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Large '8 expansion theory 18 applied to the Qonl elatlvlstlc glound st8te of a one electron
ion and the subsequent first-order differential equations are solved recursively. For each
order of perturbation theory, a general expression for the wave function is found. The
substitution of this form into the perturbation-theory equations reduces the problem for the
Kth-order wave function and energy to solving recursively a set of linear algebraic equations
of approximately 2Ãth order for the coefficients of certain radial polynomial terms appearing
in the wave function. The asymptotic-series results for both the energy and the wave
function are obtained explicitly through tenth order. For hydrogen a calculation of the
ionization field (ignoring tunneling) gives a value of 3.36 && 10 V/cm. This agrees well with
experimental results on field ionization and a recent accurate variational treatment and is
found to be much superior to a %KB result.

INTRODUCTION

The problem we are considering is that of a one-
electron ion in a uniform electric field. The field
is assumed to be greater than 1000 V/cm so that the
fine structure effects can be neglected in compari-
son with the perturbation effect of the electric
field. Since the unit of electric field in atomic
physics is 5. 142 x 10' V/cm, a perturbation treat-
ment is reasonable even for values of the electric
field near the ionization field, Previous perturba, —

tion-theory calculations have transformed the
Schrodinger equation to parabolic coordinates and
then solved the two resulting second-order linear
ordinary differential equations through either
second order' ' or third order' in the field
strength. Results uy to second order in the
ground-state wave function expressed in terms of
spherical coordinates can also be found. 4~' In the
present paper, we apply the method of large-Z
asymptotic expansions'~ ' to the calculation of the
ground state using sphericalcoordinates. Using
this technique the recursive equations to be solved
are first order. Repeated solution of these equa-
tions leads to the appearance of lm" terms, where
z is the radial distance of the electron from the
nucleus. For the perturbation theory solution to
be valid near the origin, the coefficients of the
log terms must be set equal to zero. In so doing
both the energy and the perturbation theory wave
function are determined, Results obtained ex-
plicitly through third order indicate that the wave
function corresponding to any arbitrary order
assumes the form of a certain sum of products of
Legendre polynomials and radial functions. These
radial functions are themselves truncated poly-
nomials in y. Assuming this form for the wave
function, and substituting directly into the pertur-
bation theory partial differential equations, the

problem in any order N reduces to solving sets of
linear algebraic equations recursively for the co-
efficients of the various powers of r in the radial
functions and the energy in the Nth order. A gen-
eral algebraic equation for any order is obtained
[Eq. (27)] and results are calculated explicitly
through tenth order on the IBM 36l3 computer.
For hydrogen a calculation of the ionization field
(ignoring tunneling) is made. The method devel-
oped here for one-electron problems appears to
be a general one for obtaining perturbation theory
results to arbitrarily high order. '~ '

Before beginning our formal treatment it should
be kept in mind that when a nonzero electric field
is turned on, the discrete bound-state spectrum
of the hydrogen atom goes over to packets of con-
tinuous energy states since the electron can tunnel
through the potential barrier. Thus in the usual
sense, .no discrete energy levels exist for the
pertul bed pl oblem —however observat1on of the
Stark effect through spectroscope certainly in-
dicates the existence of a perturbed bound states.
This apparent anomaly has been resolved by
Titchmarsh, ' who has examined the Green's func-
tion for the one-dimensional analog Stark-effect
problem and calculated the perturbed pole to first
order in the field, and has shown that it agrees
with the formal first-order perturbation theory
result. Presumably this agreement can be ex-
tended to higher orders and three dimensions. "
Since the spectral density is closely related to the
size of the Green's function, it follows that the
spectrum will be dense in the neighborhood of the
pole, which corresponds to physical observation.
However, it should not be surprising that our per-
turbation theory solutions turn out to be asymptot-
ic and nonconvergent. This is of course no handi-
cap since only a few terms give very accurate re-
sults.

