
C4 jonrnal of experimental and theoretical physics established by E L. Nichols in lS99

SECOND SERIES, VOL. 177, NO. 1 5 JhNvhRv 1969

Direct Deterttunation of Pure-State Density Matrices. I.
Some Simple Introductory Calculations*

William L. Clinton, Jamil Nakhlehf, and Francis Wunderlichf.
DePartment of Physics, Georgetown University, 8'ashington, D. C.

(Received 16 February 1968)

A method is developed for the semiempirical determination of an electron density in small
diatomic molecules. The method involves primarily the electrostatic and virial theorems and
empirical potential curve data. The density has been determined, using Slater-type basis
functions, for the molecules H2+, H2, He~, Li2, and N~. Expectation values are calculated and
compared to exact or Hartree-Fock values. A theoretical discussion of the semiempirical
densities via a natural-orbital analysis is given. These analyses show that (a) the electro-
static and virial theorems are effective when used to determine unknown parameters inafirst-
order density but that (b) some additional means must be provided to ensure Nrepresentability.

I. INTRODUCTION

It is clear that if a sufficiently complete set of
empirical data is available for an atomic or a
molecular system, the electronic density could be
determined experimentally. For example, one
approach would be via experimental one-electron
moments. Unfortunately very few of these mo-
ments are measurable for any real physical sys-
tem. Nonetheless one may proceed with what is
available experimentally and augment these data
with theoretical conditions and physical intuition.
In such an approach one must face such questions
as: Is it possible to determine an electron density
with a limited amount of experimental data and
expect other independent properties of the density
to be properly represented? Our answer to this
question is a qualified yes. An elucidation of this
latter statement is one of the facets of this series
of papers.

It will be our purpose in this paper to introduce.
a semiemyirical method for the approximate de-
termination of p(r '; r, R), the first-order reduced
density kernel in a yolyatomic molecule with nu-
clear position vectors represented by R. The
method is built around three ideas. These are: (1)
Several theorems exist that constitute necessary
conditions for p(r ';r, R) to be derivable from an
exact eigenstate of a many-electron Hamiltonian;
(2) There exist experimental data that make these
theorems practicable if used properly; (3) Finally,
and most importantly, the mathematical apparatus
necessary to implement (2) has, so far, proven to
be within the capabilities of a relatively modest
size computer. ' Thus, providing that we can es-

tablish the utility of the method, the full power of
the large machine remains to be exploited.

Before getting into the necessary formalism we
will present a short summary of the methodology.
Instead of requiring a large set of independent one-
electron expectation values, we will use for the
present only three expectation values and back
these up with a good intuitive choice of the func-
tional form of p(r';r, R). In this first paper we
make use of twotheorems, whichare the electro-
static and virial theorems for diatomics. These
relate various integrals, involving only the first-
order density kernel, to the potential-energy func-
tion of a molecule. Since, for diatomic molecules,
there exists a wealth of experimental potential-
curve data from either spectroscopic or scattering
experiments, the choice of the aforementioned
theorems is most propitious. The central step in
the method involves forcing the experimental en-
ergy curves on the density via these theorems.
This process leads to integral equations involving
p(r ';r, R). These equations cannot be solved in
general, However, choosing the form of p(r';r, R)
so as to separate the spatial r dependence from
the parameter R dependence leads to solvable equa-
tions that result in meaningful semiempiricaldensi-
ties. It will be our purpose in this first paper to
present a method that can be applied to some of
the simplest diatomic molecules.

It must be pointed out that the densities to be
determined will be limited by two things: (1) the
assumed functional form of p(r '; r, R); and (2) the
accuracy of the experimental data used as input.
The first is by far the most serious limitation. In
every case these limitations will be investigated
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by the simple expedient of comparing our densi-
ties and expectation values with experimental and
independently calculated theoretical values when
available. The results are also analyzed via

natural orbitals and it is here that some enlighten-

ing results regarding semiempirical densities are

unearthed.

II. BACKGROUND

In the next few paragraphs, we will present a brief resume of density-matrix theory, the electrostatic
theorem, and the virial theorem. Since many very good discussions of all of these topics exist in the
literature, we will concentrate only on those results we will need in the development of the methods for
calculating p(F'; r, R).

Accordingly, we define the first and second-order spinless density kernels for N-electron v-atomic
molecule s.

pl(rl ', rl, R) = N f +—+(F& 's&, . . . , FNsN, R)+(F&s&, . . . , FNsN)d rd s,
p2(rl'r2', rlr2, R) = N(N l—)$4'*(-F&'s, F 's2, . ..)4'(Fis&, F2s2, ... )d xd s.

