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discrepancy to something in the neighborhood of the
experimental error. The peaks numbered 3 on the three
compounds are considered as a possible E» transition
(As ~At or Is —& Lt in the usua1 zincblende notation).
They appear as leading peaks in the reQectivity spectra
as it happeris in group IV and group II-VI compounds.
The similarity of the reRectance spectra of the diamond
and zincblende structures has been extensively discussed
in the literature. We are taking the suggestions of Lee'
and Della Ricia" that the dominant features of the
reflectance spectra should be determined by the shape
of the Brillouin zone; this makes a comparison between
the diamond and zincblende compounds and the present
compounds a reasonable first step in interpreting these
spectra.

Peaks numbered 4 are tentatively assigned to E&+ I5.&

transitions, i.e., the spin-orbit split component of the
E» peak. This splitting ~» corresponds to 0.13 eV for
Mg2Ge and thus agrees well with —', of 60. The splitting
~» equals 0.28 eV for Mg2Sn, in agreement with the
value predicted by the 3 rule from the d, o

——0.48-eV
splitting mentioned above. " Otherwise, this peak on
the three compounds corresponds to peaks in e2 that
agree with the character M» of Lee' s' calculation.

With more uncertainty, we have attributed the

n J. Della Ricia, in Proceedings of the International Conference
on Semiconductor Physics, Prague, 1960 (Academic Press Inc. ,
New York, 1961),p. 51.

structure numbered 9 to an E»' transition because it
appears in the same relative position in the reflectance
spectrum as in the diamond and zincblende compounds.
Peak 10, observed only in Mg2Sn, could be the spin-
orbit splitting 9, since it gives about the same value of
0.29 eV for 6» as peaks 3 and 4. It appears as an M2
transition in Lee s calculation and as a peak in e2 in
Scouler's" results.

We shall refrain at this point from any more tentative
assignments of the remaining structure shown in Figs.
2—4. This structure should easily be interpretable as
soon as the next generation of band-structure calcu-
lations becomes available.

Pote added in proof. A recent pseudopotential band-
structure calculation by M. Y. Au-Yang and M. L.
Cohen to be published in this journal supports the
above assignments and further interprets the spectra.
Unpublished OPW calculations by F. Herman also
support our general conclusions.
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We have computed the renormalization of the conduction-electron energy in a degenerate ferromagnetic
semiconductor at zero temperature due to the virtual emission and reabsorption of spin waves. We And that
as a result of the difference between the up- and down-spin Fermi momenta, this renormalization is quite
small. However, in the case where the conduction electrons are antiferromagnetically coupled to the ionic
moments, it is possible by doping to achieve a situation in which the effective mass of the down-spin electrons
is increased by about 80%, while tbe up-spin electrons remain unaffected.

I. INTRODUCTION

A GNETIC semiconductors have received a great
- ~ deal of attention recently. ' One reason for this is

the possibility of extending the technological applica-
tions of semiconductors. Another reason is the hope

* Supported by the Advanced Research Projects Agency
through the Center for Materials Research at Stanford University.

t' National Science Foundation Predoctoral Fellow.
' Symposium on Magnetic Semiconductors {invited talks),

Bull. Am. Phys. Soc. 13, 368 (1968).

that by doping these materials, one might gain some in-

sight into the nature of band magnetism.
In the presence of such doping, one might ask how the

conduction electrons affect the magnetic properties, or,
alternatively, how the magnetic order affects the trans-
port properties. The first type of question involves, for
example, the indirect Ruderman-Kittel-Kasuya- Yosida
(RKKY) interaction. ' The second type ot question has

2 See, e.g. , F. Holtzberg, T. McGuire, S. Methfessel, and J.
Suits, Phys. Rev. Letters 13, 18 (1964).
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been largely directed toward understanding the con-
ductivity of such materials. To this end, various calcu-
lations have been made of the conduction-electron
relaxation rate. ' In this paper we investigate the com-
plementary question of the electron effective mass. In
particular, we consider how magnons —interacting with
the electrons through a contact exchange interaction-
renormalize the electron energy. Our results show that,
in general, magnon corrections to the effective mass are
small. However, under certain conditions, which will
be discussed, these corrections can become important.

