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Comparison of (C25) and (C30) gives

2'!
d (n.o.) = — (4srP f')'"Q, (X,X'). (C31)

Our result can be written

s (X)
It-(n.o.)= —1+3ys Q rt»'. (C34)

g) res+72

Insertion of (C31) into (C9) yields Now we wish to express this in terms of Xp=|Ipr/to,
instead of X. Using st=1—8s and s (X)=s (Xp)—Xps '(X) ra8s, we obtain a "nonoscillating" con-
tribution

8 8 Qf 2

Ir"= —6'—— rt'" 2 — Qa(X,X')
I g-p" (C32)

pr' 8$ 8$' ~ as+y'
s.(xp)We introduce the Cohen-Harrison-Harrison" nota- I,**(„o)=—1+sobs+3&s

tion ~ ~s+7s

s.(X)=

and note that

P '(X sin8) j' sin'8d8, (C33) 00 8
3s +Xp- s(Xp) . (C35)a=~ crs+p' 8Xp

2 P-'(X)3'=s Combination of (C22) and (C35) gives Eq. (3.45) of
the text.
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W'e consider a noninteracting electron gas constrained in one dimension by a harmonic-oscillator potential
as a model of a metallic Glm with specular surfaces. The diamagnetic response of this system to an applied
Geld is investigated to study the effect of sample size on both the de Haas-van Alphen (dHvA) oscillations
and the steady susceptibility. When the diameters of the dominant cyclotron orbits become comparable to
the effective sample "thickness, "we Gnd large departures from the familiar II ' law for the dHvA oscilla-
tions. However, the steady part of the susceptibility appears to remain independent of size.

I. INTRODUCTION

'HIS paper is devoted to an investigation of a model
for size eQ'ects on the diamagnetic susceptibility

of a degenerate free-electron gas. In particular, we study
the 61m geometry shown in Fig. 1, in which the mag-
netic 6eld is taken to be parallel to the surface of a 61m
of thickness L. The problem is to elucidate the correc-
tions to both (a) the steady part of the diamagnetic
susceptibility an.d (b) the oscillatory de Haas —van
Alphen (dHvA) structure which arise when the ratio

1 = 2R,/L is nonzero. (R, is the cyclotron radius of an
electron at the Fermi surface travelling in a plane per-
pendicular to the applied 6eld. ) We shall restrict our

*Work supported in part by the National Science Foundation
and the„U. S. OKce of Naval Research Contract No. 233(88).

attention to a model (described below) which is es-
sentially equivalent to specular re6ection from the
surfaces of the sample. This assumption raises the
question of the applicability of such a calculation to real
systems, where diffuse reQection will certainly play a
role. However, recent experiments by Koch et al. ' indi-
cate that a specular boundary may be obtainable, at
least for certain groups of electrons. The physical effect
of the boundaries is to lift the degeneracy associated
with a particular Landau level2 which arises from
cyclotron orbits centered at different positions across

' F. Koch (private communication) has shorn that in several
experiments on the transport properties of metals such as Sn and
In the results are consistent only with highly specular surface
scattering.

~ C. Kittel, Qeantlm Theory of Solids (John Wiley R Sons, Inc. ,
New York, 1963).
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the thickness of the film. As we shall see, when the
parameter i &1, the dHvA structure deviates appre-
ciably from the bulk result of periodicity in H '. On the
other hand, the steady (nonoscillatory) part of the
susceptibility is seen to be rather insensitive to i. We
find that the Landau result XL, obtains whether or not
the orbits are closed in the 61m.

Previous calculations' of the initial susceptibility for
a constrained degenerate electron gas have found XL, to
within a size-independent numerical factor, This strange
result (that this numerical factor is size-independent
and diferent from unity) will be shown to arise from the
discreteness of the energy levels in a 6nite system, and
is of no fundamental importance.

Our model of a thin 61m is formed by placing the
electrons into a one-dimensional harmonic-oscillator
potential of classical frequency Q. At absolute zero
temperature and in the absence of a magnetic field, the
electrons fill this well to some Fermi energy p(0), which
is determined by the electron density. Since only states
near the Fermi surface contribute to the magnetization,
we de6ne an effective thickness I- by

FIG. 1.Slab geometry considered
in this work. The Geld is applied
parallel to the s axis in the plane of
the sample.

