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In order to calculate the diamagnetic susceptibility of real metals, we have generalized the pseudo-
potential method to the case of a metal in a magnetic field. A general equation of motion is obtained, from
which we first derive an expression for the core diamagnetism. We then derive an expression for the dia-
magnetic susceptibility of Bloch electrons in a magnetic field in terms of a pseudopotential. If our pseudo-
potential is replaced by the actual lattice potential, the result reduces exactly to expressions derived by
other authors for the diamagnetic susceptibility of Bloch electrons. However, we believe that our method
is the simplest manner in which this result can be derived. By the use of the pseudopotential and degenerate
perturbation theory we obtain the result in a form from which computation can be made easily. We have
computed the diamagnetic susceptibility of all the alkali metals and of aluminum. From our expression,
the diamagnetic susceptibility of any polyvalent metal to which our approximations apply can be easily
computed. We have also found a satisfactory explanation of why certain metals have very high diamagnetic
susceptibility. We contradict Glasser’s conclusion that the diamagnetic susceptibility and the paramagnetic
susceptibility are nonadditive, and correct some algebraic errors in the work of Samoilovich and Rabinovich.
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I. INTRODUCTION

T is well known that in classical electrodynamics the
resultant magnetic susceptibility of a system of elec-
trons is zero. In quantum theory, on the other hand,
there is a nonzero diamagnetic effect, as was first shown
by Landau.! The diamagnetic susceptibility is found,
in general, to be small and independent of the tempera-
ture. At very low temperatures, in addition to the steady
diamagnetism, there are terms which depend strongly
and in an oscillatory fashion on the magnetic field, i.e.,
the well-known de Haas-Van Alphen effect.? However,
in the present discussion, we shall limit ourselves to the
steady diamagnetic susceptibility. We shall not consider
the case of the effect of very high magnetic fields,?* and
shall neglect all electron-electron interaction terms
whose effects have been shown to be small as long as we
do not have superconductivity.5:¢
Landau! showed that for free electrons in a magnetic
field the diamagnetic susceptibility per unit volume is

= —e2ko/127mc? (1.1)

where %o is the wave number at the top of the Fermi
surface. For electrons in a periodic lattice, Peierls” used
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wave functions obtained in the tight-binding approxi-
mation and derived an expression for the susceptibility
consisting of three terms,

X= X1+X2+X3, (1.2)

where X; is the susceptibility of an isolated atom mutli-
plied by the number of atoms per unit volume, X, is a
term which has no simple physical inerpretation and
whose magnitude and sign are uncertain, and X; reduces
for a simple band with the effective mass m* to the
Landau-Peierls expression

Xpp=—e2ko/12m*m*c?. (1.3)

However, for simple metals, the tight-binding approxi-
mation is not appropriate.

Wilson? treated the diamagnetism of Bloch electrons
by studying the density matrix as a function of the
magnetic field. Though he was not able to derive a com-
plete formula by this method, Hebborn and Sond-
heimer? calculated a complete expression for X in a very
complicated way. Much of the complication in their
method is caused by the lack of periodicity of the mag-
netic perturbing terms in the Hamiltonian which gives
rise to singular matrix elements in the partition function.
To simplify this approach, Hebborn, Luttinger, Sond-
heimer, and Stiles'® have considered the effect of a
slowly varying space-periodic external field, the result
for a uniform field being obtained by letting the period
tend to infinity at the end of the calculation.

Kjeldass and Kohn' have used a generalized effec-
tive mass theory by taking into account fourth-order
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Stiles, J. Phys. Chem. Solids 25, 741 (1964).

1T, Kjeldaas and W. Kohn, Phys. Rev. 105, 806 (1957).

1089



1090 P.

terms in the expansion of k—ky,. However, this result
has only limited usefulness since it takes into account
the very special case of electrons confined to the vicinity
of the top or bottom of an energy band. They used their
result to calculate the diamagnetic susceptibility of Li
and Na, but as they themselves have pointed out,in
case of Li, the ratio of the second to the first term in the
expansion in powers of ko is 0.6 so that higher-order
terms may well be important.

Essentially equivalent methods of derivation have
been given by Roth,’? Blount,'* and Wannier and
Upadhaya.!* They have considered the fact that the
action of a magnetic field upon a band can be resolved
into two effects. One effect gradually transforms the
parameters of that band. The other effect consists of
the breaking up of the band into a series of discrete
states. The bands thereby become renormalized or
field-dependent. They have computed these renormal-
ized bands to calculate the zero-field susceptibility.

Thus, the problem of Bloch electrons in a magnetic
field has been solved by many authors,® 1?4 leading to
an extremely long and complicated result. But due to
the formidable computational obstacles, no attempt was
ever made even to obtain an estimate of the order of the
different terms in the final result for X. Numerical esti-
mates could be made! only in the special case of a small
number of degenerate electrons, contained near a band
minimum in a cubic crystal.

Samoilovich and Rabinovich'® have calculated the
diagmagnetic susceptibility of conduction electrons in a
nearly-free-electron approximation. Following a similar
procedure, Glasser'® has obtained an expression for the
total magnetic susceptibility of metals also using the
nearly-free-electron approximation. These results, which
will be discussed further below, have a simpler form
than the above mentioned calculations, but have the
undesirable feature that their expressions blow up when
the Fermi surface touches the zone boundary. Further-
more, the appropriateness of the nearly-free-electron
approximation has been justified by the pseudopotential
method in the absence of magnetic field, but it is not
clear that it is valid in the presence of magnetic fields.

It is clear from the foregoing remarks that there re-
mained a need for a theory of diamagnetism which
could actually be applied to metals. The present work
was carried out as an attempt in this direction and we
believe that we have been able to derive a satisfactory
theory and the result obtained is of a very simple form.
Thus the steady diamagnetic susceptibility of any metal,
except the noble metals and the transition metals, can
be easily computed from these results. It is not valid for
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the latter case because the pseudopotential approxima-
tion is not appropriate for these metals.

In our theory there is one important physical approxi-
mation. It is well known that the actual lattice potential
of polyvalent metals is very large, and it is not possible
to use perturbation theory. However, with the great
success of the pseudopotential method, it is possible, as
we shall see, to use perturbation theory. This is the
feature in which the approach is different from tra-
ditional band calculations and it simplifies considerably
the computation of the result.

