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The Qonrelativistic diffex"ential cxoss sections for photo-iom. zation of molecules are derived
and are worked out in detail fox' systems with random orientation. The more important
contributions due to electric dipole, electxic quadrupole, magnetic dipole, and two-photon
(nonresonant) absorption have been included. Px'ocesses such as vibrationally induced auto-
ionizatio~ have been discussed. The significance of these results with regRxd to the Qesign
and interpretation of photo lonizRtloQ experiments ls Rlso considered. The Rnglllar dis-
tribution of photoelectrons from 82 is calculated as an example.

I. INTRODUCTION

The angular distribution of yhotoelectrons emit-
ted by a randomly oriented set of molecules i.s, in
general, correlated with the polarization and prop-
agation directions of the incident light. Recent
measurements of angular distributions of molecu-
lar yhotoelectrons' have demonstx'ated the useful-
ness of such measurements in obtaining informa-
tion about initial states of some systems.

It has been well established that etonian yhoto-
ionization, in the electx'ic diyole ayyroximation,
yields an angular distribution of the form 8+p
x cos'8, where 8 is measuxed from the polariza-
tion direction of incident linearly yolarized light. ~

Reference 2 also states that "Averaging over the
rotational orientations of molecules also gives
this form. " In this yayer we derive expressions
for the nonrelativistic differential cross sections
for yhoto-ionization of randomly ox'iented diatomic
molecules, giving explicit equations for the coef-
ficients n and p in terms of the transition matrix
elements. The more imyortant contributions due
to electric diyole, electric quadruyole, magnetic
dipole and two-photon (nonresonant) absorption
have been included. The pure electric diyole con-
tribution is the largest for normal yhoton intensi-

ties. Interfex'ence contributions from the next-
higher multiyoles may affect the differential yhoto-
lonlzatlon cross sectloD by a fe%' percent. Px'0-
cesses such as vibrationally induced auto-ioniza-
tion have also been considered. The x'esultlng ex-
pressions indicate the types of information one
might be able to obtain from yhotoelectron angu-
lar-distribution measurements and may be hely-
ful in the design of future exyeriments.

ID nuclear yhysics, yroblems involving the cor-
x'elation between directions and yolarizations of
various radiations are quite common. As a re-
sult, the develoyment of formalisms for treating
these processes has been very extensive. ' Al-
though certain nuclei share with molecules the
feature of being nonsyherical, the method of hand-
ling angular distributions from asyheric targets
diffexs in the two cases. In the case of a mole-
cule, the yexiod of rotation is generally long com-
yared with the time scale of the vax'ious yhotoelec-
tronic yl ocesses. Consequently we can tx'eat
yhotoejection from a single molecule as if it oc-
curred with the molecule oriented in a fixed direc-
tion in space. We may then average the angular
distribution over molecular orientations in the
samyle. In the case of nuclei, the radiative life-
times ax'e long comyax"ed with x'otation yeriods so
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that the calculation of the angular distribution (of
photonucleons) must be handled differently. Molec-
ular cases for which the period of rotation is com-
parable to the time scale of various photoelectron-
ic processes are not treated here, and would in-
volve including the molecular rotational wave
functions and taking an appropriate temperature
average.

The development that follows is basically an
application of the standard procedures for treat-
ing angular-correlation problems that are out-
lined in Ref. Sc. In Sec. II we present the for-
malism in which we describe single-photon photo-
ionization (or photodetachment). We include a de-
tailed discussion of the forms of the wave functions
that serve as initial and final states in the transi-
tion. We present these wave functions in a form
sufficiently general to allow the final results to
have a wide range of applicability. In particular,
we do not assume that the internuclear distance is
fixed, that outgoing channels are uncoupled, or that
the electronic wave functions are calculated insome
approximate scheme such as Hartree-Fock. We do

invoke the Born-Oppenheimer approximation for eval-
uating the radiative transition matrix elements, we
treat rotation as discussed above, and for simplic-
ity we assume that either Hund's coupling case (a)
or (b) applies. In PartC of Sec.II we derive expres-
sions for the electric-dipole, electric-quadrupole,
and magnetic-dipole matrix elements between the
initial and final wave functions. In Sec. III we ex-
tend the treatment to account for two-photon pro-
cesses, and in Sec. IV we present final expressions
for the differential cross section of photoelectrons
from a collection of randomly oriented molecules.
Finally in Sec. V, various implications of these ex-
pressions are discussed. As an illustration, in
Appendix 8 we show that for certain molecukes the
angular distribution of photoeleetrons would be ex-
pected to be distinctly different either from that of
the related atomic system or from that calculated
by assuming the molecular rotation period to be
fast compared with the photoelectronic process. We
include in this Appendix a calculation of the differ-
ential cross.section for photo-ionization of H, .