I
I
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where (k„k.) are the in-plane momenta. The linear
transformation

y =y' —A&o,k./mes' (2.4)

where co,= eH/mc is the cyclotron frequency and

reduces the Schrodinger equation to the form of a one-
dimensional harmonic oscillator

-,'mn'I. '= p'p(0), (1.1) oP =co,'+0'. (2.6)
where p is a coefficient of order unity which is adjusted
to give the usual free-electron relation between density
and chemical potential in the limit I- —+~.Such a model
was used by Friedman' for the case of a nondegenerate
electron gas where he, indeed, found the Landau result.
The special feature of this model which makes it useful
is that the constraining potential is commensurate with
the eGective potential arising from the magnetic 6eld;
thus the exact energy spectrum can be found by an
elementary transformation. Ke may then calculate the
diamagnetic susceptibility without recourse to approxi-
mate treatments of the surface (e.g., WEB approxima-
tion), even for specular reflection. Section II is devoted
to a calculation of the internal energy and field-
dependent Fermi energy for this model. Section III then
discusses the diamagnetic behavior of the system.

II. ENERGY CALCULATIONS

With the model described in the Introduction and the
geometry of Fig. 1, the single-particle Hamiltonian for
the constrained noninteracting electron gas is

X= (2m) 't P—(e/c)A$'+-'mQ'y' (2.1)

where the vector potential A may be taken in the
transverse gauge

A= —a(y, o,o) . (2.2)

Assuming an infinite sample in the x-z plane, the
Hamiltonian is separable in Cartesian coordinates and
the wave functions )p(r) may be expressed as

)P(r) = expLi(k~+k, s))X(y), (2.3)
'I. Friedman, Phys. Rev. 134, A336 (1964), and references

therein.

The total energy E of a given eigenstate is then

E=Z+ (2m) 'fi'(k, '+k, '),
where E' has the well-known form

(2 &)

E'= (e+-')A&a —-'(k'(u, 2/m(o')kg' e=o 1 2 . (2.8)
Thus the single-particle energy levels are

E(e kg k.)= (e+-,')A~+ (2m)-'fi'kg'

+ (2m) 'fi'k, '(0/co)'. (2.9)
This result exhibits explicitly the removal of the de-
generacy of the Landau levels corresponding to classical
orbits whose centers are at diferent positions across the
thin dimension of the 6lm. In the limit of an in6nitely
thick sample (0—&0) the levels coalesce and states
with different centers (i.e., different quantum numbers
k,) become degenerate. The corresponding wave func-
tions are as usual Hermite polynomials. However, since
the energy spectrum suSces to calculate the bulk
magnetic moment, we shall not discuss the eigenfunc-
tions further in this paper.

The Pauli exclusion principle requires that a given
orbital state is at most doubly occupied (spin up or
down). For the problem at hand, we shall neglect the
Pauli paramagnetism which can easily be included, but
would unnecessarily complicate the equations. Thus
spin shall only be included for counting (i.e., we shall
assume that the up- and down-spin states for a given
orbital are degenerate). We shall also, for simplicity,
perform all calculations at absolute zero temperatur=-
this restriction can also be easily removed. Then as
electrons are added to the system, they will 611 up the
doubly degenerate orbital levels described by (2.9) until



1038 D. CHILDERS AN 0 P. P INCUS

all the electrons in the metal are accommodated. The
maximum energy of any electronic state is then the
cllcnllcR1 potclltlR1 (ol Fcl'Illl ellcl'gy). Slllcc 'tllcsc states
near the Fermi energy play the dominant role in the
magnetization, the Fermi energy must be rather care-
fully calculated. At O'K, the total number of electrons
is given by

fit=2 g' 1, (2.10)
n, ka, kg

X= (S/2~2) g
e&S

dk, dk„ (2.11)

where the prime indicates that the summation is
performed over the occupied states, i.e., E(n,k„k,) &II.
Replacing the summation over the continuous quantum
numbers k, and k, by integrals, (2.10) can be rewritten

U.= U, = (mS/16mh) (a)'/0) (n+1)[(p'/Aa&) —p (n+1)
+-',A~(n+-,') {n+-',)j,

which gives

U= (mS/ah') (s)'/0) (n+1)
Xb'-l{h )'(n+l)(n+l)1 (2 lg)

%'e now de6ne the dimensionless quantity e, which
describes how far below the Fermi surface lies the level
(n+-,')k(u, by

~= (~/A ) {n+—2)

where e has the property that 1&» e&»0. In terms of e,
(2.12) and (2.18) can be written as

E= (mS/2vrh') (o)/0) (A&a) [(p/A&a)' —(e—-')') (2 20)

where n is the value of the quantum number n of the
most energetic occupied level, and S is the area of the
61m. Using the energy spectrum (2.9), the integrals and
summation can easily be performed to give

U= (mS/3+A') ((o/0) {A(o)'[(p/Ace)+ 21e)-—
X[(p/Aw)'+(e/A~)(. ——',)+-',e(1—e)); {2.21)

the energy per electron becomes

X= (mS/4n A') (co/0) (n+1)Q—-',h(o(n+1) $, {2.12) e= U/&=—ail(H)+'s~(H), (2.22)

which, together with the condition

(n+-', )fur& p, (2.13)

where the energy p(H) is

p(H) =A(df (1 E) (p/AM g+ 6)

E= (LS/3w') [2m@,(0)/A']l" (2.14)

This fixes the coefficient p in (1.1) to be —',Ir. Then for a
given effective 61m thickness, (1.1) uniquely determines
the corresponding oscillator frequency. This procedure
relates our model to a physical film.