The pseudopotential method is a logical outgrowth
from the orthogonalized plane wave (OPW) method
first proposed by Herring,'” who suggested orthogonali-
zing each plane wave to all core wave functions, which
has the effect of augmenting each plane wave by adding
to it a suitable linear combination of core orbitals. A
series of developments from Phillips and Kleinman!® to
Harrison!? has led to the successful calculation of energy
bands of polyvalent metals by the pseudopotential
method. The advantages of this method are that the
psuedopotential is small and approximate solutions amy
be found by the use of perturbation theory. In most of
the polyvalent metals the band gaps are of the order of
one-tenth of the Fermi energy and the perturbation
treatment should be justified. There is, of course, no
hope of treating the noble metals or transition metals
in this manner since the band gaps are comparable to
the Fermi energy.

II. GENERAL EQUATION OF MOTION

"™'We consider a metal in which we assume that the
wave functions of the core states are known. Let a core
function pertaining to state ¢ be designated ¢.(r), where
¢ stands for the three quantum numbers #, /, 7. These
functions are assumed to be orthonormal. We now con-
struct the Bloch functions

1
¢ck(l‘)=—\“/} le exp(ik-R)o.(r—R,),  (2.1)

where R; goes over lattice vectors and NV is the number
of atoms in the metal. We can write this as

doc(r) = exp(ik- ).k (r) , (2.2)
where

uck(r)=711\—7 ; explik: (Ri—r1)Jo.(r—R). (2.3)

A plane wave of wave vector k can be made orthogonal
by the Schmidt process to the core functions of an equiv-
alent k. Let such a function be denoted as X, an ortho-

17 C, Herring, Phys. Rev. 57, 1169 (1940).

18 J, C, Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959);
116, (1959).

19 W, A. Harrison, Pseudopotentials in the Theory of Metals (W.
A. Benjamin and Co.. Inc., New York, 1966).
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gonalized plane wave. Then

Xk, 6= exp[i(k+G) '7’]—'2 Dok

X {¢ex|expli(k+G)r]),

where G is a reciprocal-lattice vector. Substituting (3.2)
in (2.4), we have

(2.4)

Xi, 6= exp(ik-r) { exp(iG-1)—2_ uck/dr

X exp(—ik- r)ua* exp[i(k+ G)'ir]} (2.5)

or
Xg,6=exp(ik - 1)uc k(1) (2.6)

where

ne x(r)=exp(iG-1)— Y. tu{ttex| exp(iG-1)y. (2.7)

It can be easily shown that
%G,k(l‘+ R) = Mc,k(l‘) . (28)

We shall use a modified Bloch representation for the
basis functions of the problem which has been success-
fully applied by Roth.!? We now give an outline of this
representation. Let #,.(r) be the peridoic function of r
of the Bloch function for zero magnetic field. Let

x=k+(e/c)A(iVy) 2.9

be the Fourier transform of the usual free-particle
kinetic-momentum operator. Here 4 is the vector po-
tential and we choose

A(r)=r-VA,

where VA is a constant dyadic.
Then according to the modified Bloch representation,
the new basis functions are

(2.10)

D= tnex(r) €xp(ik-r). (2.11)

Since the different components of ¥ do not commute
with each other, the order of the factors is chosen to be
the completely symmetric combination. The wave func-
tion of the system then has the form

‘I/(l',t)Z kZ ¢nk‘//nk (2 12)

=3 exp(ik- t)un (O)¢n(k,t), (2.13)
k,n

the latter being obtained by an integration by parts.

We wish to use this representation for our basis func-
tions. We therefore construct #..(r) from #q(r) as de-
fined in (2.3) by replacing k by the operator x in a
completely symmetric way, i.e., by replacing k by « in
the exponential. We now construct

uc(r)=exp(iG-1)—2_ ueelther| exp(iG-1)). (2.14)
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Then it can be shown that these have the properties

(thox(1) | 451 (1) )= Bcer (2.15)

which is due to the neglect of overlap of the core func-
tions. We have also

<ucx(r) !qu(r)>= 0 ’

but we note that the ug, are not orthonormal.

Now we consider the case of a metal in a magnetic
field. Without the field, the wave function of an eigen-
state of the problem is

V(rt)= % eXp(ik'r){Z s o(k,t)
+% ue o(kt)}, (2.17)

(2.16)

where y¥,(k,t) and ye(k,?) are the time-dependent co-
efficients. When the metal is in a magnetic field, we use
the modified Bloch representation for the basis vectors
and we write

‘I’(r,t)=§ eXP(ik'r){Z epo(k,t)
+ZG ueo(kt)}. (2.18)

Here we make the requirement Yo (k+G',f)=v¥c e
X (k,?), so that the summand is periodic in 4. The equa-
tions are to be taken in the limit of continuous k but
we keep the summation for convenience.

We now wish to operate on ¥(r), with the operator
[p+eA(r)/c]. We have for the coordinate

r % exp(ik-r)[3- ucxt//a(k,t)+§ uepe(lk)]
= % [(—iVi) exp(tk-1)]
X[Z ucn‘/’c(k,t)"}‘% MGK‘//G(k,t):I. (219)

When we integrate by parts, the surface term vanishes
since the expression is periodic in k. Thus we have

. % exp(ik-1)[X ucxxpc(k,t)—i—% uco(k,t)]
= % exp(ik l')in[Z ucxd’c(k)l)

+% ueye(k,t)]. (2.20)
So

(p+eA(r)/c)¥(r)= Zki exp(ik-r)(p+x)
X[ uun/xc(k,t)+§ uee(t)]. (2.21)

Now we consider the one-electron Hamiltonian

H=H(,p)=P/2m+V(r), (2.22)
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where V (r) is the periodic potential. We do not explicitly
include spin-orbit interaction, but it is straightforward
to do so'? and we shall refer to some of its consequences.
When the metal is in a magnetic field, p is replaced by
p+eA/c.