The first-order density kernel evaluated at r ' = r, will be called the electron density and denoted by p, (r, R).
Our interest is in the more general function p, (r '; r, R) because we use the virial theorem, which involves
the electronic kinetic energy and, as is well known, cannot be calculated from p, (r, R) alone. We will also
need the expressions for one- and two-body spinless expectation values. These are

(+ p~. O. (4) = f[O&p, (F&', F&, R)], d'rl,
1

(2)z4j ij 12 2 1 2 ' 1 2' r, =r»r, '=r2

where Of and Of" are arbitrary. Since the method to be developed concerns itself only with obtaining p, as
an end result, t e second-order kernel will not be considered further in these papers.

The first of the expressions we will use is the electrostatic theorem'

9 E(Rl. . .R ) = fl (- Z / [F—R ()p&(r, %&. . .R )d'r,

where Vz is the o.'th nuclear-coordinate gradient, E(Rl . .R~) is the electronic energy of the molecule, Zz
is the charge on the ath nucleus, and R~ is the position vector of the nth nucleus.

The second theorem to be used is the virial theorem and is given by

R ' V E(Rl. . .R )+E(Rl. . .R )= —T(Rl. . .R ), (4)

where T(Rl. . .R~ ) =—( 4
~

——,
'

Z~ Vf' [0), which can be written

T(Ri. . .R )= f[ —,'&'(F-)pl(F';F, Rl. . .R )], d'r

and is seen to involve again only the first-order density kernel.
Both the virial and electrostatic theorems can be thought of as integral equations in p, . These equations,

however, are not of any standard type because of the complicated form of p, . If, for example, p, were in-
dependent of the nuclear-position vectors' then Eq. (3) would become a Fredholm equation of the first kind,
e. g. , in the case of a diatomic hydride molecule A. -H, a one-center density about atom A yields for the
electrostatic theorem

&E (R) = fv(- Z / [FA
—R ()p(rA) d'xA (6)

Here FA and R are measured from the point of view of atom A, and %(R) can be thought of as an experi-
mentally known quantity. But, of course, such a form for p, is not compatible with other known results.
Another, possibly more realistic, form is pl(F, R) =pA(rA) +p&(FE), which again gives a. standard Fred-
holm-type integral equation. One could make this "separated-atom" density even more realistic by scal-
ing; i.e. , l«pl(F, R) = KA'pA(RAFA) + KE'pE(&EF&). This density also yields a solvable integral equation

provided the scale factors pA = pA(R) and f& ——f&(R) are known. More will be said about this type of density
later.

A further type of density that can be partially determined is of the form

p (F, R)=a(R)[p (r )+p (r )]+a (R)4' (r )4 (r ).
Provided the functions pA(rA), p&(F&), a(R), and aAE(R) are known, the unknown functions 4(FA) and @(F&)
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can be found by Fourier-inversion techniques. This follows because the unknown term in the electrostatic
theorem, which is essentially g(r /r& )4&(r )4&(r )d r&, is just the convolution of the functions (r&/r )
O'II(rg) and 4'g(rg). Similar considerations apply to he "overlap" term in the kinetic energy, viz. ,
f4~(r&)G&(r&)d rg, where GII(r&) =———,

' V (rII)4&(rfI). Thus, if we denote the Fourier integral operator by
5', we have the well-known result that

r rA3gA'AJ3J3A AB (7)

Therefore, if the function R(R) is known, the Fourier transforms of 4'g and %II can be solved for and then
inverted.

There are actually several other forms for p, that render Eqs. (3) and (4) standard-type integral equa-
tions. There are many difficulties with this type of approach, however. The first is that the solvable
forms are not nearly as general as is desired. The second is that the experimental data are almost
never in the most suitable analytical form (e.g. , the Fourier transformation of potential-curve data would
require special fitting). The purpose of discussing this approach has been to point out its existence and
the difficulties encumbent upon its use.

