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Dynamic Polarizabilities and van der Waals Coefficients*
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A simple two-point Pade approximant of the dynamic polarizabi]. ity is Used to generate a.

variety of formulas for van der Waals coefficients including the Slater-Kirkwood formula for
two-body interactions and the Midzuno-Kihara formula for three-body interactions. The
mathematical properties of the approximant are examined. It is shown that some formulae
are bounds of the actual value while others give remarkably accurate results.

1. INTRODUCTION 2. THEORY OF DISPERSION ENERGY

The long-range interaction (van der Waals force)
has long been recognized as a problem of major
interest in the fields of interatomic forces. The
two-body interactions were first formulated by
Eisenshitz and London' who used a second-order
perturbation sum over all excited states. The
three-body interactions were first studied with
the third-order perturbation method by Muto' and
by Axilrod and Teller. ' These problems were
also approached by variational methods. ~' What-
ever the approach, ab initio calculation is often
tedious and requires the use of many-parameter
wave functions. ' '

More recently, attention has been given to an
alternate, though closely related, expression for
the van der Waals coefficients in terms of an in-
tegral over imaginary frequency of products of
the dynamic polarizabilities of the interacting
atoms. '~ ' Since the required one-dimensional
integration is straightforward, this approach re-
duces the original many-center problem to one of
evaluating the dynamic polarizability of a single
atom.

To use the integral formulation, a suitable ana-
lytic form for the dynamic polarizability is needed
because the limit of integration goes to infinity and
the frequency extends to the imaginary domain.
To construct such an analytic expression, the
Pade approximant method has been presented, '
and proper bounds of each successive order of ap-
proximation has been established. "

In the process of these developments, many
simple approximate formulae for van der Waals
coefficients are derived such as the Slater-Kirk-
wood formula4 for two-body interactions and the
Midjuno-Kihara formula' for three-body inter-
actions. They become well known because they
are in closed forms and can provide a quick esti-
mate for various interactions. In this paper, we
shall use a simple two-point Pade approximant"
of the dynamical polarizability to summarize these
well-known formulae as well as to generate new
ones. In certain cases this gives new meaning to
the approximate formulae while in others this
facilitates the establishment of bounds of the ac-
tual value.

In Sec. 2 we outline the method; in Sec. 3 a
mathematical study of that simple approximant is
made; in Sec. 4 we discuss the properties of vari-
ous formulae derived.

From the perturbation theory, the van der Waals
energy EAB for the interaction of two ground-
state spherically symmetric atoms A and B is '
(in atomic units)

with

AB AB AB

D&& (3 cos8 cose cose + 1)

(~~a~I3c"c~)'

A B C
ff f f„

xac=z w a cI pl n E'
m n

A B C
+&

a c c"m "n"
where HA, OB, and 8C are the internal angles of
the triangle ABC; the definitions of other symbols
correspond to those in Eq. (2.1).

Alternatively, the van der Waals energy can be
expressed in terms of an integral over imaginary
frequency of the product of the dynamic polariz-
abilities of the interacting species. The interac-
tions between two atoms can be written as"

C~~ = (3/m) f n~(iu&) n~(i(o)d&u
0

and the non-additive contribution to the interac-

(2.3)

where l and m represent the quantum numbers of
the excited states of atoms A and B; &~A and
E~B are the corresponding excitation energies;
and ff~ and f~+ are the dipole oscillator strengths
for excitation from the ground states of atoms A
and B. It is understood throughout the paper that
the summation includes the integration over the
continuum. The same theory, applied to the long-
range interactions between three spherically sym-
metric atoms A, B, and C, yields the energy ex-
pression'

EABC=EAB+EBC+ECA
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tions between three atoms as"

n=1 (e ) —(u
n

(2.5)

and the corresponding expressions for nB(u&) and
&C(

The equivalence of Eqs. (2.1) and (2.3) can be
shown by means of the definite integral

ab
7r ~ (a'+x')(b'+x') a+b ' (2.6)

DA (3—/z) f aA(iv)aB(i cu)nC(i+)d(u, (2.4)
0

where aA, nB, and zC are the dynamic polariz-
abilities of atoms A, B, and C, respectively. They
are given by

at which o.a(m) and o.(u) should be equal, we can
make use of the sum rule of the oscillatory
strength