II. PROCEDURE

A. Expression for Cross Section

Consider electromagnetic radiation of frequency v=~d/2m incident on a diatomic molecule in some initial
state i. If h, v is greater than some ionization potential I&I of the state i, then ionization can take place.
Neglecting multiphoton processes, we have

Fi'k&'/2m =kv I.&, -
sI" ' (2. I)

where I is the channel index which designates the electronic, vibrational, and spin states of the residual
core, as well as the spin state of the outgoing electron. h'k&'/2m is the energy of the ejected electron at
infinite separation in the I channel.

We define two coordinate systems, a laboratory system and a molecule-fixed system. We take the lab-
oratory x axis as the propagation direction of the incident radiation and the laboratory z axis as its polar-
ization direction. The axis of the linear molecule defines the z axis of the molecular system. Angles and
other coordinates measured with respect to the molecular system will be primed; those with respect to the
laboratory frame unprimed. Spherical harmonics Yym (O', 4 ') written in terms of angles in the molecular
system can be expressed as linear combinations of spherical harmonics involving the corresponding angles
in the laboratory system:

(2. 2)

where Dm~m&(o. , P, y) is the usual rotation matrix, as defined by Rose. The orientation of the molecular
axes relmative to the laboratory axes is given by Euler angles o, , P, and y also according to Rose's conven-
tion.

Assume that during the entire photoelectronic process, each molecule is in a fixed orienta'tion with re-
spect to the laboratory frame, defined by 8 = (o. , P, y). Assume that the Born-Oppenheimer approximation
can be used for calculating all radiative transition matrix elements. Finally, assume that either Hund s
coupling case (a) or (b) is applicable.

Neglecting relativistic effects, we can find the angular distribution of electrons emitted by molecules
with various orientations P following closely the treatment of Bethe and Salpeter for atoms. ' Let hki be
a possible momentum of the electron consistent with Eq. (2. I). Let Gl p

(Q) denote the matrix element
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G ~ is a, function of the angle Q of k& in the laboratory system; rj is the position vector of the jth electron.
The integral extends over the configuration space of all the electrons, and over the internuclear-distance
coordinate B. The function ui is the electronic and vibrational part of the initial (bound) wave function of
the molecule in state i, and uZ (the subscripts k,Z and P are understood) is the continuum function, which
is taken to be a plane wave plus ingoing spherical waves'; i.e. , it is an eigenstate of the molecular elec-
tronic and vibrational (BO) Hamiltonian, antisymmetric with, respect to interchange of any two electronic
coordinates, and with an asymptotic form (as r~- ~) given by

u~ - [k /(2v)']'I'C& (ri, . . . , r& I, R)exp[ik&' r&-ig& 1n(k&x&+k r )]ZkF

+ Z, [k,/(2n)']'~'4, (rl, . . . , r& I, 8)f&, (8&, p )r& 'exp[-ik&, x&+if, 1n(2k, r )]. (2. 4)

Here fZi (8&, y~) is the scattering amplitude of the I" channel for a molecule with orientation p, kZ, )Z
is the ne charge of the residualcore, and 4'F (xI, . . . , x& 1,8) is the electronic and vibrational wave
function of the channel I' core. For simplici y o:i notation we have absorbed into O'Zti the spin wave func-
tion of the outgoing electron in this channel; ui and the C'Z p are assumed normalized to unity and uZ' is
normalized per unit energy interval.

The differential cross section for photoelectrons in the 1 channel from molecules with a particular ori-
entation P, for which kZ lies within the solid angle Q, is then given by

a ~(Q)dQ=dQ (2ve'Fi'/m'cv)i G ~(Q)I' (2. 6)

where the incident light is plane polarized along the z axis and propagates along the x axis.
The differential cross section in the I' channel for an ensemble of molecules with various orientations

is obtained by averaging oZ$(Q) over P:

o&(Q)dQ=(8v') dQfo& (Q)p(P) sinPdo. d8 dy; (2. 6)

p(p) is the distribution function for molecular orientation, which we shall' assume is unity for most of the
following discussion.

Expression (2. 6) is the basic angular-distribution formula for an ensemble of arbitrarily oriented mole-
cules, in the approximation that molecular rotation is slow. To apply it to a specific situation, one merely
expresses p(p) as one knows it from experimental conditions; e. g. , p(p) = 1 for random orientation and
i Yg (P, o.) I' for a system in the J, M state.