From (2.21) we obtain

H(r,p+eA/c)¥(xr,t)=3" exp(ik-r)H(r,p+x)

X[ umxpc(k,t)+%‘ uedbe(kl)]. (2.23)
Also
HY(r)=E¥(r). (2.24)
Thus, we have from (2.23) and (2.24)
Zki exp(ck-1)[H(x, p+x)— E]
X [Z ucx‘l/c(k)"{'% qulpG(k)]: 0. (2.25)
We can also write (2.25) as
in exp(tk-r)[H(x, p+x)— EJ[3 ueif.(k)
—i—‘% (exp(6G-1)— 2 | %ex)
X (e exp(iG-1))) Wo(k)=0. (2.26)

We now define the operator V g, such that
V re exp(iG-1)=—3_ [H(x, p+x)—E]
X o)tk | exp(iG-1)).  (2.27)

Also, the repulsive part of the pseudopotential is de-
fined by!®

Ved=3 (B—8.)¢albul¥) (2.28)

from which we have
V e exp(iG-1) = — 5 [ (r, p+k)— E] o)
X {u|exp(iG-1)). (2.29)

Comparing (2.27) and (2.29), we find that Vg, is ob-
tained from Vgx by replacing k by « but not in a sym-
metric way. From (2.26) and (2.27), we now have

2 exp(ik-0)[H(r, p+x)— Eucib.(k)
+§K exp(ik-r)[H(r, p+x)+Vr—E]
Xexp(iG - r)ye(k)=0. (2.30)

Thus, the general equation of motion of a metal in an
external magnetic field can be expressed in the alter-
native forms of (2.25), (2.26), or (2.30).

P. K. MISRA AND L.
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III. DIAMAGNETIC SUSCEPTIBILITY
OF CORE ELECTRONS

We can write (2.25) as

§ exp(ik’-r)[H (r, p+) =B uewo (k)
+§, uenye (k)]=0. (3.1)

Multiplying on the left by #..' exp(—tk-r) and inte-
grating over the metal, we obtain

2 | dru.t exp(—ik-r) exp(ek’- 0)[H(x, p+x)— E]
k’
XIZ ke (O F uanpe()]=0. (32)

Since %, e, and H are periodic in r, we can break the
integral into integrals over the unit cell, giving

z

k cell

Xexp(ik'- OLH(x, p+)— EJLX uowvpe (k)

dr .t exp(—dk-r){2 exp[i(k’'—k)-R]}

+> ue e’ (k')]=0. (3.3)
G/
For a finite crystal, the k’s form a discrete set of points

in the first zone. So we obtain

Y exp[i(k'—K)-R]= Ny, (3.4)

where Ay is a crystalline § function which vanishes
unless k=k’-+ G, in which case it is unity. For k and k’
in the first zone, G=0 and Ay is a Kronecker & function.
Therefore, (3.3) becomes
/ druM[H(r, p+x)—E]

X[Z; uc'.al/c'(k)+§ ue Yo (k)]=0. (3.5)

From (2.7) and (3.5), we have
Z [Hw' ('K) - E‘Scc':wc’(k)

+E [l epG 0= X B
G’ G’o’

X (e | exp(iG 1) o (k)=0, (3.6)

where

H.o()= f dr u JH(x, pFv)ue . 3.7

Using the multiplication theorem of Roth,? it can be
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shown that to second order in %

h haghys
H.o(@)= 8o+ /dr o (x) [— rX p-I—-—r“r‘V]ch' (),
¢! m Zm

where &, is the core energy,

hap= €apyh? , 3.9)

and e,y is the complete antisymmetric tensor of the
third rank and we follow the Einstein summation con-
vention. Similarly, we can simplify the other terms in
(3.6) to obtain finally

z [(&—E)a“,

kaﬂhvﬁ
2m

+ / dr ¢*(r) (—:; rXp+ rory )¢c'(r)J\l/c'(k)

h haphys
++/N Y | dro*(r) [——‘ X p+———r"r“f:|
G/

m 2m

XX a(e (k)=0, (3.10)

'k’
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(3.8)

where

o= et G) 1= 609 [ 6.4

Xexplir'- (x+G')]dr’  (3.11)

and x.c is orthogonal to the core states.

In (3.10), the first part gives the core terms. The
second term in the first part gives rise to the Zeeman
effect. The third term gives the core diamagnetism. As
we shall see, the second part, which is a correction to
the core terms due to the presence of conduction elec-
trons, gives rise to terms analogous to the van Vleck
paramagnetism.

1IV. EVALUATION OF THE CONDUCTION-
ELECTRON TERMS

In (2.32), if we replace k by k/, multiply on the left
by exp[—i(k+G)-r], and integrate over the crystal,
we have

2 | drexp(—iG 1) exp(—ik-r) exp(ik’- r)[H (x, p+«')— EJug e (K))+ 3 / dr exp(—iG-r)
Gk’

X exp(—ik-r) exp(ik’-r)[H(r, p4%')+V po— E] exp(iG’ - r)e (k)=0. (4.1)

Also, #c, H(r, p+x,h), and Vg, are periodic in r, so that we can break the integral over the unit cell and use

(3.4) to obtain

Z; / dr exp(—iG-r)[H(x, p+1c)—E]uc'x%1(k)+§, / dr

Xexp(—iG-r)[H(r, p+x)+V r— E] exp(iG’ t)Yc (k) =0. (4.2)

Using the multiplication theorem'? and making some simplification, we obtain to second order in %

h haghys
L /) [ expl iG] (Bom B orxp e g 0,09

1
+> [/dr exp(—iG-r) {E—(p+x)2+ V+ VR,‘} exp(iG’~t)—EéGG,]¢G,(k)=O. (4.3)
G’ m

We have also from (3.10)

h haﬂhyﬂ
(B Ep= % f ar ¢c*<r>[——-r><p+—2—~—rﬂ¢c,<r)w<k>
c’! m m

h Raghy
~WN T / dr ¢c*(r>[~- rX P+”‘§"l’l’°‘7’7]XxG'1//G' ®). (44)
G’ m

m
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From (4.3) and (4.4), we have
hagh
2m

h
> ]\71/2/dr XKG*(r)[——-rXIH-
¢’ m

hagh

P. K. MISRA AND L.
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wr"‘r“f]qsc/(r)gbc:(k)—N 6%’ /dr exp[-—i(G+u)-r]/dr’ o (')

h a
X [W-I‘X p+—5—ﬁr'“r"’]x.‘er(r’)dic'(r)z//c,f (K)+> {/dr exp(—iG-1)
GI

m m

1
X [;n—(p—f—u)?—l— V4 VijI exp(tG’-1)— Edce ]g[/(;,(k) =0. (4.5)

Equations (4.3) and (4.5) enable us to eliminate either ¢ for the core electrons or ¢, for the conduction elec-
trons. Let us first consider the core electron case. If E=§,, then Eq. (4.5) shows that ¢ is of order 4. If
we write the last line as (Hea*— Edce’)¥c’, we have to this order

h
ZG’ (IIGG'O— E(SGG')\I/G’%"NUZ }: /dr XK.G<r)_'. I‘Xp ¢c'(r)\(/c'(k) .
¢/ m

(4.6)

From (3.10) and (4.6) we obtain the interaction term in (3.10) and the contribution to the core susceptibility

due to the presence of the conduction electrons is

h h
X1= 2N Z <¢¢|—"' rXp] Xk(‘x)(Ho‘—E)"lGG/(XkG/ I——rXp]q&c) .
G’¢ m m

4.7)

This is a contribution analogous to the well-known van Vleck paramagnetism. This term vanishes in the absence
of spin-orbit interaction, since in that case ¢, is an eigenfunction of (h/m)-rXp, and the OPW are of course,

orthogonal to the core terms.