(2.11)

where NA is the number of electrons of atom A.
Putting nA(~- )= oAa(~- ) and using Eq. (2.11),
we find

(2.12)

(If it is assumed that only outermost subshell of
electrons contribute to polarizability, then NA is
the number of electrons in this outer subshell. ")
Substituting Eq. (2.12) and a corresponding ex-
pression for qB into Eq. (2.10), we obtain the
Slater-Kirkwood formula4

Similarly the integral
3 A B

AB 2 (nAO/NA)'"+ (aBO/NB)'" (2.13)

2 dx2 t-~ abc
(a2+ x2) (b2+ x2) (c + x )

= (a+ b+ c)/(a+ b) (b+ c) (c+ a) (2.7)

can be used to equate Eqs. (2.2) and (2.4).
It has been shown that the Pade approximant can

be effectively used to evaluate o (i~). ' Essential-
ly it telescopes the infinite series into finite
terms. The simplest approximation is the one-
term formula

(2.8)

This was first derived from a variational method
which was proved to be equivalent to the perturba-
tion method. " Later it was also derived from the
dynamical polarizability. "

If the two-body coefficients of the homonuclear
interactions are accurately known, the intersec-
tion point of ca(i&a) and ct(i&u) can be so chosen
that na(i, &u) overestimates o, (i~) in certain ranges
of + and underestimates o. (i&a) in other parts of
the spectrum with the net result that na(im) when
substituted into Eq. (2.3) yields the correct value.
(See Fig. 1 and Sec. IV. ) The constant g can be
easily determined for such cases. For two iden-
tical atoms, Eq. (2.10) becomes

where aA' is the static polarizability of atom A
and is given by AA 'A A

(2.14)
0— n

n

(2.9)

It is clear from Eqs. (2.5), (2.8), and (2.9) that

From this and the corresponding expression for
pB, the two-body coefficients of heteronuclear
interactions can be obtained by substituting them
back into Eq. (2.10) which then becomes

AB ~AB A B A B (2.10)

which was originally derived from Eq. (2.1) by the
Unsold closure approximation. ' The empirical
constants qA and qB are interpreted as average
excitation energies. Values ranging from first
excitation energy to ionization energy have been
suggested for them.

If we require that infinity I ~I be the other point

Equation (2.8) is equivalent to the two-point
zeroth-order Pade approximant. " The informa-
tion at the origin has been explicitly utilized.
Various approximate formulae for van der Waals
coefficients correspond to various choices for the
other point (the determination of the constant 7l).

Substituting o,a(v) of Eq. (2.8) for n(v) in Eq.
(2.3) and using Eq. (2.6), we obtain the well-known
London formula

A B AA BB
"B ( A')'CBB'( B')'CAA

(2.15)

IA lB l C (0A
+ 0B + l C)

(A B)( B C)( C

If we interpret gA, gB, and gC as the average
excitation energies of atoms A, B, and C, Eq.
(2.16) can be regarded as the three-body London

This formula has not been explicitly given before
but it was implied in the work of Wilson" who took
NA and NB as adjustable constants in the Slater-
Kirkwood formula.

The three-body interactions can be calculated in
a similar way. Replacing na(i~) for n(i~) in
Eq. (2.4) and using Eq. (2.7) to evaluate the inte-
gral, we obtain

0 A QABC A B C
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(2.18)

the variational method. '
Equation (2.16) can be expressed in still another

form. In Eq. (2.10) CAB is expressed in terms
of gg and gB. With two similar equations for
CBC and CgC& we have three simultaneous equa-
tions which can be solved for gg ~, qB, and gC.
Substituting these values into Eq. (2.16) and re-
arranging them, we obtain

2QAQBQC(QA' Qa' Qc'
(QA+ Qa) (Qa+ Qc) (Qc+ QA)

1 1 1 1
with p +

Aa c Ac a' acA'
and two corresponding expressions for Qa and
Qc. This equation was also given by Midzuno and
Kihara who obtained it from a variational calcula-
tion with a particular type of trial function. '

The coefficient ABC can be expressed in terms
of Dg~~ D BB, and DCCC. For three identical
atoms, Eq. 2.16) becomes

Thus we have

0.6

formula. If Eq. (2.12) is used to determine r)A,
gB, and gC, the result can be regarded as the
generalized Slater-Kirkwood formula for three-
body interactions. However, a much better ap-
proximation can be obtained if two-body coeffi-
cients are known. In that case, substituting Eq.
(2.14) and corresponding expressions for 7)a and
t)C into Eq. (2.16), we obtain

2s„sasc(s„+sa+s )

ABC (SA+Sa) (Sa+S ) (S +SA)
(2.17)

I'IG. 1. The polarizability functions G. (iv) of the
hydrogen atom versus the frequency ~, The solid curve
gives the exact result; the —--—curve is for p equal
to the first excitation energy; the —-—curve is for
g=(nH ); and the dashed curve is for g = fCHH
X (O.H')-'.