Finally, the core state of the I' channel has a definite magnetic quantum number MI . For IMI I+ 0,
degenerate with the state corresponding to MI is the state with magnetic quantum number -Mp. If we
let I'+ and I denote the channels whose core magnetic quantum numbers are M& and —MI. , respectively,
then we have A I+ =k&- and the usual experiments cannot distinguish between these two channels. If our
initial ensemble of molecules is not Mz selected, we would have equal numbers of the degenerate initial
states i and i' with magnetic quantum numbers Mz and -M~. With these considerations, our final expres-
sion for the differential cross section in the I' channel is

~I~Q)=['('"M )] [('I.+)M. ' 'I -)M. '('I"+)-M. ' 'I - -M. ].M~ (2. 7)

In addition to averaging over AM& and summing over +MI, one should average over-all initial states i
and sum over-all channels I'' for which the ionization potentials I~I I ~ are equal or nearly equal to Izp,
if more than one channel is available.

We now wish to calculate Gl & (Q) as a function of the laboratory angle Q and the parameter p. In Eg.
(2. 3), ui, the bound-state wave function, is most naturally expressed in terms of angles 8&', p&

'refer-
ring to the molecule-fixed system. The free function uI refers to the direction A of kZ jn which we want
to measure f1~ and hence to the laboratory angles ej 9'j The operators due to the radiation field
exp(ikZx&)(8/Bz&), are, of course, also in the laboratory system. Our procedure at this point is to ex-
press the latter and u& in terms of the molecule-fixed electronic coordinates 8&', p&', involving as parame-
ters the Euler angles n, p, and y and the angles 8, p of kZ with respect to the laboratory frame. We may
then integrate over the electronic coordinates 8&', y&' to form G&p(Q), substitute into Eq. (2. 5) to find
o'Fp (Q), obtain o &(Q) by integrating over the Euler angles a, f3, and y according to Eq. (2. 6), and finally
obtain V&(Q) from Eg. (2. 7).

B. Expression for Final State

For a specific orientation of the molecule, wave functions gl fm(ri, . . . , r~ I, r~; 8) can be found which
are everywhere solutions of the molecular electronic and vibrational Hamiltonian, and in the asymptotic
region x~- ~ behave like
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(FI, . . . , F~ I,F;R) kF I C'FP( 1, . . . , ~ 1,'R) ' p['(kF — l——&FI 2k +rll)]Yl (8', p')

($, I 1»k, '12C,„(rl, . . . , r& 1,R)r-'exp[-i (k r- 2lv —g&, ln2kr+qi)] Yl, , (8', y'),
pfEf I pARpPl, p E l'm'

(2. 8)

where we have dropped the subscript N. The matrix S t is the adjoint of the scattering matrix in the angu-
lar momentum representation; rli =argl'(1+I+i/), the Coulomb phase shift. Equation (2. 8) is quite general
in that it does not assume that final-state channels are decoupled. For photodetachment, the form (2. 8)
would be the same but we would have pl =rli =0. It should be noted that glim(rl, . . . , r~, R) is written in
terms of molecular coordinates, and in all regions of space is an eigenstate of the component of angular
momentum along the molecular z' axis, with eigenvalue (MF+m).

To obtain the final-state wave function ul with the asymptotic form (2. 4), we form a linear combination
of the glim with coefficients almJI (k I ) that depend on the molecular orientation and the direction of kl'

u~ „- Z al (k )g l (r, . . . , r;R). (2. 9)

We now wish to obtain the required form of these coefficients. Expanding the plane-wave term of (2. 4) not
in the usual laboratory angles but in the molecular angles, we find

exp[ik r-zg ln(k r+k ~ r)]+0 +

Z i '"lz) ((F,kI, r)Yl *(8k', yk') Yl (8', y'), (2. 10)

where Fi(f;kr) is a regular Coulomb function, and 8k', yk' give the direction of kI in the molecular frame;
gz, which is defined in Ref. 7, contains only incoming terms. Expression (2. 9) for ul must equal ex-
pression (2.4). Since the asymptotic form as r - ~ of El in Eq. (2. 10) is

El(f&, k&r)-sin(k&r —f 1n2k&r ——,'lv+Vli), (2. 11)

we can equate coefficients of expi(kl r- f& ln2klr) in Eqs. (2. 9) and (2.4) in the asymptotic region to

find aim (kl,):

al P(k ) =i —(2m) ' i e "
Yl *(8k'qk'). (2. 12)

Finally, we can express aimP(kI ) in the laboratory system by using Eq. (2. 2):

al (k&) = —i(2m) & i e Z D, (n Py) Y,~ (8 %). (2. 13)

8, y gives the direction of the electron momentum k I in the laboratory frame. Equation (2. 13) with Eqs.
(2. 8) and (2. 9) gives us the desired expression for ul .

C. Multipole Expansion

(2, 14)

where E1, E2, and M1 refer to electric dipole, electric quadrupole, and magnetic dipole, respectively;
8~. e. ,

Since the exponent kxj in Eq. (2. 3) is small, we may use the usual multipole expansion and retain only
the electric-dipole, electric-quadrupole, and magnetic-dipole terms. Thus we'write GFp of Eq. (2. 3) as

E1 ~ E2 ~ M1
I'P I"P I"P I"P

G = (2vm v/5) fu * Xi.z.u.dv,El
I'P I'k&p j j i

G - =(2w imv /cubi) fu& -Z.x.z de, .E2 2. 2

I'k~8 j jji
G~ =(mv/c) fu *k (K +28 )u.d~.

