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We have calculated the lattice distortion produced by a single vacancy in Na, K, Rb, and Cs. The cal-
culations have been carried out using the technique of lattice statics, which is based on the Fourier trans-
formation of the direct-space equilibrium equations, making consistent use of discrete lattice theory. Three
distinct types of potential have been used to describe the interactions between the host atoms. The 6rst of
these applies only to sodium, and contains an ion-electron-ion term derived from the measured phonon dis-
persion curves. The second applies only to potassium, and has been similarly obtained. The third is based on
a model pseudopotential and applies to all four metals. Comparison has been made between our displace-
ments due to a single vacancy in Na, using the 6rst of these potentials, and analogous results obtained by a
semidiscrete method in which only the atoms in the first five shells are allowed to relax. The agreement is
reasonable for atoms in the 6rst two neighbor shells about the vacancy, but poor for atoms farther away.
The calculated displacements have been used to calculate the dilatations and relaxation energies associated
with single vacancies in alkali metals. There is a large discrepancy between the magnitudes of these quantities
calculated using the first Na potential and those obtained using the second Na potential, and a similar dis-
crepancy exists between the two sets of K results. We have also used the method of lattice statics to deter-
mine the strain-6eld interaction energies between several types of vacancy pairs in these metals. In every
case we 6nd the next-nearest-neighbor configuration to be the most stable, whereas in the nearest-neighbor
configuration, the two vacancies repel one another. The magnitudes of these binding energies depend strongly
on which model potential is used.

I. INTRODUCTION
'
QO&NT defects can be introduced into a crystal lattice

in two distinct ways; they can be generated by
thermal activation or by fast particle irradia, tion. In
order to understand theoretically the behavior of defects
generated by either method, it is of basic importance to
be able to calculate accurately the formation energies
of the various species of defect produced and also to be
able to calculate the binding energies of various defect
pairs. In the case of simple crystals such as the alkali
metals, which are our concern in the present paper, the
simplest type of defect is the lattice vacancy.

The first stage in understanding the defect properties
of these materials is understanding the properties of a
single isolated vacancy in one of them. To do this, it is
essential that we have some means of calculating pre-
cisely the lattice configuration about such a vacancy.
This is important both in its own right insofar as it plays
an important role in such properties as the electrical
resistivity induced by the defect, and also because it is
essential to know the macroscopic volume change associ-
ated with the formation since this plays a critical role
in determining the actual formation energy of the defect.

To solve these problems one needs first a realistic in-
teratomic potential for the atoms in the metal and
second, given such a potential, a means of calculating
rigorously the minimum energy configuration when a
vacancy is introduced into the lattice.
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A recent calculation of the distortion produced by a
single vacancy in sodium has been performed by Shyu
et at. ' using an interatomic potential due to Cochran. '
The method of computation used was typical of the
class of techniques which might be referred to as
"semidiscrete" methods. This classi6cation we apply
to any approach in which the ions in a predefined region
near the defect, which we will call Region I, are allowed
to relax to new equilibrium positions without further
constraint. The remaining atoms in the lattice are then
either held fixed or forced to relax to positions deter-
mined by continuum elasticity theory. If Region I can
be made large enough, accurate displacements can be
obtained for any host atom. However, the equations
governing the displacements of the atoms of Region I
increase rapidly in number and complexity as the
volume of Region I increases; thus in practice, the size
of this region is rather severely limited.

In a recent paper' we demonstrated the inadequacy
of the "semidiscrete" methods which have been ap-
plied to the problem of the body-centered interstitial
copper atom in a copper lattice, even though the forces
exerted on the host atom by the defect extended only to
nearest neighbors. In the case of the alkali metals such
methods are likely to be even more inapplicable since
in these metals the range of the interatomic potential is
known from neutron scattering to extend at least to
fifth neighbors. It is the purpose of the present work to
determine the distortion produced by a single vacancy
in the alkali metals Na, K, Rb, and Cs, by the consistent
application of discrete lattice theory, without the neces-

' W. M. Shyu, D. Brust, and F. G. Fumi, J. Phys. Chem. Solids
28, 717 (196/).' W. Cochran, Proc. Roy. Soc. (London) A276, 308 (1963).

' J. W. Flacken and J. R. Hardy ito be published).
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sity at any stage of using continuum elasticity. This
same technique of lattice statics also allows us to de-
termine the strain-field interaction energy between pairs
of vacancies.

This method was originally developed by Kanzaki'
and has been further applied and extended by Hardy. '
This approach is based on calculating the real space
displacements of the various atoms in the imperfect
lattice by Fourier transforming these displacements and
first determining their Fourier components from the
Fourier transformed equilibrium equations.

We determine the allowed wave vectors by applying
periodic boundary conditions across a supercell con-
sisting of E primitive unit cells. This is equivalent to
treating a superlatticc of defects, one in each supercell.
The Fourier transformation reduces the 3S)&3Ã array
of linear equations which determines the direct space
displacements to a system of E 3)(3 equations which
are explicitly soluble.