A ' AAA A

An identical expression is obtained when we com-
bine Eqs. (2.14) and (2.18). The expressions for
gB and qC can be obtained similarly. Substituting
t)A, qa, and t)C back into Eq. (2.16), we obtain

8 PAPaPc'PA'Pa'Pc'
D = (2.20)ABC 8 (PA + Pa) (Pa+ Pc) (Pc+ PA)

A= AAA a nC

and two corresponding expressions for PB and
PC.

While some formulae derived in this section
have been given before, others are new. The
point we wish to emphasize here is that we can
obtain these formulae very easily from a one-
term approximation of the dynamic polarizability.

The three-body formulae are of special interest
since far less is known in that case as compared
with the two-body interactions. In view of our
interpretation of the approximant, Eqs. (2.17)-
(2.20) are probably more accurate than generally
recognized. (See Sec. IV. )

with 'A='AA B C~ A 3. RELATIONS BET%KEN 0; {iu) AND n{iu)

3 C (2.18)

This equation can be obtained from the work of
Muto~ and of Axilrod, "using certain particular
atomic models. Midzuno and Kihara obtained
this equation by both the perturbation theory and

and similar expressions for SB and SC. For three
identical atoms, Eq. (2.17) reduces to the Midzuno-
Kihar a formula'

Since we are concerned with the dynamic polar-
izability of only one single atom, the superscripts
and subscripts identifying different atoms will be
dropped in this section.

I et us consider the difference function between
n~(i~) and n(iu&) as

g((u) = n (i(u) —n(i(u).

Using Eqs. (2.5), (2.8), and (2.9), we find
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(q' —~ ') f
n n

@2' ~2 g 2(g 2+ ~~n n n
(3.1)

The derivative of the difference function at
(d = (dp is

If o.~(i&@) and o.(ie) are equal at the point ~o, then
from Eq. (3.1) we have

(q' —e ')f
(3.2)

n n '"0
For Eq. (3.2) to hold, there must exist a. k such
that

g- &&) 0, and g- e& 1(0.
Thus Eq. (3.2) can be written as

2{g 2y~ 2 e 2{e 2y~ 2}
PB (3 3)

n=l n n 0 m=k+1 m m 0

I et &u, be the next root of g(&u); then by the
above argument, we have in the neighborhood of z,

g(~)) 0, for &u(m,

(0& for (0+ (d&. (3.9)

If +,)cu„ then in the region between &p and &,
we find g(&u)(0 from (3.8), and g(&u)) 0 according
to (3.9). Since this is impossible, we conclude
that g.(&u) has no root to the right of &u,. Similarly
we can show that g(&u) has no nonzero root to the
lef t of p Hence we establish the following
theorem.

If o~(iu&) and o.(i~) intersect at points other
than the origin they intersect only once," that
is, there exists only one &u, such that &n(iu&, )
= o.(i&@,). Furthermore

o. (i&@))n(i&@), for 0(v(&u, ,

and n (i(o)(o.(i(u), for (o)(u„.a.

dg((o)
cf& q2++ 2 g 2{e 2++ 2}2

e =cop 0 n n n 0

3 jg g2
0 g n n

q2+ ~ 2 q 2(q 2+ ~ 2)2
0 n=i n n 0

'f}2 —E' 2 fBl m (3 4)2{q 2p ~ B}2
mk 1+m m 0

2{e 2+ ~ 2}2
n=1 n n 0

(3.5)

Since &y & &n for n=1, 2 ~ ~ k, it follows that

4. PROPERTIES OF APPROXIMATE FORMULAE

All the approximate formulae of van der Waals
interactions presented in Sec. 2 are derived from
the approximate dynamical polarizability o,~(i~)
[Eq. (2.8)] which can be classified into three
categories depending on the choice of g.