II. THE BASIC ASYMPTOTIC EXPANSION

The Schrodinger equation of a one-electron ion with a nucleus of charge Z in a uniform electric field

& [X = 8/(5. 142 x 10' V/cm] can be written in the dimensionless form

——,
' (8'g/Bs') —s '(8$/Bs)+ (1/2s')L'( —(Z/s)( —Xs cos8 P= Eg,



where E is the energy of the system in atomic units (approximately 27.2 eV), s is the radial distance
of the electron from the nucleus expressed in Bohr radii, and I.' is the usual angular momentum operator.
In the usual perturbation theory treatment, we make a transformation of variables $ = Zs and Eq. (1) be-
comes for 4{t,8, $)

—k(&'~/&5') —5 '(s~/&&)+(I/252)&2~ 4'/0 - ek«s8 ~=(&/Z')+

where e=X/Z' is the natural perturbation theory parameter for the problem. Since there is no azimuthal
angle dependence for S states, and the ground state is nondegenerate (no permanent dipole moment), we
look for perturbation theory expansions

QO QO

(a) 4'= '
e 4'~(&, 8)=e Z e b~(), 8), and (b) —,= — Z e E2a=O &

' a=o g ~ 0 Pl

with b, =1 and E, = —,. We shall now return to Eq. (1) and obtain the basic asymptotic expansion which will
then allow us to determine a general form for the hy.

To obtain the basic asymptotic expansion me assume the form

—ZA (s )

j=0~ =

and substituting Eq. (4) and Eq. (Sb) into Eq. (1) we obtain

dh ' —j+2 dh j d'h -j+1 2 dh —j+1Q. Z 2——+ 2 a. Z 1 ——a.Z2j Q $8 $8 Bs ds 8 $8

B'a.

BS

Ba. B a. ' Qo BQ. QO ~ QO QO

+—~ cot8 + 2 Z ~ —Z s Z —~scos8 Z a. Z = —Z Z E E Za. Zs Be Bg j=Q Bs j —Q j 8 0 2sj-0

Setting the coefficients of the Z' and Z terms equal to zero successively, we obtain

a(s) =s

and a~ = 1.

Continuing in this way, the recursion relation between any a.
1

and earlier coefficients in the expansion
can be written j 1

1 Ba.
1

Ba. Ba. B a. j —(1+3~)
g

1+'Fa. = d8 2, +— +2, . +, +~cosesa — ~, E a 5
x=1

(6)
where the subscript 0 on the z sum indicates a sum only over odd values of x. We have assumed that no
contributions come from the homogeneous solutions of the equation for a&+1. Solving Eq. {8)recursively
we find

ai ——X cos8 s /2

a =&cos8s+&'cos'8 s /(2x4), (10)

a, =&'s'(icos'8 +~~) +A.' cos'8 s'/(2 x 4 x 6)

a =&'s'(~«»'8+ate) +~'s'{a c»'8+~~8 «s8) + (Z's'cos48)/(2 x 4 x 6 x 6), {12)

and a, =A'(E, —f)s+ (X's~/96)(31 cos8+ 63 cos38) + (X4s'/192)(cos'8+ icos 8) +A' cos'8 s "/(2 x4 x 6 x 8 x 10)
(13)



LAWRENCE B. MENDELSOHN

We note that if the coefficient of the s term in a, is not equal to zero, the evaluation of (1/s)(sa, /ss)
would lead to a X'lns term in a, . Since we have shown for nonsingular problems, such Bs the one under
consideration, that the basic asymptotic expansion is simply a reordering of terms of the perturbation
theory expansion (terms with a larger s($) power in a given order of the perturbation series enter the
basic asymptotic solution in a. lower-order term), and we know that the perturbation theory expansion must
be well behaved in the neighborhood of the origin, it follows that such lns terms cannot appear in our ex-
pansion. Thus the coefficient must be zero giving us the well known result

(14)

Also since A. ' terms will no longer appear in higher-order a, re-expressing P obtained thus far in terms
of g should give us the correct perturbation theory expansion through second order plus some additional
higher-order terms. In doing this we can also rewrite the sing and cos6) terms in terms of Legendre
polynomials Yl 0(g) obtaining,

g=e (1+a($+-,'& ) 1', , +(e /24)[(18$ +6) +& )Yo, +(15& +10( +2& )Y, , ]+8(e )j.2 3 4 2 3 4 3

Continuing in the same manner we obtain

b = Y (~)+~('+~('+~)'+~)'+~1')+ Y (~h'+ —"k'+ 5'+~(') (16)

and E, =3555/64.

