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Large~Z expansion theory is applied to the nonrelativistic ground state of a one-electron
ion and the subsequent first-order differential equations are solved recursively. For each
order of perturbation theory, a general expression for the wave function is found. The
substitution of this form into the perturbation-theory equations reduces the problem for the
Kth-order wave function and energy to solving recursively a set of linear algebraic equations
of approximately 2Kth order for the coefficients of certain radial polynomial terms appearing
in the wave function. The asymptotic-series results for both the energy and the wave
function are obtained explicitly through tenth order. For hydrogen a calculation of the
ionization field (ignoring tunneling) gives a value of 3.36 X 10° V/cm. This agrees well with
experimental results on field ionization and a recent accurate variational treatment and is
found to be much superior to a WKB result.

5 DECEMBER 1968

INTRODUCTION

The problem we are considering is that of a one-
electron ion in a uniform electric field. The field
is assumedto be greater than 1000 V/cm so thatthe
fine structure effects can be neglected in compari-
son with the perturbation effect of the electric
field. Since the unit of electric field in atomic
physics is 5.142x 10° V/cm, a perturbation treat-
ment is reasonable even for values of the electric
field near the ionization field, Previous perturba-
tion-theory calculations have transformed the
Schrédinger equation to parabolic coordinates and
then solved the two resulting second-order linear
ordinary differential equations through either
second order!s2 or third order? in the field
strength. Results up to second order in the
ground-state wave function expressed in terms of
spherical coordinates can also be found.*;® In the
present paper, we apply the method of large -Z
asymptotic expansions® 7 to the calculation of the
ground state usingsphericalcoordinates. Using
this technique the recursive equations to be solved
are first order. Repeated solution of these equa-
tions leads to the appearance of ln7 terms, where
¥ is the radial distance of the electron from the
nucleus. For the perturbation theory solution to
be valid near the origin, the coefficients of the
log terms must be set equal to zero. In so doing
both the energy and the perturbation theory wave
function are determined. Results obtained ex-
plicitly through third order indicate that the wave
function corresponding to any arbitrary order
assumes the form of a certain sum of products of
Legendre polynomials and radial functions. These
radial functions are themselves truncated poly-
nomials in . Assuming this form for the wave
function, and substituting directly into the pertur-
bation theory partial differential equations, the

problem in any order N reduces to solving sets of
linear algebraic equations recursively.for the co-
efficients of the various powers of # in the radial
functions and the energy in the Nth order. A gen-
eral algebraic equation for any order is obtained
[Eq. (27)] and results are calculated explicitly
through tenth order on the IBM 360 computer.
For hydrogen a calculation of the ionization field
(ignoring tunneling) is made. The method devel-
oped here for one-electron problems appears to
be a general one for obtaining perturbation theory
results to arbitrarily high order.”>®

Before beginning our formal treatment it should
be kept in mind that when a nonzero electric field
is turned on, the discrete bound-state spectrum
of the hydrogen atom goes over to packets of con-
tinuous energy states since the electron can tunnel
through the potential barrier. Thus in the usual
sense, no discrete energy levels exist for the
perturbed problem ~ however observation of the
Stark effect through spectroscope certainly in-
dicates the existence of a perturbed bound states.
This apparent anomaly has been resolved by
Titchmarsh, ® who has examined the Green’s func-
tion for the one-dimensional analog Stark-effect
problem and calculated the perturbed pole to first
order in the field, and has shown that it agrees
with the formal first-order perturbation theory
result. Presumably this agreement can be ex-
tended to higher orders and three dimensions.®
Since the spectral density is closely related to the
size of the Green’s function, it follows that the
spectrum will be dense in the neighborhood of the
pole, which corresponds to physical observation.
However, it should not be surprising that our per-
turbation theory solutions turn out to be asymptot-
ic and nonconvergent. This is of course no handi-
cap since only a few terms give very accurate re-
sults.