Looking now at the conduction electron case, we have from (3.10)

N2 h hashn
Yo=— > /dr o (r) l:—' rX p—l————-r"r‘f:l Xopar (k). (4.8)
8c—E G’ J m 2m

From (4.5) and (4.8), we have finally

¢'G ((‘:;c/ - E) m

1 h h
Ny / dr Xys'— £X Do (1) / dr' o ()~ EX Pl (k) — N
m

> |dr

G’¢’

. h haﬂk'}vﬂ
Xexp[—i(k+G) ] / dr' ¢ (r') |:—- r'X p'+~———1'2 / ar’v]xm, (t)¢pe (Ve (k)
m m

+Z, /dr exp(—iG-r)I:

where we retain terms up to the second order in 4.
We see that the first term contributes to the suscepti-
bility of the conduction electrons a term which is similar
to the van Vleck paramagnetism except that it is a
contribution to the susceptibility of Bloch electrons due
to the presence of the core.

The second term consists of matrix elements of
(h/m) -t Xp+ (2m) haghys/rer” between OPW’s and
core terms. In the absence of spin-orbit interaction, the
matrix elements of (h/m)-rXp are zero since in that
case ¢, is an eigenfunction of (h/m)-rXp and the OPW’s
are orthogonal to the core terms. Also the average value
of (x2+y2) between the core and the OPW’s is small

(p+%)?

2m

+V4V pe— E:l exp(iG Yo (£)=0, (4.9)

since the core terms are small. So apart from the van-
Vleck-like term which also vanishes in the absence of
spin-orbit interaction and the matrix elements of
(x*+9?) between the core and the OPW terms which
we shall neglect, (4.9) can be written as

1
> |dr exp(-—iG-r)l:—(p—i—x)—{— V+ VRK——E]
[X 2m

Xexp(iG'-1)¢e(k)=0. (4.10)

This is due to the motion of the Bloch electrons in the
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magnetic field. We can write this as

H@ey (k)= Ey(k), (4.11)
where
H@x)=(p+x)/2m+V+Vg,. (4.12)
Let
W @)=V @)+ Vrr), (4.13)

where W ,(r) is the modified pseudopotential in a mag-
netic field, since without the magnetic field, we have

Wi(t)=V @)+ Ve(r), (4.14)

which is the usual pseudopotential. However, we note
that W (r) is not obtained from Wy(r) by replacing k
by x in a symmetric way.

As it has been repeatedly discussed,'®1? since V gi(r)
is a repulsive potential, Wy(r) is a much smaller po-
tential than V(r).

V. DIAMAGNETIC SUSCEPTIBILITY OF
BLOCH ELECTRONS

A. Method of Evaluation

We shall now derive from first principles an expression
for the diamagnetic susceptibility of Bloch electrons.
For Bloch electrons, we have obtained the Schrodinger

equation
2 Hoolee (k)=Eyo(k), (5.1)

where

H(e)= (p+x)*/2m+W (x). (6.2)

The result which we shall obtain is completely general
and is valid for any type of crystal because throughout
our derivation, we can either consider H(k) to be the
plane-wave Hamiltonian

H(k)= (p+k)*/2m+V (1), (5.3)

where V(r) is the crystal potential, and which is appro-
priate for the case of any crystal, or we can consider
H(k) to be

Hk)=(p+k)*/2m+W(r), (54)

where H(k) is such that H(x) is obtained from it by

replacing k by x in a symmetric way and which is suit-

able for a pseudopotential formalism. We believe that

this is the simplest way to derive an expression for the

diamagnetic susceptibility of Bloch electrons in a crystal
The magnetic susceptibility is given by

X=—@3F/oH?, (5.5)
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where F is the free energy,
1
P=N'= S inltenl=8e—D.  (59)

¢ is the chemical potential which can be regarded as a
constant to the second order in magnetic field and
B=1/kT, where k is the Boltzman constant and 7" the
temperature. Let

F'(8)=F—N¢ (5.7)

1
== Zhdten[-p—nD. 69

F’(8) can be related to the classical partition function
by the method of Wilson and Sondheimer.® We can ex-
press this in the form

F’(ﬂ)=z T exp(—Be;)=Tp trd(x), (5.9)

where T represents an inverse Laplace transform and

() =exp[—BHG)]. (5.10)

Let ®(k) be the operator such that ®(x) can be formed
from it by replacing k by x in a symmetric manner. We
then have

trd ()= trd (k) , (5.11)

which follows from the general principle®? that the trace
of a symmetric function of x is the same as the trace of
the same function of k. We shall now evaluate ®(k).

B. Expansion Theorem

We wish to prove an expansion theorem. We wish to
obtain an expansion series for the operators

Vi*exp[—BH (k)] and ViV exp[—BH (k)].
First, we expand exp[ —BH (k-+¢)] in a Taylor series:
exp —BH (k+e) ]=exp(—BH)+ €*V;:* exp(—BH)

+3e2e" V2V exp(—BH)+ -+, (5.12)

where @, 8, and v are Cartesian coordinates and we use
the Einstein summation convention. Also

H(k+¢)=H (k)4 e2VH (k) +Lee
XV H(k)4---+.  (5.13)

Now we use the well-known operator-expansion for-
mula of Goldberger and Adams?°:

B B
expl—B(H~+5)]= exp(—BH)+ exp(—BH) f 48’ exp(8'H)(—8) exp(—B'H)-+exp(—BH) / a8’