As we go to higher orders such calculations become quite tedious. However the general form of the bp
for a well behaved solution now becomes apparent. That is we take

2k
b =Z Y (e)Z. B(k, l, j)$

l

(18)

where the sum over l is odd or even as k is odd or even (beginning with l = 1, 0 respectively), jl = l for l c 0,
jl = 2 for l = 0, and the B(k, l, j) are constants.

III. THE PERTURBATION THEORY SOI.UTION

Substituting Eq. (3a) and Eq. (3b) into Eq. (2) the equation for bk becomes

82$ BQ (k/2 int

8$'+( )
8$ +2/' k 1 0 k —1 2m k —2mZ b =0

Pl =1
(19)

where (k/2)tnt is the largest integer less than or equal to k/2. Now let us substitute Eq. (18) into the

above. The first three terms in the above equation give

2k —1 2k —2

2 Y Z (j+1)B(k,l,j+1)$ + Z A(l, j)B(k, l, 2+j)$
l 0 j —1

l j —2

where A (l,j) = -j '/2 —5j /2 —3 + l (l + 1)/2 . (21)

To evaluate —$ Yl 0 bk 1, we use the identity

=[(m+1)/(2m+1)] Y +[m/(2m+1)] Y (22)

to obtain after some manipulation of dummy indices

2k —1 l 1
2k 1

B(k —1, l —1,j —1)$ +9 [(k —2) —l] 2 B(k —1, l+1,j—1)$
l l 0 2l —1 .1j ' ' 27+3

l 2

(23)

where j1 = / for / w 1, j1= 3 for l = 1 and we define

9(x)=l for x~0, 9(x)=0 for x(0. (24)

The 9 function is a way of reminding us that the term l'=0 does not enter the second sum. In a similar
manner, the energy term in Eq. (19)



176 ONE-ELECTRON ION IN ELECTRIC FIELD

(k/2 int k —2m 2(k —2m)

E2 ZI Yf 0
2 B(k —2m, l, j)$ (25)

with l odd or even as k is odd or even, can be expressed as

k 2(k —2) t' int
[-,'(k —1)]

&I(&-2)-&I & ~g»I(&-2m)-&I&I(u-4m) il-& &(&-2~, &i))(' +Z ~
Pl—

(26)
k

Note that all the terms of Eq. (19) [Eq. (20), Eq. (23), Eq. (26)] now have ZI Yf 0 with I taking on the
values k, k —2, .. . , 0(1) for k even (odd). Thus for each value of I, we demand that the coefficient of YI p
vanish. Writing the final form of Eq. (19), setting each coefficient of YI p equal to 0, the B(k, I,j+ I) for
particular values of k and l can be obtained recursively by setting the coefficients of $& in the equation

(
2k —1 2k —2

(j + l)B(k, l,j+1)+ 2 A(l,j)B(k, l,j +2)— I

j —1
l j —2

l
2k —1

—9[(k —2) —I] + B(k —1, / +1,j —1) +9[(k —2) —I ]2l+3 l+2

xB[(2k —4m)-jlz B(k —2m, l,j)+E 5 5. )( =0

2k —1
B(k —1, I —1,j —1)

j1
2(k-2) '

Z Z a[(k -2m) - I ]

(27)

successively equal to zero starting with j = 2k —1 and decreasing finally to j =j&
—1. The lower limit of

j~ —2 in the second sum does not enter since it is readily observed that

A(l, l —2) =0, (28)

except in the l =0 case when the lower limit gives a contribution to the g' term Sinc. e A(0, 0) = —3, setting
the coefficient of the l =0, j=0 term equal to zero gives the result

Ek =SB(k, O, 2) . (29)

The B(k, I,j) and Ek have been calculated in double precision through tenth order on the IBM 360MOD50
computer. The expression for the energy is given in the next section and a. table of B(k, l,j) is given
(Table I) through sixth order.

