (46)] Rnd flonl (A3).

APPENDIX II: GENERAL EXPRESSION
FOR THE HAMILTONIAN

I.et us now give a commutator expansion of the
HRIIllltolllaI1 (55R). By llslllg deflnltlon (52) fol' fU(k)]
one has

[&0(k)]=[&(k)] '"[S(k)]t[&(k)]
&&[S(k)][&(k)] '" (A5)

An expansion for [S{k)]t[H(k)][S(k)]to second order
in magnetic field was already given in I [I(66)].It is
possible to derive a general formula for this triple
product to any order in magnetic field. Since [H(k)]
in (A5) is a quadratic function of fk] [relation (53)]
one has

aH(k) as(k)
[H(k)][S(k)]= [H(k)S(k)]—ih.p - Bk Bkp

a'H(k) a'S(k)—
2heelpkheekp2 ' (A6)

-Bk~18k~g BkPIgkPg

There are no higher-order terms in (A6). The matrix
S(k) is unitary [I(54)] and any term in (A6) can be
multiplied inside the brackets by the products S(k)S"(k)
=St(k)S(k) =I.The first term will become S(k)plo'(k),
because, as was pointed out before [I(51a)], S(k)
diagonalizes H(k). pIO'(k) here is the energy spectrum
of the solid in the absence of the magnetic 6eld. For the
second and third terms in (A6) de6ne the following
quantities'.

aS(k)~
~.(k).„.= i St{k)

ah. )...
then its complex conjugate (eke

~
kq) is given by

(eks
~ kq) = [ll*„k(q)]-P a(k—ks —K„)

=g N*IO(q) [S*I„(kp}]g a(k—ks—K ) . (A4)

The proof of (A4) is as follows:

alp„ k{q)=i N*„k(q) dq,
Bk

aH(k)..(k)„„,=~ St{k) S{} ~

ah. )„„,
1 f a

ll* k(q)~ i +h ~—u„.k(q)dq.
m 4 ag. )

(A/)

(A8)

(nks
~
kq) (kq=~ nks)*

=[ -.(q)]*Z a(k-4-K.)

( e a
ll*.k(q) exp i~ k i —Ify,i-—

ak

XQ a(k—kp —K )

=[&*-k(q)] Z ~(k—ka —K ).
K22S

&'"=—h pv (k)zp(k), (A10)

amp(k)
+*p{k);{k)~. {A11))2m gPp,

Expression (A6) can now be written in the following
fODIl:

[&(k}][S(k)]=LS(k) "'(k}]
+[S(k)E&'&(k)]+[S(k)g&»(k)], (A9)

where
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Thc terms in (A9) are of zero, first, and second order in The form (A15) is very useful and enables one to
magnetic Geld, correspondingly. For obtaining ex- write a general expression for the eth-order term in
pression (A11), the relation was used LS'(k)]L&(k)]LS(k)]:

B'S(k) Bx,(k) B(m) e (o) (k)St(k) = i— —xp(k)x. (k). (A12) g g„~p p p
(.)(k)

Bk Bkp Bkp

The last equality is straightforwardly obtained from
definition (A/). By using expression (A9) one has

LS'(k)]L&(k)]LS(k)]

BSI(k) B
o&(k)—ih„p {S(k)e(o)(k))—qh. p h

Bk Bkp

B'S'(k) B'
&& {S(k)e(o)(k))+&" +'"(k)

k~a~k~s ~kpi~kA

BS' k B()—ih p {S{k)E(I)(k))——,'h, p,h, p,
Bk~ 8kp

B'St(k)
&&

— {S(k)Z(I)(k))+ +E(')(k)
Bk~g&k~g 8kpg&kpg

BS' k B()
ih p

— {S(k)Z(o)(k))——,'h„,p,h„p,
Bk Bkp

B St(k) B
X {S{k)E&'&(k))+ ~ ~ ~ (AD)

Bk,8k, Bkp,8kp,

(—')"
/t/papa pm (k") h«apah«ape* "h«npn

B(n)St(k) B(n—m)S(k)
(A14)

~k~os ~pe+1 ~pa

where summation is understood on repeated indeces.
The matrix (A14) is of the eth order in magnetic field

and is a generalization of the definition (45') in the text:.

By using def(nition {A14), the expression (A13) can

be given the following simple form:

I:S'(h)]L&(h)]I S(h)]

B(m) g(k)
& Z C " &p p -p '"'(k)
m-0 a=0

(A15)

where ("„"is the binomial coeflicient of the (IN+1)
term and

(A16)Z(k) = e(o)(k)+E(')(k)+E(o)(k).

Ill order to wl'ltc cxprcssloli (A13) 111 R colllpRct form
let us deGne a matrix

B&"&Ip,*(q) B(n—m)Io, ((I)
d(/. (A21)

Bk 18k~2. Bk„„gkp

From the behavior of the periodic part of the Bloch func-
tion, NIo((I), as a function of k, it follows that the expres-
sion (A21) is periodic in k. In a similar way one shows
that E(k) LA(16), (A10), A(11)] is periodic in k Lsee
definition (A'/) and (AS)].

B&")8&')(k)+Z C.-l J~tp p-.p. '" "(k)
8kp Bkp ~ Bkp

e-9 B(m)g(o)(k)
+ Z C=o"A'p po p. '-" "(k) — (A17)

Bkp Bkp n n n Bkp

For example, to second order in magnetic field, ex-
pression (A15) becomes

(St8'S) (o& = e(o) (k),

Be&'&(k)
(SIPS)&'&=X(I)e(o)(k)+Jl/p &'& +E(i)(k), (A19)

kp,

Be'(k)
(StBS)&'& =X(')(k)e(o)(k)+2', (')(k)

Bkp,

B'e('&(k)
+Ep,p, (')(k) — +&I)(k)Z("(k)

Bkp, 8kp,

gg(&)
+Xp, ("(k) +E(') (k) . (A20)

Bkp,

Havlllg thc gellel'Rl fol'Illula (A15) and by using
expansion (4'/') for! E(k)] I(' one can get an expression
for the Hamiltonian (A5) to Rny ()rdcr in magnetic
Geld. To second order in magnetic field this is given in
text Dormulas (55a)-(55d)].

In conclusion of this Appendix let us show that
Xp,p,...p„(")(k) in (A14) and E(k) in (A16) are periodic
in k with the periodicity of the reciprocal lattice vectors.
By llslllg 'tllc dcflnltlon of S{k) Dolmula (46)] ollc hRs

B(n)SI(k) B(n—na)S(k)

!(aa.,aa.. "aa.„aaa.„."aaa„)„.