(1) o,~(i+) is everywhere greater than o. (i&u);

(2) n&(i(u) is everywhere smaller than o, (i&u);

(3) o~(i&o) and o.(i+) intersect once.
These situations are illustrated in Fig. 1 for the
interaction between two hydrogen atoms. Obvi-
ously, the van der Waals coefficients derived
from the first category are upper bounds and that
from the second category are lower bounds.
Those in the third category should give fairly ac-
curate results since n~ is so constructed that the
part which overestimates n compensates the part
which underestimates n.

Also because &y(c~ for m=k+1, 4+2 ~ ~ ~, we
have

Tp —e 2 f( 1 Q 87 m
(3 8)2+ 2 e 2 f 2y (g 2

k 0 m=k+ I nz m 0

By Eq. (3.3), the right-band sides of (3.5) and (3.6)
are equal, therefore

2{g 2+ ~ 2}2 e 2{e 2+ ~ 2P)
n=1 n n 0 m=k+1 m m 0

(3.7)
Thus Eq. (3.4) shows that the derivative of g(&u)

at co= cop is negative. This means

g(&u)) 0, for v(&u„
(0, for v) vp. (3.8) C~B (CA~ CBB (4.1)

(A) Two-body Interactions

If the parameter q in the London formula [Eq.
(2.10)] is taken to be the first excitation energy,
then from Eq. (3.1) we see that the difference be-
tween a~ and n is always negative. Thus it is a
lower bound. It is known that even with g taken
to be the ionization energy, the London formula
still underestimates the van der Waals coefficients
for most systems. This only shows that there are
important contributions from the continuum part
of the spectrum.

The Slater-Kirkwood formula corresponds to
the fact that o&(i&@) and n(ie) exhibit the same be-
havior at infinity. Since they only intersect once
and to the left of the intersection point a~(i&a))o. (i&a), then n~(i&a) is always an upper bound of
o. (i&@) for any finite v.

The formula given by Eq. (2.15) belongs to the
third category. It should be considerably more
accurate than the "combining law, ""
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which is actually an upper bound. " In Table I,
Cgp calculated from Eq. (2.15) for some noble
gases are presented. The results agree remark-
ably well with semi-empirical calculations„'-'

(B) Three-body Interactions

f ([o'(i.(u)] —[o.(i(u)] ]d~

= f"[n (i(u) —n(i(u)][o. (i(u)] d(o

+ J ([o (i(u)] —[n(i(u)] )n (i(u)d(u. (4.2)

Since the parameter rj in o~(i&) is so chosen that
it yields the exact two-body coefficient, which
means

f ([n~(ice)] —[n(ice)] )d~=0, (4.8)

it follows that (see Appendix A for proof)

J [a (i(u) —o. (i(u)]o. (i(u)d&u) 0. (4.4)

This relation together with the fact that o.~(i~) is

TABLE I. Values of C&& in atomic units (1a.u. =e ap ),

As discussed in connection with Eq. (2.16), the
generalized three-body London formula and three-
body Slater-Kirkwood formula can be obtained in
a straightforward way. They give lower and up-
per bounds corresponding to the two-body cases.
However, Eqs. (2.17)-(2.20) give much closer
approximations. They belong to the third cate-
gory.

The Midzuno-Kihara formula [Eq. (2.18)] for
three identical atoms has been shown to be a good
approximation for hydrogen' and helium' atoms.
In view of the present derivation, this ought to be
true for all atoms. Furthermore, one can show
that Eq. (2.18) is an upper bound of the coefficient.
The difference between the approximated value
and the exact value can be written as

monotone decreasing can be used to prove (see
Appendix B)

(4.5)J [n (i~) —n(i~)][o. (i(u)] d(u&0.
0

Similarly, because o.'(i&u) is monotonically de-
creasing, one can use Eq. (4.3) to show that (see
Appendix B)

J I, [o (i(u)] —[o.(i~)] ]o.(i~)d~) 0. (4.6)

Therefore from Eqs. (4.2), (4.5), and (4.6), we
have

f [o. (i(u)] d(g) f [o,(i(u)] d(u. (4.7)
0 0

Some values of Dg~~ calculated from Eq. (2.18)
are listed in Table II. As compared with the
semi-empirical estimates, it is seen that Eq.
(2.18) is indeed a very tight upper bound which
overestimates only about three percent in all
cases.