The rest of this first paper will be devoted to a method that utilizes well-known basis functions (@~ and
4

& in the previous example) and, therefore, aims at determining the R-dependent parameters such asa(R),
a~g(H), and P(%). Another comment on the method we propose is best put as a. question. Is it at all fruit-
ful to seek directly an electron density without any knowledge of the quantum-mechanical origin of the den-
sity; that is, is the function we determine in any sense derivable from an X-body wave function'? This
problem is taken up in more detail in Sec. IV, where the natural orbitals of our semiempirical densities
are calculated, and the occupation numbers are discussed. In anticipation of the discussion, we may re-
mark that even though there is no built-in assurance that our semiempirical densities are N represent-
able (i. e. , derivable from an N-body wave function) they turnout to be not so bad in this respect which is,
no doubt, a result of the choice of basis.

A final remark in concluding this part pertains to the anticipated efficacy of the kinetic energy and force
operators in determining a good semiempirical density. In the first case, the average value of the kinetic-
energy operator when empirically adjusted should, we expect, give a correct description of the "size"of the
charge distribution. Just elementary quantum mechanics allows one to have some intuitive faith in this
idea. In the second case, the force should give suitable directional characteristics ("shape" ) to p, once
it has been empirically adjusted. Neither of these conditions alone nor together„however, is sufficient
to assure a proper density in every sense. However, we feel that when these conditions are coupled with
a good choice for the functional form of p, a reasonably good result will be obtained. The only way to prove
this, of course, is by considerable testing. The rest of this paper will be devoted to verifying these hy-
potheses by direct numerical comparison of our results with those of other methods.

III. THE MOLECULES H2, H2, Li2, AND He~

In this section we put forth the following first-order density kernel for H, , EI, , and He, :

pl(rl ',.ri, 5)=a(R)g (R)[ls (gr ')ls (gr )+ ls (gr ')ls (gr )]

+-,' a~ (R)P(R)[ls (gr ')ls (gr ) + ls (gr ')ls (gr ')], .

where a(R), a~&(I|), and P(R) are parameters to be determined semiempirically. Also, ls(r) = () is/m)'~'
x exp(- )lsr), where /is is the atomic variational scale. For I.i, we try

pl(r';r, 5) =pl +a(R)p(R)[2s&(gr ')2s (gr&)+ ]

+ —,'a~ (R)V(R)[2s~ (tr~ ')2s (gr ) + ],
where pls is the atomic inner-shell density which we assume to be unaffected. Also, 2s(r) = ($2s'/3it)'~'r
x exp(- $2sr), and again $2s is the best atom scale.

These kernels are now inserted into the virial and electrostatic equations. Along with J (rp, )dR'r =N
(the total number of electrons), we have enough conditions to determine the parameters a(R), a~&(R), and
g(R). Table I gives the pertinent experimental data used in these calculations. The resulting equations
are simple although iterative because of implicit P dependence. They involve only kinetic-energy, overlap,
and force integrals which are all evaluated by standard methods. ' The calculations were done at the equi-
librium distance for H, +, H„and Li„and at 8 = 2. 40 a. u. for He, .

The density parameters are presented in Table II. The first encouraging result that can be noted is that
aA@ is positive for the stable molecules H, , H„and Li„and negative for the unstable system He, . This
is in agreement with Mulliken's' idea of overlap density and bound molecules.

Another thing to note is that where a comparison is possible the semiempirical g is larger than the varia-
tional. The explanation of this result is simply that the energy put in via the virial is experimental and
therefore larger in magnitude than the variational energy. The most efficient way to compensate for this
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TABLE I. Pertinent empirical data (a. u. ). TABLE II. Density parameters for H~, H2

Li2, and He2.
Molecule

H2

H 2

Li&

He2

1.4007
2.0031
5.051
2.4000

U(R)

1.174
0.603

—14.991
5.531

a
The data for H~, H2, and Li2 were taken from+

G. Herzberg, Spectra of Diatomic Molecules (D. Van

Nostrand Company, Inc. , Princeton, New Jersey,
1950).

The data for Heq were taken from P. Phillipson,
Phys. Rev. 125, 1981 (1962).

Molecule

H2

H2+

Li2

He&

0.504
0.466
0.8793
1.049

aAB

1.535
1.511
0.4660

—1.065

orbital
exponent f

1.271
1.486
0.723
1.685

energy difference is with the scale factor and a concomitant tightening of the charge cloud. The next step
in the analysis is to use p, (r '; r, R) to calculate other expectation values and compare them with the various
theoretical calculations available. These results are given in Tables III-IV.

Consider the H, molecule first (Table III). Since in this case there are several wave functions for which
the density has the same form as Eq. (8), we list in Table III the quantities a(R), a~ (R), and f(R) for
these also. Expectation values for the best available variational calculation (see fooPnote c of Table III)
are given for comparison.