IV. THE IONIZATION FIELD

The expression for the energy through tenth or-
der is found to be

E = —Z [ 5+ (2. 25)e '+ (55.546 875)E

+ (4. 907 771484 x 10')e'+ (7. 942 369 264 x 10')e'

+ (1.945 319604 x10')e"] (so)

V(x) =-~x- Z/)x~ (sl)

and at the point

x = (Z/~)'I',

V(x) for positive x has its maximum value

V B„x/2Z x/

max

(32)

(33)

Thus the ground-state energy in the presence of an
electric field is lowered as a result of the induced
multipole moments interacting with the electric
field. Looking along the field direction (x), the
potential energy becomes

This maximum decreases with increasing electric
field at a faster rate than the energy E [Eq. (30)],
so that when X is such that F. equals t/"max the sys-
tem will be ionized. This occurs when

A, = (I/4Z)E' (34)

and gives an upper bound to the ionization field
since the effect of tunneling which will occur at
lower fields has been neglected. Using Eq, (34)
we obtain an ionization field in the case of hydro-
gen of 0. 06535 a. u. For such a large value of the
electric field, the tenth-order term in Eq. (30) is
found to give a slightly larger correction than the
eighth-order term. Therefore the asymptotic
series in this case is truncated after eight terms.
Our result compares favorably with a recent two
parameter variational calculation result" of 0. 065
a. u. and a field emission experiment" which in-
dicates that at a field strength of about 3x 10'
V/cm (0. 0585 a. u. ) the ion H+ predominated. Our
result is significantly smaller than the WKB result
of Rice and Good, "who quote a value of the ioniza-
tion field of about 0. 14 a. u. —above this value
they found the ground-state wave function is every-
where oscillatory.
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TABLE I. Perturbation wave function coefficients
BP, l, j). Although the calculations mere done to tenth
order, for brevity the results are reproduced only to
sixth order. The large number of significant figures
kept are of importance for doing tenth-order expectation
va.lue calculations.

B(u, r, j)
0.1000000000x 10 '
0.500 000 000 0
0.750 000 000 0
0.250 000 000 0
0.416666666 7x lQ '
0.625 000 000 0
0.416 666 666 7
0.833 333 333 3 x 1Q"
0.662500 000 0 x 10+'
0.331250 000 0 x 10 ~

0.177 500 000 0 x 10
0.716 666 666'7
0.3,33 333 333 3
0.1250000000x 10 '
0.350 000 000 0
0.262 500 000 0
0.750000 000 0 x 10-'
0.833 333 333 3 x 10
0.185156250 0 x 10+'
0.617187500 0 x 10+'

0.].79 947 9167 x 1Q+

0.443 750 000 0
0.8194444444 x 10-'
0.902 777 777 8 x 10 2

0.5208333333 x 10 3

0.125703 125 Qx ]0+2
0.838 0208333 x ]0+&

0.316145 833 3 x 10
0.947 916 666 7
0.3.99652 777 8

0.243 055 555 6 x 10-'
0.148 809523 8 x 3.0-'
0.187 500 000 0
0.150 000 000 0
0.500 000 000 0 x 10 '
0.833 333 333 3 x 10
0.595 238 095 2 x 10"3

0.398367 1875 x 10+'
0.199183593 8 x 10+
0.937640 625 0 x 10+'

0;351687500 0 x 1Q+

Q.865 178 57].4 x 1Q+

0.1767373512x 10+'

5
5
5
5

5
5
5
5
5
5
6
6
6
6
6
6
6
6
6

6
7
8
9

10

6
7
8
9

10
2

6
7
8

10

B{k,l, j)
0.290 376 984 1
0.353 670 634 9 x 10
0.275 297 6190 x 10 2

0.111607 142 9 x 10 3

0.148 843 7500 x 10+~

0.3.11632 8125 x 1Q+2

0.421093 7500 x ]0+'

0.110781250Ox 10+'
0.219791666 7
0.307 291666 7 x 10-'
0.266 203 703 7 x 10 2

0.115740 740 7 x 10-3
0.982 142 857 1 x 10 ~

0.818 452 381 0 x 10-'
0.297 619 047 6 x 10 ~

0.595 238 095 2 x 10"2
0.661375 6614 x 10 '
p.3306878307x 10 '
0.3.63 592 3828 x 10+'
0.545307 9427 x 10
0.1586455078 x 10 '
0.397 307 2917 x 10+'
0.827439 2361 x 10+
0.1390066964 x 10+'
0.195 303 1994
0,220 803 020 3 x 10 ~