We will first apply the method of lattice statics to
the problem of the single vacancy in Na, using the
force constants derived from the potential of Shyu
et al. ,

' which will allow us to compare our final displace-
ments with theirs. These calculations will be repeated
for Na and extended to K, Rb, and Cs also, using the
force constants calculated by Shyu and Gaspari' de-
rived from the results of Heine and co-workers" on
model pseudopotential form factors. In this work, a
Inodified Hartree dielectric function is used to allow for
the screening of the bare pseudopotential by the con-
duction electrons. Finally, we will repeat our calcula-
tions for K using force constants given by Cowley
e] al. ' obtained by a least-squares fit to their experi-
mental phonon dispersion curves.

In Sec. II we present the basic equations of lattice
statics appropriate to the calculation of the displace-
ment field due to a single defect, as well as the equations
governing the interaction between pairs of defects. In
Sec. III we present detailed calculations of the displace-
ment 6eld about a single vacancy in Na, K, Rb, and
Cs and the analogous calculations of the strain Geld
interaction energies between pairs of vacancies. In Sec.
IV we calculate the dilatations produced by single va-
cancies and their associated relaxation energies. Section
V will be devoted to a comparison of our results with
those of Shyu et al. ' and to a general discussion of all
of our calculations.

II. METHOD OF LATTICE STATICS

The complete derivation of the equations necessary
to the solution of a problem by the method of lattice

4 H. Kanzaki, J. Phys. Chem. Solids 2, 24 (195/).' J. R. Hardy, J. Phys. Chem. Solids 15, 39 (1960).' W. M. Shyu and G. D. Gaspari, Phys. Rev. 163, 667 (1967}.
7 V. Heine and I. Abarenkov, Phil. Mag. 9, 45j. (j.964).' A. O. E. Anisnalu and V. Heine, Phil. Mag. 12, 1249 (1965l.'R. A. Covrley, A. D. B. Woods, and G. Dolling, Phys. Rev.

150, 487 (I966).

TABLE I. Force constant matrix forms for bcc metals.
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where q is an allowed wave vector in the first Brillouin
zone and t'~ ~ ls thc posltlon vector of thc lth atom from
the origin in direct space in the undistorted lattice. The
parameter n denotes the Cartesian component of (' or
Q& along one of the three orthogonal (100) directions in
the cubic crystal and may therefore take on values 1, 2,
3. The value of Q& is found from the equation

where V—
& is the Fourier-transformed dynamical matrix

and F& is the generalized force array associated with the
defect. In terms of direct space quantities, these are

statics has been given. We will not repeat this discus-
sion in detail, but will simply present a brief outline of
the principles upon which the method is based, along
with the equations necessary to perform the present
calculations.

I et ay, a2, and 83 be the basis vectors of an infinite
lattice which we suppose to be built up from equivalent
volumes containing Ã unit cells. The boundaries of
these volumes, called supercells, may be taken as beingI times thc basic vcctols wlicI'c I =S.

At the center of each supercell we imagine a defect to
bc introduced. Symmetry will then rcquilc that the dls-
placemcnts of the atoms around any one defect will be
identical to those of the corresponding atoms about any
other defect. Hence we need only treat the atoms of a
single supercell in order to 6nd the displacement of any
other atom in the crystal.

The solution of the displacement problem is obtained
by expressing the displacement of the 1th atom from
the origin in terms of normal coordinates Q» using the
Fourier series
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TABLE II. Force constants for Na, K, Rb, Cs, used for displacement and interaction energy calculations.

Force
constant
(dyn/cm)

CX1

P1

Ay,

P2

CX3

pg

V3

A4

p4

p4

84

Na(1)~
a=2.14 L

1123.30
1290.90
445.50
94.60

—45.40
—9.30
—36.10

55.50
3.50

19.5
6.5

14.50
14.90

Na(2)b
a=2.14 L

1656.08
2099.44
1431.53

64.48
—128.25

15.74
—143.99

3012
2.64
0.18
0,06
8.75

10.57

Metal

K(1)
a=2.665 i.

786
895
432
29

—41
12

—54
2
4
1.8
0.6
6

K(2)b
a=2.665 L

903.67
1280.09
1181.10
—29.48
—70.70

14.30
—85.00
—26.74
—3.58
—8.70
—2.90

3015
—1.68

Rbb
a=2.81 A

692.78
1039.38
1072.97
—50.71
—52.61

12.85
—65.46
—28.41
—3.068
—9.51
—3.17
—4.87
—3.95

Csb
a=3.025 A.