8
X exp(8'H)(—8) exp(—B'H) / dB” exp(8”H)(—38) exp(—B"H), (5.14)

20 M. L. Goldberger and E. N. Adams, J. Chem. Phys. 20, 240 (1952).
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H(k+e)=H(k)+ (5.15)
or from (5.13)
d0=[e Vit (Ge2e") VoV JH(K)+- - - . (5.16)
From (5.14) and (5.16), we obtain
8 8
exp[ —B(H+6) ]= exp(—BH)+ exp(—BH) f B’ exp(8’H)[— e*(VeH)] exp(—B'H)+exp(—BH) / ag’
0 0
8
X exp(8'H)[—jee"(Vu*Vi?H) ] exp(—B'H)+exp(—BH) { / g’
0
ﬁ/
X exp(@ H)[eVoH] exp(—F'H) / 48" exp(8"H)
0
X[e"Vi"H ] exp(—B"H) } +terms of higher order. (5.17)
So from (5.12) and (5.17), we have the desired expansions
8
Vi exp(—BH) = — exp(—BH) / 08’ exp(8H)(VaoH) exp(—§'H), (5.18)
0
B
Vi®Vy? exp(—BH)= —exp(—pH) / dp’ exp(8’H)(Vk*Vi"H) exp(—B'H)
0
] 4
+exp(—pBH) [ dp’ exp(8'H)(Vk*H) exp(—p8'H) / dp"’ exp(8'H)(VyH) exp(—p"H)
0 0
8 ]
+exp(— 1) / 4§’ exp(8'H) (V' H) exp(—§'H) f 48" exp(8"H)(VeeH) exp(—B"H). (5.19)
0 0
C. Evaluation of ® (k) Treating the second term in the right as an inhomoge-
We have from (5.10) neous term, the equation can be solved for ®;:
d®(x)/dB=—H x)®(x). 3.20 A
96/s8=~ ke G2 g exp(— ) f 48’ exp(B H)ihoa(ViH)Vid
Using the multiplication theorem!?, we have 0
dd(k «
___d_(_)= . exp[—h- VkXVkr:]H(k)‘I)(k') [k'ak- (5'21) +%haﬂh78(vk Vk7H)VkﬂVk5](®0+q’l) . (5-26)
Let B We can now iterate this expression to obtain, up to the
(k) = Bo(k) + 1K), (5.22) second order in the magnetic field,
where s
‘I’o(k)=eXP|:'“.3H(k)] (5'23) ‘h%%f dﬂ, exp(ﬂ’H)[ihag(Vk“H)Vkﬂ
From (5.21), we have 0
d®o(k) d®i(k +3haghys(Vi* Vi H) ViPVi® Jexp(—B'H)
d; L e -8 e
B
Fihap(Vi2H) Vif (Dot B1)+ S hashys +%o ﬁ dB’ exp(8'H)ihap(Vi*H) Vi exp(—B'H)
X (Vk“Vk‘/H) VkﬂVk5(rI>o+ ®,) (5 24)
and for ¥, 8
d®;(k) X /0 dB" exp(8' H)ikys(Vi"H) Vi exp(—B"H).

= — H®1+[1hap(V2H) VP
A2 10phys (Vi@ Vi H) ViV (B0 B1) (5.25) which is to be used with (5.18) and (5.19).

(5.27)
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D. Evaluation of tr &, (k) metry. Also we write
We now take the trace with the functions #,k(r) de- . .

fined by Pun®= | d3x i (Vk"’Hk)Mn,k, (529)

Hytpy= é’,.(k)u,,k . (5.28)
(I)O(Em) = eXP("ﬂEm) ) (530)

We now adopt the convention that any running index
means that the sum over all the bands shall be taken, 20 (Em)=—B exp(—BEn), (5.31)
except that the diagonal terms have already been sepa- &y (En)=P? exp(—BEm) . (5.32)

rated out. Then it can be easily shown that the first
term of tr ®; in (5.27) vanishes from time reversal sym- Then, after some algebra, it can be shown that

hagh-ya m? P”mﬁané -Pwm‘gl)nmts
tr<I>1(k) = { - ——(Vk"VkVEm) (ka’Vk&Em)fbo”(Em) +m6a7——~—-<bo’ (Em)+ 2m6a.,—<bo(Em)
m 12 -Enm2 ’Mna
Pmnﬁananl"’les Z(Pmnﬂananl‘yles"'leﬂPmnaanqulb)
- CI’Ol(Em)_ !i'O(Em)"'(-Pmmﬁf)mnm-Pmn'mem‘s
EnmElmEqm EnszlmEqm
28y(En) B0 (Em) 22¢(Em) ®0o"(Em)
"‘PmnﬂPnnaPnn“’ana) = +PmnﬂPnnaan7Pmm6 ‘+ :l
nm4 Enmx Enm3 Enmz
&y(En) 2%(En) ®0(Em)
“Pmno‘Pnm'y-Pml‘sle}9 lI I ‘i‘I)rn'rnﬂ‘qu‘UJql'yljlm‘s
Enm2E1m2 EmnsElm Enszlm
2‘1’0(Em) 2<I>0(Em) ZQO’(Em) @o/'(Em) 2PmnﬁPnnaPn17le6 I)mnﬂl)nqcl-Pqn‘yanl5
| | | - @ (En) - 2 (En)
ElmsEqm Eqm3Elm Elszqm ElmEqm Enszlm Enm2Eqm

@O(Em) <I:'O(Em)
_'2(PmnﬂPnnaPnl7le5_leﬁPmna-Pnn‘yPnls) = :I

E'nmsElm l Enm2E1m2

Z(Pmnﬂpnqapqnyana_‘Pmnaan'YPqn'sanﬁ)

®o(En) } . (5.33)

EnmsEqm
Also, it can be shown by partial integration that
PmmﬂPmnaan‘mems Ijrnnm‘Pnnﬂan'YPmm’5 qua-quble‘memﬂ Pmnaan7
|: - + ]@J(Em) = I:— 2m————bps
Enm3 Enm3 Eqszlm Enm3

+2(Pmnﬁpnqapql'yplm5_leﬂPmnaan‘Vquﬂ) ZPmmﬁ-PmnOl])'nm»’Pmm's 2PmnﬁPnnaPnn7an6
- — -

EnszlmEqm Enm4 Enm4
1 2 2 2
+Pmnapnm7Pmlaleﬂ< = )'_Pmmﬂquanl‘ylea( )
Enm2E1m2 EnmsElm Elszqm EqmsElm
Z(PmnBanann‘yanb“Pmnuanqunapnma)
+ lF2(-PmnBI)rmm‘Pnl‘yf)lm&—‘‘leﬂf"mnm-Pnn'yPnl's)
EnmsEqm