In Table III, some results from Eq. (2.20) are
presented. They are almost identical with the
semi-empirical estimates. This is a consequence
of near proportionality of the dynamic polariz-
abilities of different atoms for all frequencies.
This shows that if the three-body coefficients of
homonuclear interactions are known exactly, Eq.
(2.20) can be used to calculate D~pc to a high de-
gree of accuracy. On the other hand, if only up-
per bounds of three identical atoms are known, the
upper bound of three unlike atoms can be obtained
from Eq. (2.20). If we substitute the values of
D~~, D~IlII, and Dgcg of Eq. (2.18) into Eq.
(2.20), the expression obtained is identical with
Eq. (2.17). Since Eq. (2.18) is an upper bound,
we expect Eq. (2.17) to be an upper bound also.
In Table IV, some coefficients for three unlike
atoms calculated from Eq. (2.17) are listed They.
are indeed upper bounds and, in general, only
about three percent above the semi-empirical es-
timates.

The values calculated from Eq. (2.19), which is
the Midzuno-Kihara formula for three unlike atoms,
are also presented in Table IV. Their accuracy is
slightly worse than that of Eq. (2.17). In addition,
the equation is more difficult to calculate than
Eq. (2.17). Therefore the latter is to be pre-
ferred.

H He
H Ne
H Ar
H Kr
H Xe
Ne He
Ne Ar
Ne
Ne Xe
Ar Kr
Ar Xe
Kr Xe

Semi-
empirical
estimates
{Ref. 22)

2. 81
5.62

19.93
28. 53
41.61
3.01

19.60
27. 26
37.49
92. 10

130.35
185.70

This paper
Eq. (2. 15) .
C~ and e

from Ref. 22

2. 80
5.65

19.96
28. 62
41.66
3. 02

19.64
27. 22
37.41
92. 04

130.09
185.70

Upper bound,
Eq. (4. 1),

from Ref. 22

3.07
6.40

20. 60
29. 10
41.76
3. 03

20. 29
28. 67
41.13
92. 35

132.35
186.99

H H H
He He He
Ne Ne Ne
Ar Ar Ar
Kr Kr Kr
Xe Xe Xe

Semi-empirical
estimate
(Ref. 22)

21.65
1.47

11.84
525. 5

1578.5
5285. 0

Upper bound
Eq. (2. 18).
C~ and e

fr OM Ref. 22

21.94
I.51

12.61
542. 9

1640. 1
5446. 4

TABLE II. Values of D~~~ in atomic units
(1 a.u. = e ap ).
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TABLE GI. Values of D~~c in atomic units
(1 a.u. =e ao).

TABLE IV. Values of D~&~ in atomic units
(1 a.u. =e a08).

H He
8 Ne

H Ar
H Kr
8 Xe
He He

H He Ne
He Ar

H Ne Xe
H Ar Ar
He He Ne

He He Ar
Ne Ne

He Ne Ar
Ne Ne Ar
Ne Ar Ar
Ne Ar Xe
Ar Ar Kr
Ar Kr Kr
Kr Xe Xe

Semi-empirical
estimates
(Ref. 22)

8. 08
15.76
60. 70
88. 9

133.4
3. 25
6.39

23. 74
99.8

175. 2

2. 94
10.27
5. 88

20. 37
40, 53

143. 95
297. 85
756. 5

1091.5
3508. 5

This paper
Zq. (2. 20)

Dg~g and eo
from Ref. 22

8. 06
15.80
60. 77
89. 0

135.0
3.24
6.40

23. 70
99.8

175.5
2. 94

10.23
5. 89

20. 35
40. 54

143.95
297. 84
756. 0

1091.0
3508. 1

H He Xe
H Ne Ne
He He Kr
He He Xe
He Ne Kr
He Ne Xe
He Ar Ar
He Ar Kr
He Ar Xe
He Kr Kr
He Kr Xe
Ne Ne Kr
Ne Ne Xe
Ne Ar Kr
Ne Kr Kr
Ne Kr Xe
Ne Xe Xe
Ar Ar Xe
Ar Kr Xe
Ar Xe Xe

Semi-
empirical
estimates
(Ref. 22)