II. HAMILTONIAN

Let us begin by considering a magnetic semiconductor
which has been doped or alloyed to produce enough
conduction electrons to provide a well-defined, yet
small, Fermi sphere. We shall assume that the ionic
moments experience a ferromagnetic exchange interac-
tion only with their z nearest neighbors. The ionic
Hamiltonian is then

they will interact with the ionic electrons. If the con-
duction-electron wave function does not vary very much
over an ionic dimension, the exchange part of this inter-
action may be represented by a spin-dependent contact
potential. Thus,

3'.;„,= —AIV P S,"s,b(R; r—;),

where the sum over i refers to the ions, and that over

j to the conduction electrons. The crystal volume V has
been included to compensate for the dimensions of the
5 function. An interaction of this form has also been
used by Rys, Helman, and Baltenspergere to investigate
the temperature dependence of the band edge in mag-
netic semiconductors. Second-quantizing the electron
part of this Hamiltonian, and expressing the ionic mo-
ments in terms of magnon operators gives

K; t———hIcVS Q o.cs.tcs.
k, a

+~I E Z ooq oq'o«o~+qM' &

k, o q, q'

where g is the ionic g value, p~ the Bohr magneton, and
J the exchange constant. If we are well below the Curie
temperature, we may express 3C; „;,in terms of magnon
creation and annihilation operators aq and aq, in the
usual5 way. Thus,

~ionia= +0+2 Iitoq&q oq r

where
)sa&q ——gpsB+ 2sh JS(1—yq)

eiq 5

If the magnetic 6eld is not too strong, we may de-
scribe the conduction electrons by plane-wave states.
The second-quantized electron Hamiltonian is then

~elea ~ Gko'Cko' Ckqr y

t
k, o

where
es.——5'k'/2m —psIIo.

Here o =+1 for "up" moments and —1 for "down"
moments. Throughout this paper we shall occasionally
refer to these spin moments merely as "spins" which are
not to be confused with the spin angular momenta
which point in the opposite direction. Also, notice that
we are taking the g value of the conduction electrons to
be 2.

As the conduction electrons move about in the lattice,
' See, e.g., H. W. Lehmann, Phys. Rev. 163, 488 (1967).
4 See, e.g., A. Yanase and T. Kasuya, J. Appl. Phys. 39, 430

(1968).
6 F. KeGer, in Handbuch der Physik, edited by H. Geiger and

K. Scheel Qulius Springer, Berlin, 1966), Vol. 18, Part, 2, p. 1ff.

—g(-', ES)AI P P (cts+q, tcstaq+aqtcts q, tcsg) . (5)
k q

The first term corresponds to the polarization of the
conduction electrons by the ionic magnetization. Ap-
plying the random-phase approximation to the second
term amounts to taking g'=q and replacing cq cqck ck

by the symmetrical product ((Nq)c&,tcs +(Nkn)itq oq).
This leads to a shift in the magnon spectrum that is
proportional to ((Nt) —(is&)), which is just the polariza-
tion of the conduction electrons. We shall add these
contributions to kcoq and ~k„ thereby defining the new
energies A~™qand fk, '.

istoq= haiq+ hI((et) —(et)),

es,=es —ANI~ S——Q (eq) ~o.
E q j

At very low temperatures (1/N)P (Nq) is very small and
may be neglected.

The third term constitutes the electron-magnon in-
teraction. In many magnetic semiconductors the band
edge is observed' to shift by about 0.1 eV in going from
the Curie temperature down to very low temperatures.
It is thought' that this might be due to the interaction
(4). If this is, in fact, the case, then this exchange in-
teraction is very strong —about ten times stronger than
the ion-ion exchange. This is reasonable, since it is es-
sentially a screened intra-atomic exchange interaction.
However, if the number of conduction electrons is small,
this may not seriously aGect our assumption that the
ionic moments are ferromagnetically ordered. Equations

F. Rys, J. Helman, and W. Baltensperger, Physik Kondensier-
ten Materie 6, 105 (1967).

r G. Harbeire and H. Pinch, Phys. Rev. Letters 17, 1090 (1966).
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(2), (3) and (5) constitute a coupled fermion-boson
problem completely analogous to the electron-phonon
problem. In Sec. III we shall use perturbation theory
to compute the corrections to the electron energies pro-
duced by the 1-magnon terms in Eq. (5).