I" I k~g

(2. 18a)

(2. 15b)

(2. 15c)



In Eg. (2. 15c), E and 8& are the laboratory y components of the electronic orbital angular momentum and
the spin Rng lar momentum ln units of 5, resI. ectlvely. The Sy term a lses due to R more correct version
of Eg. (2. 5) which allows for spin. We now express the operators z&, xp and (E&+28&) in molecular
coordinates. Using the inverse of Eg. (2. 2) we have

z =(fv)'I'r FIO(8, p) =(~sw)'I'r Z Fl „(8',p')O'*O „(n,p, y),

1
xz = ,'WS~VF, (e, q)[F, ,(e, q) —F„(e,q)] = ,'We—arm Z Z11

m 1m 1

(2. 16a)

Il'&o „(p) [v'+
1 „,(g')

„,(tt)]F1 (8', q')Fl .(8', v'), (2. 16b)

(2. 16c)[Z 2S ]=(i/v2)+ „[D'*
1 „+D*, „][If „+2& „].

If~rl and 8 is are the angular-momentum operators in terms of molecular angles. Using Eqs. (2. 6),
(2. S), and 2. 13) for ur and substituting (2. 16a), (2. 16b), and (2. 16c) into (2. 15a), (2. 15b), and (2. 15c),
respectively we arrive at final expressions for Grp

(2. 17a)

jul g D lgI'
p pp lmm M M ~ I Bl Sn 1&M+M M ~ mI

(2. 17b)

(2. 17c)

where we have defined
1

M =(2vmv/&)[i(as) '
(i) exp(iaaf)]dfSl p 4 N (2. 18a)

2 2 ~ -E
SEA p 0

(2. 16b)

and M = —(vv/c) [(2&@') (i) exp(iq )] s
Pl' p 0

(2. 16c)

Here d, q and s are the molecular-transition diyole, quadrupole, and magnetic-diyole matrices, respec-
tively; i.e. ,

d =-(Z. ' x.6 *F „(8.', y. ')gg. dy)EmM ~. j j'll'm 1~"' j '~j ' i 'm"=m+

~$~ppg I ~ j j P$~ 1~If j Pj ]~/II j 0 ~ i ~Ega ~ + ~ ~ jf-=(Z. r '~~»* F (8.' .')F (8.' .'}g8~)
I' i I' i

(2. 1Sa)

(2. 1Sb)

Again, the integrations are over the configuration space of ~.11 electrons and over the internuclear coordi-
nate R We have eliminated one summation in each of Eqs. (2. 17) by making use of selection rules on M
in the integrals (2. 19). These selection rules appear as a result of our initial assumption that Hund s
coupling case (a) or (b) is applicable.

Furthermore, as a result of the reflection symmetry of a diatomic molecule ere can show that

A Em& M. Xpp M M. E-m-M -M. X —p, —p, -M -M.Q+ „=A Qg PPr i- 1" i
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A M* =-A M*
lmM M. Xp,M M. l —m —M -M. X —p, —M —M.r z r r z I

(2. 20b)

Since the gf fm as defined by Eq. (2. 8) are complex, the matrices of Eqs. (2. 19) are in inconvenient forms
for numerical calculations. We may express pf fm in terms of more convenient (real) standing-wave solu-
tions $1 fm using the relation'

~rim = !1-iR)-'
Pll f~ I —'rr'fr, 'mm' ~r'f'm' (2. 21)

where the matrices A' and 8 are related by

I'1"'/1 'mm ' — — — — 1'1"'/f 'mm ' (2. 22)

The standing waves pf fm are eigenfunctions of the molecular electronic and vibrational Hamiltonian satis-
fying (as i - ~) the boundary conditions

-k -'~'4 (r, . . . , r& 1,R)r 'sin(k i' ——,'lm —g ln2k&i'+ii&)1'& (8', p')

+ Z Rl.l.,f&, ,k&, ' '4&,&(rl, . . . , r& 1,R)r. 'cos(k&x ——,'f'm-
1'l'm' m'm

, ln2k r+il&, )y'E, , (g', p') . (2. 23)

Substitution of Eq. (2. 21) into Eqs. (2. 19) results in an expression for the matrix elements which is
better suited for calculations.