The poor values of ( z ') and (r') obtained from the Heitler-London and the unscaled molecular orbitals
(MO) are consider ably improved by the use of the Wang MO($) and Weinbaum functions; the introduction of a scale
factor in the orbital exponent contr acts the charge distribution to nearly the correct "size" as measured by these
operators. However, scaling does not improve the quadrupole moment which is a measure of the "shape"
of the charge distribution around the internuclear axis (z axis) and is not affected by scaling alone. In a
similar analysis of some of the variational densities in Table III, Karplus' pointed out that the value of the
shape-determining parameter a~& is not large enough, i. e. , there is not sufficient charge transfer to the
overlap region. This is in agreement with the findings of Bader and Jones' who showed that these varia-
tional densities do not generally yield electrostatic equilibrium. The results obtained with our semi-
empirical density indicate that it strikes a better balance between "size" and "shape" of the charge dis-
tribution. This is a consequence of the fact that we constructed our density to satisfy both energy and
electrostatic requirements. Thus, while our values of ($) and (r') are now only a, little lower than the
variationally scaled ones, the improvement in (Sz' —~') is significant. For any further improvement, we
need to construct a density using a larger basis set and, in particular, to include pz-type basis functions
(which are concentrated along the internuclear axis). This causes the charge density in the overlap region
to increase and, consequently, (z') decreases. The H, + results (Table IV) show much the same behavior.

The Li, calculations are given in Table V. The balance between "'size" and "shape" that our semi-
empirical density attained in H, does not appear here. This is apparently due to the absence of Pz-type
functions in the density. Corroborating evidence to this effect is the almost complete agreement between
our expectation values and those obtained from the Bagus and Gilbert' wave function which, like our den-
sity, does not include any s-p mixing. Also, in a study of the electronic structure of the lithium molecule,
Ishiguro et al. showed that the quadrupole moment depends critically upon the use of P~ basis functions.

TABLE III. Density comparison in H& (a.u. ).

Density
bHeitler- London

Wang
MO
MO
Weinbaum
Semiempirical
Kolos-Roothaan f

0.638
0.679
0.570
0.597
0.630
0.504

aAa

0.961
0.934
1.141
1.193
1.100
1.535

1.000
1.166
1.000
1.197
1.193
1.271

2.521
2.260
2.519
2.218
2.228
2.128
2.213

3.460
2.665
3.454
2.543
2.566
2.293
2.543

(3z —r )

0.697
0.729
0.644
0.665
0.691
0.591
0.516

( =—(xA+x&)/R, (2), (z ) measured from the middle of the molecule.
W. Heitler and F. London, Z. Physik 44, 455 (1927).
S. Wang, Phys. Rev. 31 579 (1928).
C. A. Coulson, Trans. Faraday Soc. 33, 1497 (1937).
S. Weinbaum, J. Chem. Phys. 1, 593 (1933).
W. Kolos and C. C. J. Roothaan, Rev. Mod. Phys. 32, 219 (1960).



177 PURE —STATE DENSITY M ATRICES. I

TABLE IV. Density comparison in H2 (a.u. ) TABLE V. Density comparison in Li& (a.u. )

Density

Mo (&=1.228) '
Semiempirical
James

&t ) &1/r~)

1.763 0.832
1.600 0.918
1.667 0.852

2.895
2.180
2.438

1.489
1.147
0.946

&r ) &3z'-r') Density

Limited Hartree-Focka
Bagus-Gilbert
Semiempiric al
Hartree-Focka

&1/r~)

6.330
6.318
6.363
6.337

&t') &rg') &sg'&

8.140 103.9 77.72
8.306 108.6 84.31
8.203 106.6 85.62
8.113 103.0 78.47

L. Pauling and E. B. Wilson, Introduction to Quantum
Mechanics with Application to Chemistry (McGraw-Hill
Book Co. , Inc. , New York, 1935).
b

H. M. James, J. Chem. Phys. 3, 9 (1935).

a
University of Chicago Molecular Physics Group

(private communic ation) .

In the case of He, (Table VI), the remarkable agreement between the semiempirical calculation and the
simple Mo is a consequence of two things: The experimental energy and the variational energy differ
very little at this distance and the bases are essentially identical. The fact that both of these calculations
are in very good agreement with the Hartree-Fock is probably also a consequence of the relatively small
energy differences involved.