0.187458 664 0 x 10"2

0.105406 746 0 x 10-
0.3100198413x 10 '
0.&028118164x 10+'
Q.685412 j.pg 4 x ].0
0.264 808 314 7 x 10+'
0.807036 8304 x 10+'
0.j 92 429 005 5 x ]0+

0.357440 476 2 x 10+&

0.542348 710 3
0.652488 425 9 x 10-'

0.582320 601 9 x 10-'
0.3410218254x 10 '
0.103339 947 1 x 10-4
0.1423074777 x ].0+2

0.113845 9821x ].0+'
0.443 gg5 5357 x 10+'
0.114434 523 8 x j 0+~

0.218 154 761 9
0.3125000000x 10 "

0.318813 131:3x 10"2

0.2074314574 x 1Q 3

0.6764069264x 10 '
0.5078125000x 10 ~

0.435267, 8571x 10 ~

0.1674107143 x 10"~
0.3720238095x 10 '
0,507305194:8x 10 3

0.405 844 1558 x 10 4

0.].503].265Q3 x 1Q 5
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The Qonrelativistic diffex"ential cxoss sections for photo-iom. zation of molecules are derived
and are worked out in detail fox' systems with random orientation. The more important
contributions due to electric dipole, electxic quadrupole, magnetic dipole, and two-photon
(nonresonant) absorption have been included. Px'ocesses such as vibrationally induced auto-
ionizatio~ have been discussed. The significance of these results with regRxd to the Qesign
and interpretation of photo lonizRtloQ experiments ls Rlso considered. The Rnglllar dis-
tribution of photoelectrons from 82 is calculated as an example.

I. INTRODUCTION

The angular distribution of yhotoelectrons emit-
ted by a randomly oriented set of molecules i.s, in
general, correlated with the polarization and prop-
agation directions of the incident light. Recent
measurements of angular distributions of molecu-
lar yhotoelectrons' have demonstx'ated the useful-
ness of such measurements in obtaining informa-
tion about initial states of some systems.

It has been well established that etonian yhoto-
ionization, in the electx'ic diyole ayyroximation,
yields an angular distribution of the form 8+p
x cos'8, where 8 is measuxed from the polariza-
tion direction of incident linearly yolarized light. ~

Reference 2 also states that "Averaging over the
rotational orientations of molecules also gives
this form. " In this yayer we derive expressions
for the nonrelativistic differential cross sections
for yhoto-ionization of randomly ox'iented diatomic
molecules, giving explicit equations for the coef-
ficients n and p in terms of the transition matrix
elements. The more imyortant contributions due
to electric diyole, electric quadruyole, magnetic
dipole and two-photon (nonresonant) absorption
have been included. The pure electric diyole con-
tribution is the largest for normal yhoton intensi-

ties. Interfex'ence contributions from the next-
higher multiyoles may affect the differential yhoto-
lonlzatlon cross sectloD by a fe%' percent. Px'0-
cesses such as vibrationally induced auto-ioniza-
tion have also been considered. The x'esultlng ex-
pressions indicate the types of information one
might be able to obtain from yhotoelectron angu-
lar-distribution measurements and may be hely-
ful in the design of future exyeriments.

ID nuclear yhysics, yroblems involving the cor-
x'elation between directions and yolarizations of
various radiations are quite common. As a re-
sult, the develoyment of formalisms for treating
these processes has been very extensive. ' Al-
though certain nuclei share with molecules the
feature of being nonsyherical, the method of hand-
ling angular distributions from asyheric targets
diffexs in the two cases. In the case of a mole-
cule, the yexiod of rotation is generally long com-
yared with the time scale of the vax'ious yhotoelec-
tronic yl ocesses. Consequently we can tx'eat
yhotoejection from a single molecule as if it oc-
curred with the molecule oriented in a fixed direc-
tion in space. We may then average the angular
distribution over molecular orientations in the
samyle. In the case of nuclei, the radiative life-
times ax'e long comyax"ed with x'otation yeriods so