Once the Fermi energy is formed, we can calculate the
total internal energy of the electron gas by sunning the
energy spectrum (2.9) over all occupied states. It is
convenient to write U in the form

U= U +U +U„
corresponding to the three terms in (2.9), where

U;= P' 8, .
n, ka, kg

(2.15)

(2.16)

Each term is calculated in a fashion similar to that for
the electron number E (i.e., summing over n and
integrating over k, and k.). The results are

U„= Q' (n+-', )~= (mS/SIrh) (a)'/Q) (n+1)
a, k~, kg

X[(n+1)e—-', h~ (n+-,') (8+-',)] (2.17)

determines the chemical potential p,. Now the effective
61m thickness L can be found by using (1.1) and re-
quiring that in the limit L —&~ (and in zero 6eld)
the relation between the Fermi energy and electron
density derived from (2.12) agrees with the equivalent
relationship for a free-electron gas:

In the limit of zero 6eM and I —+~, the energy per
electron in this model becomes —,'p, which is somewhat
different than the standard free-electron-gas result of
p. The discrepancy arises from the somewhat different
densities of states in the two models. In the subsequent
calculations based on the energy per particle (2.22), this
slight departure from a perfectly-free-electron gas
shouM be kept in mind.

iV/cV = Be/BH. —(3.1)

Before Rctllally coInplltlIlg M (H), lt ls useful to dlscllss
the behavior of the parameters e and n as a function of
magnetic 6eld. Consider some initial state of the system
when theieMhas a value H; and there is a corresponding
~; and n;, where the subscript i denotes the initial
values. As the 6eld increases, e decreases from the value
~; because the spacing between levels increases. At some
particular value of the Geld IJ„, e becomes zero, i.e.,
(n;+ 2)AI0(He) =p(H~), wlllcll ls 'thc condlt1on that tile
energy level in question (of a "belly" orbit) passes
through the Fermi surface. As the belly-orbit Landau
level passes through the Fermi surface, e goes to zero
and then abruptly changes to 1 as the number of
occupied levels n decreases by 1.An explicit representa-
tion for e can easily be obtained if the critical frequen-
cies ao„ for the coincidence of the highest level with the

m. xnAMXGmETr. SM

The magnetic moment per electron Jtf/E is now
formed from
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Fermi level is defined by

p(H~) = (n+-')A(co~'+(P)"'
i.e.,

cv„=eH„/mc.

Using (2.12), (2.19), and (3.2), e becomes

—s(~ s ~s)

(3.2)

(3 3)

(3.4)

5-

4-

3s

I

2. -

Thus when co, —+ co, e ~ 0. It is easily verified that this
would be equivalent to e= 1 (at II=H„) had we chosen
to write (3.4) in terms of n 1and—co„- i. It is also im-

portant to notice from (2.19) that while e is a dis-
continuous function of the field, both the chemical
potential and p(H) are continuous. Throughout the
subsequent calculation of the magnetization, it will be
convenient to study a given period of e, i.e., the field
domain between the passage of one Landau level
through the Fermi surface until the next. The field
derivative of the chemical potential in a given interval
is then

Bp/8 (A(a,)= ((u,/(o) (n+-', +e)+(oBe/Ba)„(3.5)

where [from (3.4)]
ae/aa, = —na&, (a 4((e„s+ns) .

Combining (3.5) and (3.6), we get

(3 6)

Bp/8(A~, )= (&o,/2~)[1+n~ '(&o,s—~„')]. (3.7)

Similarly, one easily shows that

cip/8 (A&a,)= (&o,/2(u) [1—3a'((o„'+n') —']
+n(a, /4u)(u-'(&o„' —(o,')

y [1+.3~2(~ 2+f12)—I] (3 g)

which then gives [from (2.22) and (3.1)]
M —P(~ /(„) (~ 2 („2)(~2+@2)—1

where p is the Bohr magneton. This can conveniently be
rewritten as

1/Hn 1/Ho+1 J/H 1/Hn+2 1/H~

FIG. 2. Plot of 3f(II) as a function of II-' from (3.i0) for
I,=10 ' cm, l' 10 —' The.dashed curve is M(Pl for t=0, i.e., a
bulk sample. The sketched curve is only for a few oscillations near
H 10' Oe.