563.41
862.39
933.14
—48.14
—44.365

11.33
—55.695
—25.93

2 r 72
—8.70
—2.901
—5.047
—4.283

Reference 1. b Reference 6. e Reference 7.

dehned by
I' q=~ I' 'e-'q""a=~ a (3)

and
V —q —P V' ol'eiq r't&'&

71
(4)

Once Fq and V q have been calculated from Eqs. (3)
and (4) we can compute the Fourier amplitudes Qq

from Eq. (2) and perform the summation in Eq. (1) to
obtain the direct space displacements. Similarly, it has
been shown" that the strain-Geld interaction energy be-
tween a pair of defects is given by

1
F=——Q F q(V q) 'Fq cos(41 R),

E q

in which R is the distance between defect sites in the
perfect lattice.

Since we are considering only vacancies in the present
work, we may construct the dynamical matrix V q and
the force array Fq without using an explicit expression
for the interatomic potential. As we will show shortly,
it will be sufBcient to know the force constants for the

perfect lattice subject to the assumption that these are
derivable from some central pairwise potential, as is
the case for each of the potentials used in the numerical

calculations. Ke shall express the elements of the matrix
V q in terms of the elements of the direct space inter-
atomic force constant matrices which are presented in

Table I.%e assume in all cases that the atoms interact
with each other as far as the 6fth-neighbor positions.
It has been shown' that this assumption is adequate for

Na, K, Rb, and Cs. For Li, however, a much longer

range potential is needed, extending as far as the tenth-

neighbor shell. Because of the additional computational
difhculties which this long-range potentia1 involves, we

will not include Li in the present calculations.

"J,R. Hardy and R. Bullough, Phil. Mag. 15, 237 (1967).

Ke shall denote the magnitude of the force exerted by
a single vacancy on the members of its nth-neighbor
shell as F(n) where, as we have indicated, n may range
from j. through 5.

With the notation we have outlined above, the com-
ponents of the V q matrix may be expressed as

Vll q ——4P3+ 2n3 —2P3{cos2agq+ cos2ag }—2nl cos2ugl

Snl{cosglu cosg2u cosg3a 1}+Sn3+4P3
—4n3 cos2gla, (cos2glu+cos2gla) —4P3 cos2gla cos2gla

+8n4 —8n4 cos3gla cosgla cosgla+16P4

8P4 cosglu(cosgla cos3glu+cosgla cos3g3a)
—8n3(cos2gla cos2gla cos2gqa —1) (6)

and

Vll q—-8Pl singla singla cosgla++3 sin2gla sin2g, a

+Sy4(sin3glu cosgqa singla+sin3gla cosgla singla)
—884(cos3g3u singlu sing3a)

+SP3 sin2gla sin2gqa cos2g3a. (/)

The remaining elements of Vq can be obtained by
cyclic permutation of the q vector components. The
Fq array can be shown to be given by

Flq ———[SiF(1)/v3j singla{ cosgla cosgla}

4iF(2) singla—cosglu

2V2iF (3) sin—2gla(cos2g3u+ cos2g3a)

[24iF(4—)/+115 sin3gla cosgla cosg, a
—[8iF(4)/+11j singla

g {cosgqa cos3ag3+ cosgqa cos3gqa}
—[SiF(5)/V3 j sin2gla{cos2gla cos2gla}, (8)

and two similar equations for Ii2q and Ii3q can be ob-
tained by permuting the components of q.

All that remains to be done is to find appropriate ex-

pressions for the forces F(n) in terms of the direct
space-force constants. In practice it is easiest to work
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TAssE III. Displacement and interaction energy results for Na(1).'

Neighbor
(I-i,1-2,1-s)

iii
200
220
222
311
331
333
400
420
422
440
442
444
511
531
533
551
555
600
620
622
640

Interaction
energy in eV

between (0,0,0)
and (I.g,Lg,Ls)

vacancies

0.006282
—0.01502

0.01471
0.007986

-0.01262
0.007007
0.004059
0.003882

—0.003006
—0.004393

0.002631
0.002959
0.002311

—0.0001439
—0.001022
-0.001809

0.001442
0.001288

—0.0005302
—0.0002979
-0.0002615
—0.0004292

-0.02935
0.03180

—0.009550
—0.01434

0.004580
—0.004977
-0.007660

0.001954
0.0005935
0.001156

-0.003064
—0.002949
-0.004261

0.001027
—0.00006627
—0.0001472
—0.001968
-0.002492

0.0008190
0.0005104
0.0004182

—0.0002477

—0.02935
0.0

-0.009550
—0.01434

0.001854
—0.004977
—0.007660

0.0
0.0002243

—0.0003015
—0.003064
-0.002949
-0.004261
-0.00001615
-0.0002428
—0.0008395
-0.001968
—0.002492

0.0
0.00009950

—0.0001857
—0.0003623

—0.02935
0.0
D.O

—0.01434
0.001854

—0.000528
—0.007660

0.0
0.0

—0.0003015
0.0

—0.0006096
-0.004261
—0.00001615
—0.0001838
—0,0008395
—0.0002138
-0.002492

0.0
0.0

—0.0001857
0.0

Displacement components of neighbors
around a vacancy (units of 2a)