III. EFFECTIVE MASS

The total Hamiltonian for our coupled system is

X=Xp+Xt,
where

Xp= Q ekrckg chg+Q AMqQq Gq
k, tr

(6)

The perturbation K~ leads to an effective electron-
electron interaction. The usual procedure for obtaining
this eRective interaction is to apply a canonical trans-
formation to 3C which removes the oR-diagonal magnon
terms to lowest order. The result is

X'=Xp—-',1VSA2I2 p p $(ski ek,—,t —Arpq)
'

k, k'

(ek t ek'+q, k+Arpq) jc k'~q, hack'tc k q, tckl ~ (9)

This eRective electron-electron interaction is repre-
sented graphically in Fig. 1(a).

In the phonon case the k' dependence of the interac-
tion coefficient may be removed by certain wave-vector
translations. This results in a form which clearly shows
that the interaction is attractive between electrons
whose energies lie within a Debye energy of the Fermi
surface and whose momenta are equal and opposite.
This, of course, may lead to a superconducting ground
state.

In the magnon case this transformation is not pos-
sible because of the spin dependence imposed by the
magnon. However, if one neglects this spin dependence
in the electron energies and writes ~I,~=~gj„ then the
coeS.cient in the interaction between electrons of equal
and opposite momenta becomes

(ek —ek, ) '—(h(aq) '

This has the same form as the phonon-mediated interac-
tion except that it has the opposite sign. For this reason

k-q,
rv

Xt—— Q(2 'l'S)—AI P P (c kyq, 2cktnq+sq c k—q, tck&), (8)
k q

where 8» is the renormalized electron energy. The cor-
responding process for down-spins involves a diagram
similar to Fig. 1(b) but with the vertices reversed in
time. That is, the down-spin absorbs a magnon which
has already been produced along with an electron-hole
pair. However, at zero temperature this process is
frozen out. Therefore, at very low temperatures in a de-
generate semiconductor, we expect down-spins to have

&Pe"

+br ((hf) -(n&))

FIG. 2. Magnon spectrum in
the presence of polarized con-
duction electrons.

different mobilities. This raises the intriguing possibility
of spatially separating the different spin polarizations.

Before evaluating Eq. (10), let us consider the nature
of the intermediate state appearing in the denominator.
This denominator becomes

Ash 2 A'(k —q)'
+(2 g)prtII+ AI—Ck) Ek q, f IEMq =

2m

)& L2iVS —((ttt) —(tsar))] —2sh JS(1—Pq) . (11)

We shall approximate our ferromagnetic magnon spec-
trum by a quadratic dispersion relation with a wave-
vector cutoR q as shown in Fig. 2. This approximation
is not very critical, as we find that our final result is
insensitive to the actual value of q . For a simple cubic
spin array, Eq. (11) then becomes

A2$2 A2(k q)
2

—2AJSasq2+b, , (12)6kb —6k—q, 4
—Ig&q =

2m

one says that the electron-magnon interaction leads to
the destruction of Cooper pairs. ' However, there are
regions in which this interaction is attractive, and, as
Cohen et al.' have shown, the presence of such a poten-
tial may actually enhance the superconducting transi-
tion. Thus, it may be that superconductivity and ferro-
magnetism can be made to coexist in a ferromagnetic
semiconductor. I.et us, however, return to the subject
of this paper, namely, the magnon renormalization of
the electron energy.

The correction to the electron energy due to the
magnon process illustrated in Fig. 1(b) is obtained from
Eq. (9) by setting k'= k —q. The result is

bkg = ski 2
't Sh'I' p (ski ek q, t —Acpq) l (10)

q

k,
t%P

(0)

k', t

(b)

where a is the lattice parameter and

6= (2 g)I2sII+AI "L2ItIS ((ttt) ——(222))$. (13)—
FIG. 1. (a) Diagrammatic representation of the magnon mediated

electron-electron interaction; (h) diagrammatic representation of
the renormalization process considered in this paper.