51.1
12.60
14.60
21.02
28. 91
4j 47
72. 95

104.4
152. 1
149.8
219.35
57.4
82. 0

205. 7
294. 6
430.4
634. 5

1114.0
1614.5
2406. 5

This paper
Eq. (2. 17).
C~ and e'

from Ref. 22

51.99
13.08
14.95
21.38
29. 95
42. 64
74. 95

107.35
155.67
154.26
224. 95
60. 14
85. 18

213.89
306.68
445. 57
654. 26

1148.0
1667.7
2479. 1

Eq. (2. 19).
C~~ and n'
from Ref. 22

52. 09
13.01
15.03
21.55
30.04
42. 84
75. 09

107.70
156.40
154.84
225. 93
60. 21
85. 34

213.93
306. 94
446. 01
654. 97

1149.8
1669.1
2482. 0

APPENDIX A

If f f[n (iu))] —[n(iu))] }d(o =0,
0

then f [n (i(u) —n(i(u)]n (i(u)d(u) 0.

(A.I)

~ n (i(u) —n(ice) l[n (i(u)+ n(i(u)]d(g. (A.5)
0

Combining Eq. (A.3) and the inequalities (A.4) and
(A.5), we find

2 f [n (i(u) —n(i(u)]n (i(u)d(u) 0.

Proof: Since n&(i&a) and n(i&u) are not identical,
in order to satisfy Eq. (A. l), n~(i&@) and n(i&@)
have to intersect, but they intersect only once
(see Sec. 2). If ~, is the point of intersection,

Hence

J [n (i(u) —n(i(u)]n (i(o)d(u) 0. (A.e)

and

n(i&@)( n (i&@), for u& (e„
n(i(u)) n (i(u), for (u)(u, .

(A.2a, )

(A.2b)

APPENDIX B

lf h(&) is positive and monotonically decreasing
and f (~) is such that

Equation (A.l) can be written as

f ' [n (iv)) —n (i(o)] [n (i(u) + n (i(u)] d(g

—f n (i&a) —n(i&a) [n (i~)+ n(i~)]dry=0. (A.3)
(Op

and

f(Q)) (0~ for (d ) (go,

)0, &or (o (cop,

f f(~)d„)0 (B.l)

Because of (A.2a),

2 f '[n (i&a) —n(i~)]n (i&a)d~

)f"'[ '( )-n(' )] [n'(' )+n( )]d, (A.4)

and because of (A.2b),

2 f in (i(u) —n(i(o)ln (i(o)d(u
Q)p

then j f(cu)h((u)d(u) 0.

Proof:

J f((u) h((u)dry

= f ' f((u)h((u)d(u —J I f(co) I h(&u)de .
0 o

Since h(e) is monotonically decreasing,

f"'f((e)h((o)) h(&u, )f 'f(+)d~ (B.2)
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Hence

f I f(&u) I &((u)(h((u, )J I f((u) I d(u .
C00 0

J f(a&)h(&u)dv) h(&uo) J f(&u)dw ~ 0.
0 0

(B.4)
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Doublet Suppression in the Principal Series of Cesium

Reginald J. Exton
National Aeronautics and Space Administration, Langley Research Center, Hampton, Virginia

(Received 5 June 1968)

The suppression of the doublet structure in mixtures of cesium and foreign gases with in-
creasing foreign gas concentration is investigated. The observations are made in absorption
with the foreign gases helium, neon, argon, xenon, and neopentane. The foreign gases in-
vestigated which demonstrate complete suppression, xenon and neopentane, also produce sat-
ellites on both doublet components. The growth of the satellites with increasing foreign gas
concentration is shown to produce anomalously broadened lines, considering that the satellite
and its parent line together constitute the same transition. The anomalous broadening of the
components results in excessive loss of measured absorption as the cent'er of the lines is
depressed and the absorption in the wings predominates. Assuming a minimum detectable
absorptivity of 0.03, the absorption of the weaker components ( P~f2) is seen to be undetectable
for many of the higher doublets, while the strong components ( Psf 2) remain detectable, al-
though considerably broadened.

I. INTRODUCTION

Suppression of the doublet structure in the
principal series of cesium was first observed in
a satellite band study of mixtures of cesium and

foreign gases in absorption. ' More recently, the
phenomenon has been observed in the emission
spectrum of a cesium-xenon discharge. ' The
effect is evidenced by an apparent quenching of
the 'P», components when the cesium vapor is in