1 fs

It' I (I~'.+I-ss+I ss}
+ indicates

outward
relaxatj, on—indicates

inward
relaxation

—0.1525
+0.1272
—0.1080
—0.2980
+0.05805
—0.1341
—0.3582
+0.03127
+0.01269
+0.02957
—0.1387
—0.1517
—0.3542
+0,02773
—0.01091
—0.05144
—0.1424
+0.3237
+0.02949
+0.02080
+0.02173
-0.02282

& Using Ref. 1 force constants.

tloll of thc nth-neighbor sllcll. Wc can avoid any need
to know f(r) explicitly by linearizing the F(n) m
lattice displacements. Thus

with radial and tangential force constants A(n) and
B(n) defined by

2 (n) = 2(8'P/e)rs) „I„)——2it "(n),
B(n) = 2((1/r) (e)$/Br)) „&„I= L2/r(n) jest '(n),

(9)
F(n) =0'(n)+f (n)0"(n) = lr(n)B(n)+f(n) l~(n), (12)

2 (1)= 2(al+2pl)
A (2) =2(as)

A (3)= 2(as+ps)
2 (4)= (6a4+4y4)/3

A(5) = 2(as+2Ps)

B(1)=—2(pl —al)

B(2)=2P,
B(3)= 2Ps

B(4)= 2(a4—3y4)

B(5)= —2(ps- as) .
In terms of the notation just developed

F(n) =e'(lr(n)+(( ) I), (11)

where the derivative iP' is evaluated at the relaxed posi-

where P(r) is the interatomic potential acting between
host atoms, so that —iP(r) is the potential acting be-
tween a vacancy and the host atoms. The term r(n) is
the radius of the eth-neighbor shell in direct space, in
the perfect lattice.

Gill method of dctcl'Inllllllg thc fol'ccs F(n) lllakcs lt
unnecessary to know g(r) explicitly, but only requires
a knowledge of the direct-space force constants shown
in Table I. Then A(n) and B(n) are related to these
constants by the following equations:

in which f(n) is the magnitude of the displacements of
the atoms in the nth shell. These may be expressed as
follows:

f'(n) =P p(n, rn)F(ns).

The coefllcients p(n, rn) are the elements of a response
matrix obtained. by the inversion of the Fourier series

(1), i.e., p(n, ns) is the magnitude of the displacement of
an atom in the nth shell when the mth force is unity and
all other forces are zero. Since we are allowing for up to
6fth-neighbor interactions, m and n range from 1
through 5. Once the p(n, ns) are known, one may solve
Eqs. (12) and (13) for the displacernents f(n) which
may then be used in (12) to find the forces F(n). Using
these values for the forces F(n), one can compute the
corresponding generalized forces Fs from Eq. (8).

Since the displacements of the fourth- and 6fth-
neighbor shells are not expected to be large, we wiH

approximate the forces F(4) and F(5) by their values at
the undisplaced positions.
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TABLE IV. Displacement and interaction energy results for Na(2}.'

Neighbor
(L,„I.„L,)

iil
200
220
222
311
331
333
400
420
422
440
442
444
511
531
533
551
555
600
620
622
640

Interaction
energy in eV

between (0,0,0)
and (I. ,I,,I.,)

vacancies

0.01535—0.09935
0.07420
0.04176—0.05420
0.02778
0.02614
0.01005—0.007106—0.02306
0.01110
0.01231—0.01544—0.002690—0.003057—0.01025
0.006827
0.008915—0.002725—0.001129—0.002177—0.001862

—0.05536
0.05402—0.01596—0.02992
0.007334—0.009074—0.01711
0.006850
0.0006615
0.001964—0.006183—0.005769—0.01007
0.002659—0.0002236—0,0003968—0.004180—0.006149
0.002216
0.001133
0.001287—0.0005497

—0.05536
0.0—0.01596—0.02992
0.002605—0.009074—0.01711
0.0
0.0002/65—0.001135—0.006183—0.005769—0.01007
0.0001093—0.0004190—0.002076—0.004180—0,006149
0.0
0.0003535—0.0003556—0.0006650

—0.05536
0.0
0.0—0.02992
0.002605—0.0003475—0.01711
0.0
0.0—0.001135
0.0—0,0007287—0.01007
0.0001093—0.0002624—0.002076—0.0003472—0.006149
0.0
0.0—0.0003556
0.0

Displacement components of neighbors
around a vacancy (units of 2a)

gs

~ l ) Vn'+I-a'+~a'1
+ indicates

outward
relaxation—indicates

inward
relaxation

—0.2877
+0,2161—0.1806—0.6219
+0.09029—0.2440—0.8002
+0.1096
+0.01435
+0.06088—0.2798—0.2949—0.8369
+0.07191—0.01899—0.1274—0.3020—0.7988
+0.07979
+0.04746
+0.06079—0.04487

a Using Ref. 6 force constants.