1 1
X( f ):|<I> E,). (5.34
EnmaElm l -Emn:z-Elm2 0( ) ( )
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From (5.34) and (5.35), we have
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ka,sh»ya m2 Pmmﬂqua-qu’YleE
trd; (k)= - === VW E, VWPV IE, 3 (En)+ 3 &' (Em)
mt 12 m mq.l EinEgn
m#ql

umnﬁana Pmnﬂpnquql'Vle's Pmnaan‘Yqu‘qumﬂ
0@ (B)— 2 ———————————C®/(En)— 2 &y (Enm)

m,n Ynm ml,mg EnmElmEqm mn.g Enm am

m#En m#ln,.g m #n,q

2
+ Z Pmmﬂquanl7le6<

ml,q
m#l,q

1
} By (En :| (5.35)
Elszqm ' Elm-Eqm2> 0( ) ’

where we have returned to the usual convention on indices.

E. General Formula for Diamagnetic Susceptibility

We now substitute (5.36) in (5.8), replacing &, by the function in (5.7). We note that the energy derivative of
this function is the Fermi function f(E). Then from (5.5) we obtain

Zhaﬂhw[w S VTSI E (E) T, e 5 T g
= - ViV Lim VP Vi’ Ly m) Em —_ 2m 5(1 Em
miH? L12 m.k ! m,ql.k ElmEqm f mn,K E"mz ‘Yf
m#ql m#En
+ Z 2Pmnﬂan“qu‘Yle5f( ) Z 2Pmnaan7qu5quﬁ ( )
mln,qgk EnmElmEqm mm.qk nm Eqm f
m #l,n,q mFEny

2 1
- Z ZPmmﬁ-quanl'Yle's( } >f(Em)] . (5.36)
lszqm Izlml‘zqm2

ml,gk
m #l,q

This gives the diamagnetic susceptibility of Bloch
electrons. We note that this is a general theory of Bloch
electrons in a magnetic field which has been derived
from first principles and is valid for any crystal. We
believe that this method of derivation is the simplest
way to derive an expression for the diamagnetic suscept-
ibility of Bloch electrons. However, we note that we
have neglected Vi ¥ and Vi VW terms since they are
small. We have also neglected the field-dependent terms
Of Wk.

This expression for the susceptibility can be shown
to be equivalent to that of Roth!? for the case we have
treated, i.e., in the absence of the effects of spin. If we
evaluate the terms up to the order of k2, our result re-
duces to that of Kohn and Kjeldaas.!!

VI. SIMPLIFICATION FOR METALS
A. Pseudopotential

In order to calculate the diamagnetic susceptibility of
metals we have to know accurately the lattice potential
in a self-consistent calculation. The actual lattice po-
tential ¥ (r) is very large and so it cannot be realistically
treated as a small parameter in a perturbation expan-
sion. On the other hand, the pseudopotential which is
the sum of the lattice potential and the repulsive po-
tential is small and therefore we can apply a perturba-
tion expansion.

We shall retain the operator nature of W (r). It can be
easily shown that W (r) may be separated into a sum of
individual (but overlapping) pseudopotentials centered
upon the individual ions. Since each ionic pseudopo-
tential will be spherically symmetric, in the matrix
element, only the magnitudes of the right- and left-
hand wave numbers and of the difference in wave num-
bers are required. In the present case, we shall be in-
terested in matrix elements between states which lie on
the Fermi surface so that the only dependence of the
matrix elements is on the magnitude of the difference.

We also note that the diagonal matrix elements of P
are proportional to ViE, while the nondiagonal matrix
elements are proportional to (k+G|W|k)=Ws. In
using perturbation theory, we shall take W¢ as a small
parameter and we shall retain terms up to the order of
Wl

B. Application of Nondegenerate Perturbation Theory

We shall now use time-independent nondegenerate
second-order perturbation theory which is applicable to
the case of monovalent metals when the Fermi surface
is well within the Brillouin zone. Later, we shall have
to use degenerate perturbation theory to treat the
general case of polyvalent metals.

We wish to solve the equation

[T+ W (1) W(r) = Eiu(r) (6.1)
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where W (r) is of first-order smallness. From standard
perturbation theory, we obtain

_ gy 2GR, G 6.2)
S et e T -
k2
=—+(k|W1k)
2m
IZm(k-{—GlWIk)(k]W]k-{—G), 6.3)
s k— |k+G|?
MG kt-G | TV | )

Pon=— 5(km_ kn+ G) ) (64)

G G+2k-G
Prn®=En V(i | W [ K+ - -« (6.5)
Substituting these in (5.37) and retaining terms up to

the second order, we obtain after some simplification

aﬁh'yﬁ
X=—

7 8%
f f / &% f'(E)— Y GG
1209m2H? mH? G

{/// |-G [k 2 E[ém

k8RS ]
(G*+2k-G)3 6 G+2k-G
l<k+GlW|k>I2
onf [ [ g

[ P }} (6.6)
x| 6st——— |1 (6.
T Gk G

where H is along the z direction.
The chemical potential can be evaluated up to the
second order from the relations

—1; / &% f(E)=N, 6.7)
HE)=f(E)+(E—Ey)f(E)+---,  (6.8)
1
pore / a% fe(Eo)
T (o e end] o

=;;‘3[/d k f:o(Eo)+fd k(¢ fo)af O-I- :I, (6.9)
and .

4—ﬂ'3fd3k fr(E))=N, (6.10)

where o is the chemical potential for free electrons:

$o= (9 N2)13(x/2m). (6.11)
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From these, we have
[(krt+G|W|kp)|?
§=tot(kp|W k)~
4{1/2‘(—01/2
Xa'/? tanh—1g1/2,  (6.12)
where
a=8m{/G>. (6.13)

We shall now evaluate X. When the Fermi surface is well
within the first Brillouin zone, there is no problem in
evaluating the integrals. When the Fermi surface is
outside the Brillouin zone, we use Harrison’s method?
of taking the principal values of divergent integrals.
In this case, we find that the singularities cancel out to
give the same result as before. We obtain in both cases

o k-Gl kg2
= _55[ 85“01/‘2?3/2Z |{kr+-G| W |kr)]|
G2HG,2
X({E‘d”z tanh™1g!/2— }+2( +G,2)
$o 1—a G2

— 343

X {Zi—a)z

+3q8/2 tanh‘lal’z} ):I , (6.14)

where p is the Bohr magneton.