III. TWO-PHOTON IONIZATION

By starting with Eq. (2. 3), which is derived by treating the interaction of the electron with the radiation
field as a small perturbation, we have ignored the possibility of multiphoton processes. These may be in-
cluded in a straightforward way. The transition probability for two-photon absorption from an initial
state ui to a final state uf is given by"

W. =c[V -(n)l', (3. 1)

(3. 2)

where c is a proportionality constant. For ~ much further than a linewidth from the frequency ~~~ of any
electric dipole-allowed transition from the initial state i

(2(d —'d )

T& (0)= Z " " Z fu *z.u dv Ju *z.'u.d7'
n "n j j'

with co& =E~ —Ep and ~ =2mv. We have assumed the light is monochromatic and have used the electric-
dipole approximation for the two integrals in Eq. (3. 1). Usually only a very few intermediate states need
be included in this summation. The wave functions u of the intermediate states are conveniently described
in the molecular system, and Eqs. (2. 8), (2. 9), and 2. 13) are again appropriate to describe the final con-
tinuum function. Using Eq. (2. 16a) for zj, we have

(d (2(d —(d )
(3.3)

where
1

P =~md . 'd i( i) (2') -' exp(in ),lm~M M. 3 ~z gl~M
(3.4)

d =—[Z J'v.Q +F

gpss(g

p )M dT ]zi . j n 1m g' g z nz
'Pl

(3. 6)

nlmM ' j j I'fm 1m"' j ' j ' n jm" =M +m —M. '

I" r i
(3.6)
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Again we have made use of selection rules on the m.

IV. RESULTS

We now find an expression for o&~ (Q) by substitutin Eqs. (2. 15) into Eq. (2. 5). Assuming that we have
a collection of randomly oriented molecules so that p( ) may be set equal to unity, we obtain the differen-
tial cross section aF(Q) from Eq. (2. 6). After some algebraic manipulation, which is illustrated in Appen-
dix A for the electric-dipole term oFE1 Bl, the general expression for the cross section (2. 6) takes the
form

El ' EI EI ' E2 EI' MI'r= r +Or + 0'r

where

o& (Q) =A00+A20P2 (cos8),
E1' E1 0

(4. 1)

(4. 2a.)

o
& (Q) = (Bll+Bll*)P1 (cos8) cosy+ (B31+B31*)P3(cos8) cosy, (4. 2b)

v& (Q) = [Cll+C11*]Pl (cos8) cosy.E1 ~ M1 (4. 2c)

The I'l are associated Legendre polynomials. The angles are measured relative to the laboratory system;
i. e. , 8 is measured from the polarization direction of the light.

2ne'h' 'g & &~
& ™i[(21+1)(2K+1)]'~2

50 m'cv
l lmM&M. XpM M.
l&my, 1 z r z

4'�(2(+ 1)

x C(11$ IM. —m —MF, p, +M —M, )C(11& 100)C(Xlg I p, —m)C(Xl g I 00),

Z/2
2ve'5' g & „(1 MF+Mf [(21+1)(2K+1)]"' ($ —1)!

$1 m'c v l „ lmM M. a p p. "M M.
lmA. p. p.

" r i r 2.(2&+1) M+ 1) I

x 2 C(il) lp, -m)C(llJI00)C(llJI p, ", —m+M. —M )
8=0, 2

C(1J/ I p, +MF —M. —p", p.
"—m —M +M. ) C(1JE I10)C(Xlg l00),

Z/2
2&82@2 ~ „r™f"[(21+1)(m+1)]'~' (5 —1)!

$1 m'cv
l lrnM&M XpM M. 2v(2)+1) (/+1)!lcm p, F i r i

xC(zip !00)C(xi/ Ip, —rn)C(11$ I p, iM —M. , —rn —M +M. )C(11(!10).

(4. 3a)

(4. 3b)

(4. 3c)

The C(j,j,J!m,m, ) are Clebsch-Gordan coefficients.

We have not given the final form for the angular distribution, obtained from (4. 2) by taking the mean of
the cross sections associated with molecules initially with magnetic quantum numbers +M~ and -M~, and
summing over final-core quantum numbers +MF and -MF, as in Eq. (2. 6). Using the symmetry relation-
ships (2. 20), this step results in the $ =2 terms in o &El '&2 and cr FE1' M1 summing to zero For th.is
reason we have not included the $ = 2 terms in (4. 2b) and (4. 2c), although strictly they do occur.

Both the electric-quadrupole and magnetic-dipole matrix elements, Eqs. (2. 17b) and (2. 17c), are of
order v/c smaller than the electric-dipole matrix element (2. 17a), where v is the velocity of the outgoing
electron and c is the velocity of light. We have included the cross sections crFEI ' E~ and OFE M which
are linear in these matrix elements. The cross sections vFB2' @, oFM1 M&, and oFE2' Ml have been
neglected, since these terms are of order v'/c' and therefore of the same order as relativistic effects
which we neglected from the start.