Thus,

while

F(4)= (+11)a ',B(4), -
F(5)= (/12) a ', B(5), -

P(1)=V3-', aB(1)+f(1) —',A(1),
F(2) =aB(2)+f'(2) —',A(2),

P(3)=%2aB(3)+f(3) —,'A (3),
(14)

ponents of displacement can be calculated from Eq.
(1). Finally, the strain-field interaction energy can be
computed using (5) with the appropriate values of the
generalized force array F'i calculated from Eq. (3).

III. NUMERICAL CALCULATIONS
AND RESULTS

where a is half the cubic unit cell side.
Therefore, substituting from Eq. (14) into Eq. (12),

we obtain

f (1)=p(1, 1)f(1) lA(1)
+p(1)2)t (2) ', A(2)+p(1—,3)t (3) ~A(3)

+p(1, 1)v3 —,'aB(1)+p(1,2)a 8(2)+p(1,3)v2aB(3)
+p(1,4) (+11)-',aB(4)+p(1,5) (+12)-,'aB(5),

f(2) =p(2 1)f(1) kA(1)+p(2 2)t (2) kA(2)

+p(2, 3)f (3) —,'A (3)+p(2, 1)v3 ~~aB(1)

+p(2, 2)aB(2)+p(2, 3)%2aB(3) (15)
+p(2,4)(&11)kaB(4)+p(2,5)(v'12) QaB(5)

f(3)=P(3,1) lf(1)A(1)+P(3,2) kt (2)A(2)
+p(3,3) —',f(3)A (3)+p(3, 1)V3i~aB(1)+p(3, 2)aB(2)
+p(3,3)v2aB(3)+p(3,4) (+11) -', aB(4)

+p(3,5)(+12) -', aB(5) .
Once the displacements f(n) and the forces P(n) are

known, the Fourier amplitudes of the displacements can
be calculated from Eq. (2). Then the direct-space com-

The present work is based upon interatomic potentials
from three sources. The first potential used was that for
Na metal given by Shyu et at, ' and derived from the
work of Cochran. ' It consists of an overlap-repulsive
term, a Coulombic ion-ion interaction, and an ion-
electron-ion interaction which has been obtained from
phonon dispersion curves. The second potential which
we have used in our work is presented by Cowley et al. '
and is obtained by a least-squares fitting to the phonon
dispersion curves measured at O'K. The third set of
potentials is the result of theoretical calculations by
Shyu and Gaspari carried out for Li, Na, K, Rb, and
Cs. As stated earlier, we wi11 not make use of their Li
potential because its greater range increases the com-

plexity of the problem beyond the scope of our present
calculations.

These authors derived their potentials from pseudo-
potential form factors' ' and a modified Hartree dielec-
tric function. Since we will be treating Na and K using
two distinct potentials for each metal, we will, for the
sake of brevity, refer to the work using the potential of
Ref. 1 as Na(1) and that using the potential of Ref. 6 as

Na(2). Similarly, the K results obtained using the po-
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TAnLE V. Displacement and interaction energy results for K(1).'

Neighbor
(I„I„I.,)

iii
200
220
222
311
331
J233
400
420
422
440
442
444
511
531
533
551
555
600
620
622
640

Interaction
energy in eV

between (0,0,0)
and (L&,L2,Ls)

vacancies

0.007347—0.01833
0.01068
0.007609—0.008440
0.002673
0.004180
0.00162/—0.0001429—0.002843
0.001324
0.001286
0.002193—0.0005115—0.0003331—0.001164
0.0008796
0.001174—0.0005711—0.0001328—0.0002636—0.0002645

—0.02551
0.02281—0.005896—0.01260
0.002400—0.003/83—0,006968
0.002072
0.0001858
0.0007030—0.002671—0.002461—0.004010
0.0008795—0.0001071—0.0002461—0.001787—0.002423
0.0008520
0.0004091
0.0003890—0.0002238

—0.02551
0.0—0.005896—0.01260
0.0007299—0.003783—0.006968
0.0
0.00001645—0.0007538—0.002671—0.002461—0.004010—0.0001315—0.0002534—0.0009817—0.001787—0.002423
0.0
0.00003843—0.0002758—0.0003387

—0.02551
0.0
0.0—0.01260
0.0007299
0.00004181—0.006968
0.0
0.0—0.0007538
0.0—0.0003672—0.004010—0.0001315—0.0001537—0.0009817—0.0001904—0.002423
0.0
0.0—0.0002758
0.0

Displacement components of neighbors
around a vacancy (units of 2u)

a

~ 1 ~
(LrmyL, '+L,')
+ indicates

outward
relaxation—indicates

inward
relaxation

—0.1326
+0.09122—0.06671—0.2619
+0.02874—0.1017—0.3259
+0.03316
+0.003730—0.03065—0.1209—0.1260—0.3334
+0.02427—0.01103—0.06063—0.1293—0.3147
+0.03067
+0.01643
+0.02424—0.02111

a Using Ref. 7 force constants.

tential of Ref. 9 will be called K(1) and the results ob-
tained using the potential of Ref. 6 as K(2). The force
constants derived from the various potentials for all of
the cases we shall consider are shown in Table II.