C. Comparison with Other Results

We now compare the above result with that of others.
We write down the result of Samoilovich and Rabino-
vich, who have obtained an expression for the diamag-
netic susceptibility in the nearly-free-electron model
by expanding the partition function in powers of V;
the result of Glasser,'® who has obtained an expression
for the total magnetic susceptibility in a nearly-free-
electron approximation by a similar approach to that of
Samoilovich and Rabinovich; and the result of Abe,2!
who has derived an expression for the paramagnetic
susceptibility in a nearly-free-electron approach.

-
1—a

+-3q3/2 tanh“a”z} ):l (6.15)

Glasser (Ref. 16):

wN Ve?
X=——-[1—— > ———-({a”2 tanh—lg1/2—
$o G 8fo?

(G2+G,?) {5a2—3a2
G 8(1—a)2

Abe (Ref. 21):

3u2N Ve? a
I:l——z ————(a”2 tanh—lg1/2— ):I (6.16)
Zfo G 83’02 1—a

' R. Abe, Progr. Theoret. Phys. (Kyoto) 29, 23 (1963).

X=
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Samoilovich and Rabinovich (Ref. 15):

u2N Vel e
X= ———|:1—~Z ~——~({al/2 tanh*‘a”“’-————]
2‘(0 G 8{02 1—a

4 (G’2;G”2) (1fa)2)] (6.17)

When we compare our result with the above results, we
replace [(kp+G|W|kr)|? by Ve2 We find that if we
add our result (6.14) (replacing ¢ by ¢o), which is an
expression for the diagmagnetic susceptibility to that of
Abe (6.16), which is an expression for paramagnetic sus-
ceptibility, we obtain the result of Glasser (6.15), which
is an expression for the total magnetic susceptibility.
On the other hand, we note that our result does not
agree with that of Samoilovich and Rabinovich (6.16).
However, we find that Samoilovich and Rabinovich!®
have committed some algebraic errors in the course of
their derivation; in particular, in the last integral of their
Eq. (10), the expression (1—4x2) should be replaced by
1(1—442)2. We have derived an expression for the dia-
magnetic susceptibility following their procedure after
making the necessary corrections and we find that this
result is the same as our result (6.14).
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We also note that we disagree with Glasser’s con-
clusion!® that the paramagnetic susceptibility and the
diamagnetic susceptibility are not additive. Glasser’s
erroneous conclusion is due to the use of the incorrect
expression for the diamagnetic susceptibility obtained
by Samoilovich and Rabinovich.

Finally, we note that the above expressions derived
by us and by others are only valid for the case where
the Fermi surface is well within the first Brillouin zone,
or, with the use of the principle value as in Harrison’s
method,!® well away from the zone faces. To cover the
case where the Fermi surface is close to a zone face, we
now wish to derive an expression using degenerate
perturbation theory.

D. Application of Degenerate Perturbation Theory

We assume that the unperturbed eigenvalue is only
doubly degenerate. We now expand

v=a, exp(ik- 1)+ ax,c exp[i(k+G)-r] (6.18)

and ignore the other coefficients. Here k lies near the
zone boundary which bisects the vector G. Using
standard methods, we now obtain

LB~ (k+6)?/2m Jexp(ik- 1)+ (k+G|W k) exp[i(k+G) r]

(6.19)

[(E— (k+G)¥/2m)*+ | (k+ G| W |k) | 2]/

We now adopt the convention that the suffix (—) indicates the functions pertaining to the lower-energy values
and (+) indicates the functions pertaining to the higher-energy values. After some simplification, we finally obtain

1G[k%/ 2m— (k+ G)2/2m ]

Pyyo=ke+5G—

P__e=fet3Got

a

P

k2 (k+G)?
E,= %[—‘F :|+ [’1‘(“*“
2m 2m 2m

, (6.20)
(5 %/ 2m— (k+G)?/2m)*+ | (k+ G| W | k)| 2]/
1G[k2/ 2m— (k+G)2/2m] 621
[3(2/2m— (k+G)2/2m)*+ | (k+ G| W | Ky |2 '
_ G(k+G|W |k) ’ 622
[(%%/2m— (k+G)2/2m)*+4 | (k+G| W | k)| 2] /2
k2 k_l_G 2\ 2 1/2
( ))+|<k+G[W1k)12:| , (6.23)
2m
. k2 (k_I_G)Z . kZ (k_I_G)Z 2 \ 1/2
E_=§|:#+ 2m ]h[z(%~ 2m )+[<k+G1Wlk>l :I . @29

2m

Substituting these in (5.37), we obtain after some simplification the same result as (6.6), except that in the de-

nominators we must make the replacement

G*+2k- G — [(G*+2k- G)*+ 16m*Kk+G | W |k)|2]*/2.

(6.25)

We now evaluate the chemical potential by the method outlined above and obtain

2;—3/2

aft?

L
4q1/2

1
14 {(1—411/2)21?1-(1+al/2)2F2

¥ kF 2 —gll2 'y
]]+I<k +G|Wks)| a‘“’lnl(l GRATE) 6 26)

8g1/2 12 (1+at/2)(1+Fs)
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mhere t6m2] (k s+ G W | k) |+
m F
p1=[1+ l :I (6.27)
G4(1_01I2)2
and
16mzl(kF+GIW|kp>l2 /2
2=[ + :I . (6.28)
G4(1+01/2)2

From (6.6), (6.25) and (6.26), we have, after simplification.
(GG

“2N g' 1/2 1
X= ———(—> {1——[2— (1— a2 Fy— (14-a2)Fy ]+
Zg'o g'o 20

s
G? 2a1/2 F1 F2

[(kr+G| W |kp)|2a2+4¢%(1—a)
+§(1-— tan—!
4k p+ G| W |k p)a’/?
a3/2G8
-
128X 64m*| (k s+ G| W | k)| %L
;
G4

r(1—aw)pl[(1-

]— (1+a1/2)F2[(1+a‘-/2)((1—-a1/2)2—

4 (kp+ G| W |k p)ad/2 )

[{kr+G|W kp)|?a*+4%(1—a)

24m? |k p+ G| W | kp)|2
al/2)((1+01/2)2_ m[( G4l | >|>
24m21(kF+G|Wlkp)12)
Gt

G4

This is the expression for the diamagnetic susceptibility
of a metal obtained by using degenerate perturbation
theory. Far from the zone boundary this expression can
be expanded to second order in |{(kr+G|W |kr)| and
it reduces as it should to Eq. (6.14) and so to the cor-
rected version of Samoilovich and Rabinovich. This
verifies the use of the principle value for the case of the
Fermi surface lying outside the Brillouin zone.