(2.19) and (2.20) by fixing the total number of electrons
in the system. Setting &=0, we find

A'(&o a+0')n(n+1) = const —p (3.11)

where p, ; is the value of the Fermi energy when the
highest Landau level (in zero field) passes through the
Fermi surface. It has been assumed in this expression
that p;„))AQ, which is always the case in degenerate
systems. The size effect on the dHvA period can now be
obtained directly from (3.10) if we use the parameter
$=2R,/L=20/ao, . Then for orbits which are small
compared to the film thickness, f«1, we find in the
degenerate region n))1 the standard result,

n~,+n—p min p (3.12)

for the appearance of nodes in M(H); i.e., there is a
periodicity in H '. However, in the large orbit limit
1»1, we find that

nA(u —(n
—'p;„'—A'0') "'. (3.13)

In order to more easily see how the periodicity changes
with f', it is convenient to consider the difference in
fields for two adjacent nodes in 3f, i.e.,

a)~ is—(o„'=2A 'p;„'=2n '((o'+0')
=-p'e, '(1+4@)/4nf'L'. (3.14)

Thus for small f,
M= —Pn 'c(1—«)a)~(a) '+0') ' (3.10)

i2 ~ 2~(pvr)2(4&$2L2) —i (3.15)
which is our main result. It is interesting to note that
this gives a closed form [together with (3.4)) for the
field dependence of the magnetization associated with a
given period, i.e., for a particular Landau level. It now
remains to analyze the consequences of this formula,
this shall be the scope of the remaining discussion.

Since e~&0, the magnetization is always diamagnetic
with minima at &=0, where the magnetization is zero.
This occurs when the highest Landau level lies just at
the Fermi surface and hence has no partial occupancy.
This is then an essentially classical situation wherein the
Bohr-van Leeuwen theorem states that there should be
no magnetization, in agreement with (3.10). If we take
the zeros of M to denote the positions of the dHvA
oscillations, the periodicity may be determined from

which is independent of thickness but proportional to
n—'. On the other hand, for large orbits,

2 ~ s~(pe~)s(riLs)-1 (3.16)

which is clearly dependent on size and varies only as
n—'. This shows the onset of a type of geometric reso-
nance with standing modes across the film. This type of
behavior is readily observable in Figs. 2 and 3, where the
magnetization curve is sketched for some different
values of f'.

The relative maxima in the M(H) curve occur very
nearly at e=-,', as is seen from (3.10), because the only
rapidly varying function of field in this expression is ~.
Then if a&

* denotes the value of cv. where M(H) is
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Fn. 3. Plot of 3E(8) or B '
for I= 10 4 cm but a lower Geld
8' 105 Oe corresponding to
g—1. The dashed curve is the
f=0 result for comparison. ¹

tice the large periodicity change
but relative constancy of the
amplitude of the oscillations.

maximum (M„*) in the nth period, we find, at the
maximum)

M *—(4n) 'p(u„*(cv *+0')"'((o '+0') '

=—(4';„) 'Ph(o *(co *'+0') ((o '+0') '. (3.17)

However, co
* and co„are always very close in Geld, and

thus M is nearly independent of size. Similarly, the
steady (monotonic) component of the magnetization is

independent of size because (M) in a given period is

(M)——P(6n) 'id„((o„'+0') '"——P'll/3p. ;„. (3.18)

Figures 2 and 3 plot 3E(B) from (3.10) for two cases,
respectively: /=0. 1, which corresponds nearly to the
bulk situation, and 1'=1, which exhibits the large
periodicity changes. It is evident that the amplitude of
the oscillations is independent of i', and in fact the

steady susceptibility also maintains its bulk (Landau)
value independent of i.

The last point to be mentioned is the fact that the
initial susceptibility, i.e., BM/BH~ir 0, does not give

very precise information about the system. This is again
seen from (3.10).The initial magnetization depends on

e(0), i.e., the value of e for zero field. This, however, is a
delicate function of the size of the sample and the
electron density. Basically the spatial quantization

gives rise to a quasidiscrete spectrum even in zero field.

Thus effectively the initial susceptibility corresponds to
some point on a dHvA oscillation and hence may even

be paramagnetic, i.e., I&0. It is only by studying many
periods that some meaningful results can be obtained
about geometric effects.

In conclusion, we have shown, for our particular
model of a thin 61m, that the steady diamagnetism as
well as the amplitudes of the dHvA oscillations is rather
insensitive to the ratio R,/I. . However, we do find large
changes in the dHvA periodicity when this ratio be-
comes comparable to unity. While we believe that our
artificial model gives, at least qualitatively, the correct
behavior for specular reQection, it must be emphasized
that di6use surface scattering could completely obscure
the striking sects on the dHvA oscillations. However,
we expect our result, that the average diamagnetism
is essentially unaffected by specular scattering of elec-

trons from the surface, to remain valid evenin thediRuse-
scattering situation.

Further investigations on this problem will include
the effects of (a) finite-temperature effects, (b) im-

purity scattering, and (c) electron-electron interactions.
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