In all of our calculations, we have used a sample of
64 000 evenly spaced wave vectors in the erst Brillouin
zone. Our previous work on interstitial atoms in Cu
leads us to believe this sample density is adequate to
provide reliable displacement values out as far as (5,4, 1)
and associated values of the strain-field interaction en-

ergy out at least as far as (4,4,2).
The computations were all carried out on a CD C 3600

computer, and the resultant sets of displacements and
defect interaction energies are presented in Tables
III—VIII.

AV= G/X, (16)

in which E is the bulk modulus and 6 is the strength
parameter which has been shown" to be given by

(17)

"J.D; Eshelby, Solid State Phys. 3, 79 (1956)."J.R. Hardy, J. Phys. Chem. Solids (to be published).

IV. CALCULATION OF DILATATIONS AND
RELAXATION ENERGIES

We calculate the dilatation according to the expres-
sion originally due to Kshelby, "

In this expression, r ' is the n component of the direct
space inter-defect spacing vector.

It is also of interest to determine the relaxation energy
de6ned as the difference between the energy of the im-
perfect crystal before and after the atoms are allowed
to relax to their equilibrium positions. This can be ex-
pressed as

E&=ll'(ir(l)+((1) i)+ ', 1 Vf l((-ir(l) i—), (18)

where V is the force constant matrix for the metal in
direct space. It can be shown that Eq. (18) reduces to

+~=s Zt '~ 'lo

provided one retains terms only up to second order in
i. The subscript 0 indicates that the forces are to be
evaluated a,t the unrelaxed ion positions. The results of
the calculations using Eqs. (16), (17), and (19) are
shown in Table IX, where hV is the volume change due
to taking one atom out of the crystal. Formation
volumes are those shown in Table IX plus one a,tomic
volume.

V. DISCUSSION

One of the important aspects of our calculations is
that we may compare our results directly with those of
Shyu et al. ' These authors allowed the atoms in the first
five shells around the vacancy to relax to new equi-
librium positions under the influence of the forces
arising from a single vacancy. The forces contributed
from atoms in shells six through 18, i.e., those atoms
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TARSI,E VI. Displacement and interaction energy results for K4'2).'

Neighbor
(Lg,L2,LI)

111
200
220
222
311
331
333
400
420
422
440
442

51i
531
533
551
555
600
620
622
640

Interaction
energy in eV

between (0,0,0)
and (I.i,Ir,I s)

vacancies

0.01820
-0.2271

0.1642
0.08182—0.1220
0.06419
0.05641
0.03249—0.01371—0.05564
0.02389
0.02860
0.03572

-0.006659—0.005499—0.02660
0.01551
0.02162—0.003343—0.002266—0.005262—0.004214

—0.09013
0.09355—0.02678—0.05186
0.01200—0.01532—0.03094
0.01531
0.001003
0.003270—0.01080—0.01005—0.01888
0.05452—0.0003738—0.0006812—0,007550—0.01188
0.00455
0.002211
0.002904—0.0009978

—0.09013
0.0

-0.026/8—0.05186
0.005335—0.01532—0.03094
0.0
0.0004748—0.001434—0.01080—0.01005—0.01888
0.0008155—0.0004552—0.003463—0.007550—0.01188
0.0
0.0009362—0.0001848—0.0008832

—0.09013
0.0
0.0—0.05186
0.005335—0.0007852—0.03094
0,0
0.0—0.001434
0.0—0.001026—0.01888
0.0008155—0.0003732—0.003463—0.0004523—0.01188
0.0
0.0—0.0001848
0.0

Displacement components of neighbors
around a vacancy (unita of 2a)

fs

Ii I
(I-i'+I-s'+I-r'}
+ indicates

outward
relaxation—indicates

lllward
relaxation

—0.4684
+0.3742—0.3030—1.078
+0.1559—0.4118—1.447
+0.2450
+0.02220
+0.09237—0.4888—0.5128—1.569
+0.1505—0.02418—0.2126—0.5450—1.5435
+0.1638
+0.09603
+0.1283—0.06929

t Using Ref. 6 force constants.

within the range of the potential bonds of atoms in the

6fth shell, were taken into account but atoms beyond

the 6fth shell were not allowed to move from their

perfect lattice positions. The displacements were ob-

tained using an iterative procedure.

The results of the Na(1) displacements o'btained in
this fashion are compared with the analogous results of
lattice statics in Table X.