E. Comparison of Results

In order to use these results for actual crystals we
must sum §—¢§o and X—X,, from (6.26) and (6.29), over
reciprocal-lattice vectors G. We evaluate { and the a’s,
which depend on the G’s, by iterating the summed form
of (6.26), and using (6.13). We then calculate X from
the summed form of (6.29) which we can write

X=Xo(14->"¢ Dg),

where X, is the diamagnetic susceptibility of free elec-
trons.

To see the variation of the susceptibility with Fermi
level, we have chosen the eight (111) G vectors which are
the nearest-neighbor reciprocal-lattice shell for a face-
centered lattice such as aluminum. In evaluating
2 shelt D, we note that for cubic symmetry we can
replace G,*+G,? by %2G? in (6.29). We have made the
calculation using the parameters for aluminum. The
value of (kp+G|W|kr) for Al varies with a, but for
the purpose of comparison we have chosen the value

(kr+G|W |kp)=0.075 Ry, (6.31)

(6.30)

| 64m?| (kr+Gl Wlky)]zj”i 3l<kF+G|Wlkp)|2a3/2 N (14+F1)(1—at/2)

:” . (6.29)

64¢2 (14F2) (1402

which is the average value of this quantity for a in the
neighborhood of 1, as obtained from the results of
Animalu and Heine tabulated by Harrison.!® The value
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TasLE I. Some details of susceptibility calculation.

PIEWIL
Gshell a2 (kr+G|W¢|kr)* Nondegenerate Degenerate
Li 110 0.7698 0.0934 —0.1856 —0.1204
200 0.3849 0.0626 —0.0038 —0.0037
211 0.2565 0.0173 —0.0004 —0.0004
Na 110 0.7698 0.0200 —0.0338 —0.0313
200 0.3849 0.0093 —0.0002 —0.0002
211 0.2565 0.0036 —0.0000 —0.0000
Al 111 1.694 0.0152 —0.0358 —0.0329
200 1.271 0.0580 —0.0110 —0.0110
220 0.635 0.0564 —0.0027 —0.0027

RﬂfF{Sm calculation of Animalu and Heine as tabulated by Harrison,
ef. 19.

of ¢ for Al is 0.8596 Ry. However, we wish to vary ¢
and @, which are related by

o= (12G/8m)as=0.5099a, Ry,

using G=2.696X10% cm™! for aluminum.

In Fig. 1 we have plotted the variation of >_Dg with
ao for both the second-order nondegenerate perturba-
tion-theory result of (6.14) and the degenerate perturba-
tion-theory result of (6.29). For the nondegenerate case
the magnitude of >_Dg becomes large for a close to 1,
and goes to infinity as a=1, which occurs for a value of
a9 of about 1.1. The degenerate perturbation theory
result however remains finite when @ approaches 1.

We have applied the theory to the case of the alkali
metals and to Al. The values of (kp+G|W |kpr) used
were obtained from the results of Animalu as tabulated
by Harrison.!? The method outlined above was used to
evaluate the Dg’s and these were summed over neighbor
shells until convergence was obtained, using a CDC
6400 computer. In Table I we give some details of the
calculation for Li, Na, and Al In Table II are given
the results for the diamagnetic susceptibility for the
alkalis and aluminum which we notice do not differ
much from the free-electron result. We have compared
our result with experiment where possible. However,

Tasre II. Diamagnetic susceptibility of alkali metals and Al
(10~%cgs vol. units).

Metal Free-electron X, X from (6.29) Experimental X*
Li —0.266 —0.233 —0.1440.15
Na —0.215 —0.208 —0.07+£0.13
K —0.179 —0.176
Rb —0.159 —0.158
Cs —0.147 —0.145
Al —0.138 —0.132

a References 22-24.
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in only two cases, those of Li and Na, has the diamag-
netic susceptibility been measured directly. Direct
measurement means that both the total magnetic sus-
ceptibility and the spin susceptibility have been mea-
sured experimentally so that the diamagnetic suscepti-
bility is measured by computing the difference. For the
experimental results, we have used the results of Pugh
and Goldman,?* Bowers,?® and Schumacher and
Slichter.24

There has been no theoretical estimate or “direct”
experimental measurement of the diagmagnetic sus-
ceptibility of any polyvalent metal. We have calculated
the diamagnetic susceptibility of Al as an example, but
we can evaluate the diamagnetic susceptibility of any
polyvalent metal to which the pseudopotential formal-
ism is applicable.

VII. CONCLUSION

The principal result of this paper is the obtaining of
a tractable expression for the diamagnetic susceptibility
of simple metals, through the use of a pseudopotential
formalism and degenerate perturbation theory. Along
the way we have been able to rederive the general result
for the susceptibility of Bloch electrons in a reasonably
simple fashion.

The necessity for using degenerate perturbation
theory in our calculation is in contrast to the case of the
total energy as calculated by Harrison,'® who found
that second-order perturbation theory sufficed. This is
because we are dealing essentially with energy deriva-
tives, so that the second-order perturbation-theory re-
sult diverges rather strongly, as Fig. 1 shows, and over-
estimates the departure from free-electron behavior.
Our calculation shows that for the cases studied, the
departure from the free electron or one OPW result is
quite small. The reason for this is that ¢ does not come
very close to 1 in any of these materials. In the few
cases where experimental results were available, this
conclusion was consistent with them, within the rather
large errors quoted.

. Large deviations from the free-electron results can be
obtained if a is close to 1 and if the interaction is suffici-
ently large. In fact, the deviation can be eigher direction
as can be seen in Fig. 1. It would be interesting to see
whether this theory can account for the large diamag-
netism of some materials such as bismuth.

22 W. Pugh and J. E. Goldman, Phys. Rev. 99, 1633(E) (1955);
99, 1641(A) (1955).

28 R, Bowers, Phys. Rev. 99, 1640(A) (1955).

2 R, T. Schumacher and C. P. Slichter, Phys. Rev. 101, 58
(1956).