For a two-photon process, the transition probability becomes

W& (Q) o-D0+D2 P2(cos8) +D4P4(cos8),

where

~ (~d (2(d —I'd )l ((d q(2(d —'d q ) ) M +M.
n n

I Q p p ( 1)j l u, —w j l lmnM&M. X Vn'M&M.nn' n n' lcm p, F z F

(4. 4)
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Z=O, 2 Z'=0, 2
C(Xl& I p, —m) C(11J I 00)C(11J'100)C(zf& I00)4v(2$ + 1)

xC(1181M,—M. , M. —M )C(11J'Ip+M —M, ,M, —m —M )C(Z'J) I p, +M —M, —m, M, —M )n' i' i n r n'' 1" n n' ' n' n

xc(J'J( I00) .

V. DISCUSQON

The electric dipole term 0 p&1' &1 given by
Eq. (4. 2a) is the dominant contribution to the cross
section. For randomly oriented molecules, just
as for atoms, the angular distribution of photo-
electrons resulting from this term is of the form
5 + P cos 8. Therefore in this approximation the
only information that can be obtained from angular-
distribution measurements of photoelectrons of a
given energy is the magnitude of the two constants
n and p, or equivalently, A» and A» of Eq. (4. 2a).
Inclusion of the higher-multipole terms given by
Eqs. (4. 2b) and (4. 2c) results in a more compli-
cated 8 dependence as well as a p dependence.
These additional terms, which depend on electric-
quadrupole and magnetic-dipole matrix elements,
should be small, but if observable they might pro-
vide additional information. Unless one is inter-
ested in these higher-multipole effects or in using
a molecular ensemble with a nonrandom distribu-
tion, there appears to be no reason for designing
an apparatus which is capable of analyzing com-
plicated angular dependences; two relatively large
detectors should suffice to determine n and P.

The phenomenological forms (4a-4c) could have
been obtained by an alternative procedure: One
could have expanded the wave functions and ex-
pressed the transition moments in /aboxato~ co-
ordinates rather than in molecular coordinates.
Such a procedure has the advantage that one ob-
tains expressions (4a-4c) in a slightly less cum-
bersome way than we did. However it has the con-
siderable disadvantage that the coefficients are
not easily related to the microscopic transition
moments that one can calculate from accurate
electronic wave functions. We chose the longer
procedure for our derivation in order to obtain
explicit and readily calculable expressions for
the coefficients,

Since in molecular processes a large number of
elements of the electric-dipole matrix d in Eq.
(2. 19a) are often important, knowing the values of
the two parameters 5 and tI will in general not be
sufficient to determine matrix elements or even
to indicate which might be important. Neverthe-
less, in certain cases such as the one discussed
in Appendix B, knowledge of 5 and P might be
very informative. In cases where more informa-
tion is sought, experiments with M. —selected or
otherwise partially oriented molecules (p(P) a 1)
might be considered.

Auto-ionization often plays an important or even
dominant role in the photo-ionization of molecules. "
Electronically induced auto-ionization such as the
type occurring in atomic systems ha, s been taken in-
to account in the formalism of the preceding sec-
tions. This is a result of the form of the final

state, Eqs. (2. 8) and (2. 9), which allows for cou-
pling between channels. But auto- ionization in-
volving a breakdown of the Born-Oppenheimer
approximation cannot be treated within the present
framework. To extend the theory to include such
processes in a way consistent with the scheme out-
lined in Ref. 11 would be a straightforward task.
However, it can be seen from the preceding devel-
opment that any process such as auto-ionization
which can be described as photoexcitation to a
"bound" intermediate state followed by some sort
of internal conversion to a continuum state, "mill
not change the analytic form of the angular distri-
bution given by Eqs. (4. 2). Nevertheless, in many
cases, from the absolute or relative magnitudes
of the coefficients n and P one might be able to
infer the importance of auto-ionization and even
information about the lifetimes of the intermediate
states involved. That this might be so can be seen
from the specific example discussed in Appendix B.

The fact that only the two parameters n and P
govern the angular distribution still leaves open
two important possibilities for obtaining informa-
tion from angular-distribution measurements. We
must keep in mind that n and tI are functions of
both the frequency of the incident light ~~, and of
the kinetic energy of the outgoing electron; i. e. ,
n =5(ur, kf') and P = P (&u, kf"). The dependences
of some angular distributions on 0&', the final
electron energy, have been studied'; one can sort
out various final channels with such measurements.
One may also expect to see variations in 5(&u, k&')
and p(~~, &12) with Id. In particular, when ~ coincides
with the excitation frequency for an auto-ionizing state,
one can expect 5 and P to be dominated or at least
strongly affected by the nature of the final state in
the autoionizing channel. This dominance may be
detectable in measurements that count all photo-
electrons entering given solid angles, but it will
surely be detectable in measurements that energy
analyze the photoelectrons. Thus, for example,
one could extend the experiments of Doolittle and
Schoen'3 on H2 photo-ionization by using polarized
incident light and two collectors, one centered at
8 =0' and one centered at 8=90 . The measure-
ments of energy-analyzed photocurrents already
reported" show that the total photoelectron cur-
rent has a very sharp maximum when the incident
light wavelength corresponds to the excitation en-
ergy of an auto-ionizing level and when the energy-
selected electrons have energies corresponding
to excitation of the vibrational state v'=1 of the
H2+ product. We may expect electrons in this
same energy band excited by the same line, to
have angular-distribution parameters 5 and P
different from those of electrons excited by the
same spectral line but with different energy, and
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from those excited by light of a different frequency,
whatever their energy.