It is apparent from Table X that the two methods
give comparable results but the discrepancies that exist,

Tmx, E VII. Displacement and interaction energy results for Rb.fs

Neighbor
(L„L2,L3}

111
200
220
222
311
331
333
400
420
422
440
442
444
511
531
533
551
555
600
620
622
640

Interaction
energy in eV

between (0,0,0)
and (I.r,I.r,I.r)

vacancies

0,05047—0.2821
0.2243
0.09942

-0.1697
0.09037
0.07097
0.06430—0.01975—0.0787G
0.02939
0.04008
0.04688—0.007547—0.006631

-0.03904
0.01970
0.02898
0.0002282—0.003138—0.006180—0.005879

—0.1117
0.1259—0.03352-0.06509
0.01553—0.01857—0.03919
0.02140
0.001033
0.00445G—0.01317—0.01212—0.02402
0.007120-0.0004991—0.0005821—0.009241—0.01513
0.005874
0.002702
0.003881

-0.001226

—0.1117
0.0—0.03352—0.06509
0.008576—0.01857—0.03919
0.0
0.0005808—0.0006400—0.01317—0.01212—0.02402
0.001598—0.0003140—0.003717—0.009241—0.01513
0.0
0.001270
0.0002158-0.0008727

-0.1117
0.0
0.0-0.06509
0.008576—0.001147-0.03919
0.0
0.0—0.00054+)
0.0—0.001023—0.02402
0.001598—0.0004939—0.003717—0.0005027—0.01513
0.0
0.0
0.0002158
0.0

Displacement components of neighbors
around a vacancy (units of 2a)

&3

If'I(Ir'+I2'+Is')
+ indicates

outward
relaxation—indicates

inward
relaxation

—0.5801
+0.5035
-0.3792-1.353
+0.2167—0.4995—1.833
+0.3424
+0.02370
+0.1090—0,5958—0.6182—1.997
+0.2017—0.02692—0.2274—0.6670—1.9656
+0.2115
+0.1194
+0.1713—0.07826

~ Us&g Ref. 6 force constants.
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YAM,z WIG. Displacement and interaction energy results for Cs.'

Neighbor
(Li,LI,Ls)

111
200
220
222
311
331
333
400
420
422
440
442
444
511
531
533
551
555
600
620
622
640

Interaction
energy in eV

between (0,0,0)
and (Lg,Ls,Ls)

vacancies

0.07847—0.3015
0.2505
0.1083—0.1939
0.1024
0.07/53
0.08562

-0.02319—0.08928
0.03013
0.04489
0.05198

-0.007998—0.006523
-0.04470

0.02048
0.03222
0.003869—0.004142—0.006496—0.006217

—0.1202
0.1409—0.03601

-0.06998
0.01652—0,01933

-0.04203
0.02435
0.0006899
0.004519—0,01357

-0.01250—0.02562
0.00/751—0.0007836—0.0008001—0.009496—0.01603
0.006269
0.002802
0.004173-0.001437

—0.1202
0.0—0.03601—0.06998
0.01016—0.01933—0.04203
0.0
0.0001756-0.0001448—0.01357—0.01250

-0.02562
0.002086-0.0004776—0.003715-0.009496—0.01603
0.0
0.001303
0.0005176—0.0009823

—0.1202
0.0
0.0—0.06998
0.01016—0.001511—0.04203
0.0
0.0—0.0001448
0.0—0.001078—0.02562
0.002086-0.0006252—0.003715—0.0005219—0.01603
0.0
0.0
0.0005176
0.0

Displacement components of neighbors
around a vacancy (units of 2o)

$2 gs

I f I (L2+Lss+Ls')
+ lndlcates

outward
relaxation—indicates

Inward
relaxation

—0.6248
+0.5637—0.4074—1.4545
+0.2409—0.5202-1.965
+0.3896
+0.01424
+0.1086—0.6140—0.63/6—2.130
+0.2239—0.03886-0.2285—0.6854—2.0827
+0.2293
+0.1236
+0.1864—0.0905

a Using Ref. 6 force constants.

particularly in the case of the erst two neighbors, are
somewhat disturbing. In vievr of the magnitudes of the
displacements, it does not seem to us that (except pos-
sibly in the case of the 6rst neighbors) the anharmonic
corrections will be very significant; thus we are unable
to account for this discrepancy. However, given that
anharmonic effects are indeed unimportant, the method
of lattice statics is in principal exact and its results are
thus more reliable than those of a truncated iterative
procedure.

No similar comparison can be made for the displace-
ments calculated using the force constants given in
Refs. 6 and 7 since no displacement calculations were

performed by these authors. Moreover, since none of
the metals considered is isotropic, it is not possible to
compare the displacements predicted by lattice statics
with those required by isotropic elasticity. However, it
is to be expected that in any given crystallographic di-

rection, 4' the displacements of atoms far from the defect
will fall o6 inversely as the square of their distance from
the defect. The direction along which we have results
for the greatest number of lattice sites is the (111)
direction and we indeed 6nd that for each of the cases

TABLE IX. Dilatations and relaxation energies associated with
a single vacancy in Na, K, Rb, and Cs. {~V is given in atomic
volumes, Eg in";..eV.)