8 S. V. Vonsovskii and Yu. A. Izyumov, Usp. Fiz. Nauk. 78,
3 (1962) /English transl. : Soviet Physics —Usp. 5, 723 (1963)j.' M. L. Cohen, C. S. Koonce, and M. Y. Au-Yang, Phys. I etters
24A, 382 (1967).
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k, cr

l
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=k

Fxo. 4. Region of integration
used in the evaluation of Eq.
(14)

(a) (b)

Pro. 3. Electron energies in the molecular-held approximation for
(a) ferromagnetic coupling and (b) antiferromagnetic coupling.

The energetics of this process may be understood with
the help of Fig. 3. %hen an electron on the down-spin
Fermi surface jumps to some point outside the up-spin
Fermi surface, its kinetic energy is increased while its
Zeeman-exchange energy is decreased. Since 6p't = Cps,
the processes indicated in Fig. 3 always lead to states of
higher energy. Therefore, the denominator in Eq. (10)

is always negative. The fact that there are no poles
justi6es our use of perturbation theory. The sum over
q is evaluated by converting to an integral.

In the case of ferromagnetic coupling LFig. 3(a) ]
the magnitude of the magnon wave vector must exceed
a certain value depending upon its direction. Since the
effect is isotropic, let us consider kg = kgb. Defining the
variable 1=kg —q, the integral is

2m t/'

dl
(2~) ' —i ti t (k'/2m+ 2kJSa') P 4AJSa—'kgul Dh'/2—m 2hJ—Sa') kg s+ A)

(14)

where

l (u) =ktu+$q '—(1—u')k&'1'",

at the Fermi surface. %e obtain the energy correction
shown in Fig. 5. Using the relation

and u= cose, 0 being the angle between I and s. The
region of integration is indicated by the shaded region
in Fig. 4. In evaluating this integral we have assumed
that kg is small in comparison with q . This enables us
to expand in powers of k&/q„, . The integration of Eq.
(14) is rather tedious and the result rather lengthy. In
the case of ferromagnetic coupling we find that there is
very little correction to the mass of the electron.

In the case of antiferromagnetic coupling, however,
the situation is somewhat different. As we see from Fig.
3(b), the down-spin Fermi momentum may be larger
than the up-spin Fermi momentum. It then becomes
possible for the constant term in the denominator of the
integrand of Eq. (14) to become very small. In particu-
lar, this vanishes for kg such that

2fJ, IrH 25
(
I [E +S' kp—k/2 m

=gfjnH/5
~
I

~
((sg) —(et))+25JSa'k$'. (16)

m*=-
ci'8l,/Bk'

we find that m~=1.28 m at the Fermi surface. Thus,
under this condition the magnon contribution to
the effective mass will be comparable to the phonon
contribution.

A calculation of the magnon contribution to the elec-
tronic specific heat of a rare-earth metal using an s f-
interaction has recently been made by Cole and
Turner. 's Since AC~/yT m*/m, their large result im-
plies a large eGective mass. The reason for this large cor-
rection arises from the fact that in a metal, one is dealing
with a Fermi energy that is much larger than the s f—

5—'o

For values of kg around this value, there is a signi6cant
correction to the effective mass of the electron. To
evaluate this correction we use the parameters listed in
Table I. These values have been chosen to make k~g
correspond to the value of kg at which Eq. (16) is
satisfied so that the most striking correction will occur

kFt

0.05
l

O.IO
1

O.I5
l

0.20

TABLE I. Numerical values used in the
evaluation of the effective mass.

AJ=0.Oj. eV S=1
kgb=0. 0528 A. ' kgb=0. 236 ~ I

n 1/(6s-')(keg'+=k~t')=2. 25&&10"(conductionelectrons)/cm'

k, X'

Fro. 5. Magnon-induced energy shift as a function of wave vector.

exchange energy. This has the eGect of greatly increas-
ing the phase space entering the integral (14).

"H. S. D. Cole and R. E. Turner, Phys. Rev. Letters 19, 501
(1967).