IV. NATURAL ORBITALS

gs is well known, p, (r '; r) is the kernel of a Hermitian integral operator p„ the eigenfunctions of
which yield a diagonal representation of p, (r';r) Th. at is, the diagonal expansion

p (r';r)=Z n 4' (r')@~(r)

exists" and the nf, are the eigenvalues of p, . Thus plack nk@y with (k tl)=5@. The functions Cy were
first discussed by Lowdin" and are known as natural orbitals. In terms of the matrix representation
the equation PCI =n~CI, with Cy't Cf =Sf, is the corresponding eigenvalue equation, and Cy is the repre-
sentative of 4y n any orthonormaT basis.

For a spinless fermion density kernel the "occupation numbers" must be bounded as0 &ny ~2, which is a
necessary condition that

pl(r', r) =N fO+(r—lr ...r )4'(r r . . .r )dsr d&r dsr

where 4 is a proper N-body fermion wave function. p, is then said to be N representable. " The case
where some of the ny are equal to two, and the rest are zero, defines the closed-shell Hartree-Fock
approximation. The Hartree-Fock eigenfunctions are therefore natural orbitals.

In the present work natural orbitals are of particular interest because our density is semiempirical and,
therefore, fermion N representability is not assured. As a matter of fact, our densities yield negative
occupation numbers. This undesirable feature will be rectified in later papers of this series.

In the case of the simple 1$ densities calculated for H, +, H„and He„ the natur al orbitals are seen to be
just the symmetry orbitals

Is =—(Is& + ls )/2'~' (1+8& )'~' and 1s = (Is& —1s )/2'~' (1 —
8& )"'

'g Q

where Sg~ is the overlap integral. These are the only two linearly independent 1$ functions having the ap-
propriate symmetry properties. We then have

1$0'
Q

Pl 1$
g i

8 1$
Q Q

n 1s

or more explicitly, letting e denote either of the eigenvalues,

f{a[1s&(r&)ls&(r&')+1s (r )1s (r ')]+ —,'a [1s (r&)ls (r ')+1s&(r ')1s (r )]j
x([ls&(r&') + Is&(r ')]/2"'(1+8& )'I' )d'r' =n[ls&(r&) +1s (r )]/2"'(1 + 8& )'I'] .

From this equation one easily sees that n is given by

n = a(1 + 8~ ) + —,'a& (8 + 1)

from which we note that

(12)
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TABLE VI. Density comparison in He& (a.u. ).

Density

Limited Hartree-Fock
Semiempirical
Hartree-Pock

&'~')

1.060 1.433 3.954 3.265
1.062 1.434 3.966 3.280
1.060 1.459 4.1111 3.344

aThe density used in this calculation was p = 2{as~ )
+2(ls ) .~u

bM. Krauss, National Bureau of Standards, Washington.
D. C. (private communication) .

Molecule

+ a
2

Density

Heitler-London
Wang
MO
Weinbaum
Semiempiric al

MO

Semiempiric al

Og

1.96
1.94
2.00
1.98
2.09

1.00
1,34

n
Ou

0.04
0,06
0.00
0.02

-0.09

0.00
-0.34

TABLE VII. Natural orbital occupation numbers for
H2, H2+, and He2.

He2 MO
Semiempiric al

2.00
2.15

2.00
1.85

See Ref. (13) .

n +n = 2a+a& S0' 0'
g

In Table VII are the occupation numbers for H, +, H„and He, . It is to be noted first of all that our no.
values are negative in the cases of H, and H, +." In He, no negative occupation numbers result, but no-) 2, which contradicts the rule for fermion density-matrix occupation numbers. In all three cases
then the semiempirical density is not N representable, i. e. , with our small bases there exists no proper
fermion wave function which yields the empirical energy and force via the virial and Hellman-Feynrnan
theorems.

It is clear that something must be done to rectify this situation. Qne could work directly with parameters
in the wave function, thereby ensuring N representability, but this would lead to unnecessary numerical
problems. We suggest that a density-matrix approach is better. '4 This idea will be pursued in subsequent
papers in this series.

CONCLUSIONS

The virial and electrostatic theorems have been
used to obtain reasonably good semiempirical elec-
tron densities for several small molecules.

The methods reported in this first paper are to
be viewed as introductory. The areas in which
they are lacking are three: (1) We need overall

better agreement with experiment or Hartree-Fock.
(2) We need more conditions on the density so as
to permit more flexible functional forms (3) W. e
need, finally, a numerically smooth way of ensur-
ing that the density has more physical occupation
numbers. "

In the following papers in this series we will
address ourselves to all of these problems.
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