II. THE BASIC ASYMPTOTIC EXPANSION

The Schridinger equation of a one-electron ion with a nucleus of charge Z in a uniform electric field
A [r=8/(5.142% 10° V/cm] can be written in the dimensionless form

- 1(o2y/8s2) - s~ (89/3s) +(1/28%) L% — (Z/s)P~rscosb p=EY , (1)
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where E is the energy of the system in atomic units (approximately 27.2 eV), s is the radial distance

of the electron from the nucleus expressed in Bohr radii, and L? is the usual angular momentum operator.
In the usual perturbation theory treatment, we make a transformation of variables £ = Zs and Eq. (1) be-
comes for ¥(¢, 0, ¢)

~ 3 (029/082) - £71(0W/0 £) + (1/282)L2¥ - /£ — ek cosd ¥ = (E/Z)¥ (2)

where €=X/Z3 is the natural perturbation theory parameter for the problem. Since there is no azimuthal
angle dependence for S states, and the ground state is nondegenerate (no permanent dipole moment), we
look for perturbation theory expansions

esz 3)

(a) W= ? w(se)e-izeb(ge) and (b) 5 - My,

,§,M8

with b,=1 and E = 3. We shall now return to Eq. (1) and obtain the basic asymptotic expansion which will
then allow us to determine a general form for the bp,.
To obtain the basic asymptotic expansion we assume the form

0 .
p=e”PM) 5 o (s, 027 .
. J
j=0
and substituting Eq. (4) and Eq. (3b) into Eq. (1) we obtain

1 ; dh ~j+2_(ydh 4% -j+1 2 [ an —j+1
—_Z'jéo <ds> 4z <ds 3s Tds? a.)Z s (—Zi_) 4z

3a. 1 da, 9%, . ) 9a. j ) , P
=L = (cote——]+ 7) Z—JE -jE s1-L 27 “xscoso 2 ajz'7=_222 “’E Ea z=7

8s? Ts? 96 = 96?2 =0 ji=0 s=0 2s5=0 7
(5)
Setting the coefficients of the Z2 and Z terms equal to zero successively, we obtain
h(s)=s (6)
and a,=1. (W)

and earlier coefficients in the expansion

Continuing in this way, the recursion relation between any a] 1

can be written
da, 8. - (1+3%)

aa. )
175 1 (cosB) J, ]] N 1+7
]+1 fd 12 as2 +s as +2s2l: sing/ 86 " 86" +Acosfsa, ZOA E1+y Z_ akél,j—k—Sr ,
J r=1 k=0
(8)

where the subscript 0 on the » sum indicates a sum only over odd values of ». We have assumed that no
contributions come from the homogeneous solutions of the equation for a i 4 1- Solving Eq. (8) recursively
we find

a,=xcosfs2/2 , (9)
a,=XCcosfs +A2cos?9 st/(2x4), (10)
a; =2%s%(Z5 cos?6 +34) +A3 cos®0 s8/(2 x4 X 6) (11)
a, =2A2s%(45c0s20 +34) + A3s5( cos®0 +4 cosh) + (\*s®cos?h)/(2x 4% 6 x 8), (12)

and a;=A%E,—%)s + (A35%/96)(31 cos6 + 63 cos3h) + (A%s7/192)(cos28 + 6 cos) + X5 cos50 s19/(2 x4 x6 x8x10).
(13)
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We note that if the coefficient of the s term in a, is not equal to zero, the evaluation of (1/s)(da,/8s)
would lead to a A%1ns term in a;. Since we have shown7 for nonsingular problems such as the one under
consideration, that the basic asymptotlc expansion is simply a reordering of terms of the perturbation
theory expansion (terms with a larger s(£) power in a given order of the perturbation series enter the
basic asymptotic solution in a lower-order term), and we know that the perturbation theory expansion must
be well behaved in the neighborhood of the origin, it follows that such Ins terms cannot appear in our ex-
pansion. Thus the coefficient must be zero giving us the well known result

Ezz%- (14)

Also since A2 terms will no longer appear in higher-order aj, re-expressing ¥ obtained thus far in terms
of & should give us the correct perturbation theory expansion through second order plus some additional
higher-order terms. In doing this we can also rewrite the sing and cosf terms in terms of Legendre
polynomials Y7 o(6) obtaining,

Y=e g~{1+e(§+25)Y10+(e /24)[(18¢2 1 68° 4 2% 0(,+(15es <1083 12 ) ]+9(€3)}. (15)
Continuing in the same manner we obtain

b3=Y1’0(5‘§§+:}%£2+§é 34434 L RES 4 LES) 1 Y, 0( LES 2151 4 BES 1 45 £6) (16)
and E,=3555/64. (17)

As we go to higher orders such calculations become quite tedious. However the general form of the by
for a well behaved solution now becomes apparent. That is we take

k 2k
bk:Zl e)Z B, 1,j)E (18)
Jz

where the sum over [ is odd or even as & is odd or even (beginning with =1, 0 respectively), j;=1 for [ #0,
j7=2for =0, and the B(k,l,j) are constants.