From Eg. (4.4) we see that for a two-photon
process in the electric-dipole approximation,
we can describe the angular distribution of yhoto-
electrons by 5+P cos'8+y cos48; i.e. , we can
obtain 3 parameters from angular-distribution
measurements. This is true for atoms as well
as for randomly oriented molecules. Here as in
the case of single-photon ionization, angular-dis-
tribution measurements cannot provide complete
information about the molecular processes in-
volved, but some important information might be
obtained. For example, suppose that an inter-
mediate state n had an excitation frequency ~„
near the frequency v of the incident light. Then
the yossibility of near-resonant two-yhoton ioniza, -
tion arises. If the ionization is truly a coherent
two-photon process, then the angular distribution

of photoelectrons is given by (4. 4) and (4. 5). If,
on the other hand, the intermediate state behaves
like a real state, then the distribution must be
that of (4. 2a) and (4. 3a), with the "initial" state
taken as the state n; i.e. , the coefficient y of the
cos'8 term would be zero. Partial coherence in
the intermediate state n would be reflected in an
angular distribution somewhere between these two
extremes. Thus one has a method which ln pl ln-
ciyle, can give the degree of coherence in an in-
termediate state from the form of the angular de-
pendence of products.
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APPENDIX A: DERIVATION OF EQ. (4.2a)

Using Eg. (2. 17a) ln Eg. (2. 5), and sllbstitntlng into Eg. (2. 6), we obtain

Making use of the relations4

*J',
( 1)p, , —m, D

J',
p, ~m~

(A2)

and D 'D '=Z C(J1J2J'lgip2)c(J1J2J lmim2)Dpj~ p2m2 J 1 2 I 2 1 2 1 2 /~+f2, m~+m2.

we obtain

E1 ~ E1 2me'5' g ~ ~~ F (8 )F ~(g ~)( 1)p
'+My +MZ

m'ev &, , EmM&M. A pM&M. Em' ' Xp,
'

9mpm'p, ' 1 i l' i
L:+x

x Z C(11J1IM. —m-M&, p+M&-M. }C(11J1loo}c(lXJIm, —p)
Z, =o Z= IE-z I

xc(lXJlm', —P')(1/Ss ) )DO' D, , sinPdo. dPdy.

Apybgimg the orthogonality of the rotation functions

JD ' D ' sinP dc dPdy=(8w /2J2+1)5 5 5JJ
2

p,m, p, ,m, 2 p~p, 2 m~m2 eT~eJ2

(A4)

(A5)

we obtain

, Z1 Z1 2.e. r g „„, (,)Mr™ap
0 2J+1lcm p. g r

xc(11JIM, -m-M, l +MF-M, )c(11Jloo)c(nJ Im, —p)
m'x ( Z, (-1) C(nJlm', -.m' )r&,(e, q)r, ,*(e,9)j; (Ae)

Sut the final sum over m'is equ. al to
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([(2E ~ l)(2y+1)]'12/4v) C(DZIOO)P. (cose) .

Moreover, the Clebsch-Gordan coefficientC(llJI00) vanishes except when 4 =0 or 2. Therefore our final
expression ls

lcm p, F 'l F f g 0 2 471(2oJ + 1)

&&g(11gIM. —m —~, p. +~ —~.)C(11' I 00)C(lxZ Im, —p)C(DZ I 00)f'. (cose) .

This is easily seen to be equivalent to Eqs. (4. 2a) and (4.3a).

(Av)

APPENDIX 8: AN EXAMPLE

o (Q) =n+p cos'8,

n =A[Id„l' —2 Re(d„*d„)+Id„l'] (&2)

P=A[2Id„I'+6Re(d„"d„)+7Id„I'I .