Na(2) K(i) K(2) Rb Cs

~y 0 696 1.82 —0.322 —1.61 —1.933 —2.12
p& 0 045 0 177 —0.031 —0.339 —0.409 —0.435

treated, the values of 1g' for (3,3,3), (4,4,4) and (5 g 5)
are resonably close to each other, although not
enough to indicate that the true limiting value has been
reached. "' lt is of interest that, regardless of the
potential used, the values of fRs are much larger along
(111)directions than along any other class of directions.

The present calculated displacements a.bout va-
cancies in the bcc alkali metals are considerably larger
than those calculated by the same method for vacancies
in the fcc metals, Cu and Al. The much larger displace-
ments found in the cases of Na(2) and K(2) relative to
those obtained for Na(1) and K(1) can be attributed to
the steeper potentials of Ref. 6 at erst-, second-, and
third-neighbor sites.

Using the Method of Long Waves, we have calcu-
lated the theoretical values of Ctr and C44 for Na(1)
and Na(2) and they are essentially the same for both

TAnxz X. Comparison of Na(l) dispiacements
(in % of normal separation distance).

Neighbor

111
200
220
311
222

Reference 1

—4.77~
+2.66b—0.62
+0.44—0.86

Present work

—5.86
+3.18—0.95
+0.32—1.43

&- sign indicates inward displacement.b+ sign indicates outward displacement.

'2 Footnote added ie proof. Subsequent work has shown that this
is not the true asymptotic limit, which is only reached at a much
greater distance from the defect.
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models. Thus we can infer that the strength of the va-

cancy is sensitive to the assumed interatomic potential
in a manner very different from the way in which the
dynamical matrix depends on this potential. In par-
ticular, it appears that the strength of the vacancy is
very strongly dependent on the form of the interatomic
potential at the first- and second-neighbor positions.

It is also apparent that in the cases of Rb and Cs, the
displacement of close neighbors of the vacancy are very

large, as are the corresponding dilatations and relaxa-

tion energies. Thus it is likely that anharmonic eBects
will be significant for the closest neighbors to the defect.
At a later stage we hope to investigate the possibility

of including such effects. This does not seem to us to be

profitable until the interatomic potential and its
higher derivatives are more reliably defined.

As regards the calculated strain-field interaction en-

ergies, the most interesting result is certainly that the

most stable configuration for the di-vacancy turns out

to be the second-nearest-neighbor defect configuration.

This conclusion is valid for all models and for all four

metals, although the actual magnitudes of the interac-

tion energies vary widely.

Finally, it should be noted that the value of the re-

laxation energy calculated for Xa(1) in the present work

is only about two-thirds of the value of —0.071 eV

reported in Ref. 1. As a check on the validity of Eq.
(19) we have calculated the relaxation energy of Na

using the Morse potential and displacements due to
Girifalco and Weizer" and have obtained a value quite

close to that calculated by Wynblatt and Gjostein"
using the same potential. However, if we use the dis-

placements given by Shyu et a/. ' instead of our displace-

ments in Eq. (19) we obtain a value of the relaxa, tion

energy which is almost exactly half that quoted by these

'3 L. A. Girifalco and V. G. Weizer, J. Phys. Chem. Solids 12,
260 (1960).

'4 P. Wynblatt and W. A. Gjostein, J. Phys. Chem. Solids 28,
2108 (1967).

authors. This discrepancy could be accounted for if these
authors neglected to perform the division by two indi-
cated in Eq. (9) of their paper.

Vt. SUMMARY

We have used the method of lattice statics to calcu-
late the lattice distortion produced by single vacancies
in Na, K, Rb, and Cs, and have used the same technique
to find the strain-Geld interaction energies between
various divacancies in these metals. We have used the
displacements so obtained to find the dilatations and
relaxation energies associated with single vacancies in

each case. These calculations have been done using three
distinct model interatomic potentials. "'

We find a large variation in the distortions and relaxa-
tion energies associated with the potentials of Refs. 1
and 7 as compared with those resulting from the model
potentials of Ref. 6. This would appear to imply that at
least one of the two alternative potentials in each of the
cases of Na and K is unphysical.

The validity of the results in the present paper is
limited by the accuracy of the potentials presently
available. This fact does not detract in any way from
the validity, accuracy and usefulness of the method of
lattice statics upon which we have based all of our com-

putations and which provides a logical and practical
approach to the calculation of distortions produced by
single defects under any assumed potential. When the
true interatomic potentials in the alkali metals are
reliably determined, a repetition of the present calcula-
tions can be performed and will yield correspondingly
accurate displacements, interaction energies, relaxation
energies, and dilatations.

Essentially the use of lattice statics removes any com-

putational uncertainty from these quantities, and the
residual uncertainty, at present large, is entirely due to
our present imperfect knowledge of the proper inter-
atomic potentials to use.