A is a constant which can be determined from
(4. 3a). d„and d» ai e the electric-dipole matrix
elements, Eq. (2. 19a), between the initial so or-
bital and the Po and Pm continuum functions, re-
spectively, and we have used the relation d„=d„,
for a dlatomlc molecule. For an atom, d»=d, o so
that from (B2) we have the well-known result n =0.
For a nonspherical molecule this is not true. In
fact, our assumption that the electron leaves in
either a Po or pm' mave alloms us to determine both
d„and d» experimentally by measuring n and P.
Even in cases where other matrix elements cannot
be neglected, the extent to which n is nonvanishing
is a direct measure of / spoiling in the molecule.
If an auto-ionization process such as excitation to
a vibrationally excited (Po or pv) Rydberg level
follomed by a vibrationally induced "transition" to
the continuum (s,P, or d wave) were important,
then the change in approximate l selection rules
would produce a nonzero 5. In fact, if this auto-
ionizing process were dominant and if the life of
the metastable Rydberg state were long compared
with the rotational relaxation time in the gas, we
mould expect the electrons to be ejected isotrop-
ically and n would become very much greater than

P. Studying the dependence of n and P on electron
velocity in such a case, one might obtain informa-

Consider the case of photoejection of an electron
from an so- orbital of a homonuclear diatomic mole-
cule; e. g. , photo-ionization of the ground state of
H, . Let us assume that we are interested in ener-
gies lom enough so that only channels mhich leave
the molecule ion in its lowest electronic state are
involved, and there are no competing auto-ionizing
processes. Let us further assume that this orbital
is sufficiently spherical so that only orbitals of
symmetry Po. or Pm have non-negligible dipole ma-
trix elements with the initial state. Then substi-
tuting Eq. (4. 3a) with 1=k=1 into Eq. (4. 2a), we
find

tion about the relative importance of competing
processes and about the effect of nonspherical
terms in the molecular potential.

The total photo-ionization cross section for H,
has been calculated by Flannery and Qpik. '4 They
use the Weinbaum function to approximate the ini-
tial electronic state and take the final state to be
an H2+ ion in its ground state and a free electron
moving in a field of 2 point charges of half-ele-
mentary charge each. The distance betmeen the
point charges is chosen such that their quadrupole
moment equals that of the residual H, + ion. They
find that only those final states for which the
ejected electron is in a po or px orbital give appre-
ciable contributions to the total cross section.
The contributions from the fcr and fv final states
are entirely negligible. If we make the slightly
more questionable assumption that the f orbitals
do not contribute appreciably to the differential
cross section, then we can estimate the angular
distribution of photoeleetrons from H, as a func-
tion of energy, using the electronic matrix ele-
ments M& and M+ obtained from Ref. 14. Since
these are matrix elements involving standing
waves, we also need values for the po and pm'

phase shifts to use in Eq. (2. 21). We have used
t,he values calculated by Temkin and Vasavada by
their method of "polarized single-center orbit-
als. "" %6 find that

o(n)=-, =+ooo'8),tot 5
4v(n/p+-, ') p

where otot and n/P are given in Table I. In Ref.
15 the phase shifts were calculated for an inter-
nuclear distance 8=2. 0 a. u. instead of 8=1.4
a. u. As a result, we expect our values of n/P to
be slightly too large. Also, we have neglected
auto-ionization so that we cannot expect our re-
sults to agree with experiment in the low-energy
region. Nevertheless, this calculation can serve
as an indication of the magnitude of the effect that
l spoiling has on the angular distribution of molecu-
lar yhotoelectrons. From the values of n/P in
Table I we see that for H„a molecule in which
l spoiling is known to be small, this effect can be
exp6cted to be consldel ably largel than the effects
due to electric-quadrupole and magnetic-dipole
radiation. Therefore simply fitting the two co-
efficients n and P to fit the experimental angular
distribution and analyzing the results in the di-
pole approximation might provide vaLuable infor-
mation about the nonspherical nature nf rnoleculeso
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TABLE I. Values of o. /p and atot in Eq. (B4), computed using the electronic matrix elements M and M~ from
Ref. 14, and phase shifts 6~0 and 6~~ from Ref. 15.

k2

(Ry)

0,0
0,4
0.8
1,2
1.6
2.0

1.851
1.134
0.758
0.538
0.401
0.306

1.571
1.025
0.723
0.544
0.426
0.349

0.493
0.495
0.504
0.503
0.493
0.475

—0.308
—0.286
—0.257
—0.228
—0.206
-0.191

0.051
0.046
0.042
0.038
0.034
0.031

~tot
{10 "cm')

13.6
7.33
4.37
2.86
1.98
1,46

a
/matrix elements taken from Ref. 14 for 8= 1.4 a.u.

bPhase shifts taken from Ref. 15 for 8= 2. 0 a.u.

The experimental results for photo-ionization
of H, have not yet yielded reliable values for K/P. '~"
It seems reasonable to expect that direct compari-
son of experimental and theoretical values of this

function, both for H, and for other diatomics for

which theoretical values are presently unavail-

able, can be made in the near future.
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