III. THE PERTURBATION THEORY SOLUTION
Substituting Eq. (3a) and Eq. (3b) into Eq. (2) the equation for bp becomes

92b Y) k/z)mt

1% 1,% 1
(1-3) Loy, =&Yy by 1+~ Powbp_om

__r Z) — 19
B T -0 1)

where (2/2)int is the largest integer less than or equal to k/2. Now let us substitute Eq. (18) into the
above. The first three terms in the above equation give

2k -1 . 2k =2

EZYM( 2 (j+1)BR,L,j+1)E + 2 AQ, B, 1,2 +j)E 20)
-1 ]l_z

where A(l,7)=-j%/2-5j/2-3+1(1+1)/2. 1)

To evaluate —£Yy b, _ 1, we use the identity

Y, .Y =[(m +1)/@2m +1)] Y, 10" +[m/(@m +1)]Y m=1,0 (22)

1,0 " m,0

to obtain after some manipulation of dummy indices

] Zkil f 141 Zkil . j> 03)
- - —1.§- L2 - 1.7~
247 0\zr=1 i Bl-1,1-1,j-1)§" +9[(k -2)-1]57 5 = Ble-1,1+1,j- 1|,
where j1=1 for [+ 1, j1=3 for /=1 and we define
o(x)=1 for x =0, O(x)=0 for x<O0. (24)

The O function is a way of reminding us that the term /=% does not enter the second sum. In a similar
manner, the energy term in Eq. (19)
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(k/2)int k-2m 2(k = 2m) )
}f E, Zl Y0 Z) Bk -2m,1,5)&’ (25)
m=1 7

with / odd or even as % is odd or even, can be expressed as
[3-1)],
n

k 2(k—2)< int . > ]]
ZZ Yl’oe[(k—z)—l] il m2:1 o[(k —2m)-1]0[(2k —4m) -j 1By Bk —2m,1,5) ) & +ERY) -
(26)

k
Note that all the terms of Eq. (19) [Eq. (20), Eq. (23), Eq. (26)] now have Zl Y] o with [ taking on the
values k,k - 2,..., 0(1) for % even (odd). Thus for each value of I, we demand that the coefficient of ¥7 ¢
vanish., Writing the final form of Eq. (19), setting each coefficient of ¥; ( equal to 0, the B(k,7,j+1) for
particular values of # and I can be obtained recursively by setting the coéfficients of £7 in the equation

2k -1 2% -2 ;2%
<_ 2 (+1BR,L,j+)+ 2 AW)B(R,1,5+2) = 57— 25 Blk-1,1-1,j-1)
1.1 2k 1 20k ~-2)"'2 int
-0[(k-2)-1] 575 20 B(r-1,1+1,j-1)40[(k-2)-1] 2 o[k - 2m)-1]
2142 7, m=1
><e[(Zk—4m)—j]E2mB(k—2m,l,j)+Ek61,06j’0>£j=O 27)

successively equal to zero starting with j =2k — 1 and decreasing finally to j=j; —1. The lower limit of
j; — 2 in the second sum does not enter since it is readily observed that

A(l,1-2)=0,

(28)

except in the /=0 case when the lower limit gives a contribution to the £° term. Since A(0,0)=-3, setting
the coefficient of the /=0, j=0 term equal to zero gives the result

E, =3B(k,0,2).

(29)

The B(#,1,7) and Ep, have been calculated in double precision through tenth order on the IBM 360MOD50
computer. The expression for the energy is given in the next section and a table of B(k,7,j) is given

(Table I) through sixth order.

IV. THE IONIZATION FIELD

The expression for the energy through tenth or-
der is found to be

E=-2%.5+(2.25)e2+(55.546 875)¢*
+(4.907 771484 x10%)€® + (7. 942 369 264 X 10%)¢®

+(1.945319604x108)e'°] . (30)
Thus the ground-state energy in the presence of an
electric field is lowered as a result of the induced
multipole moments interacting with the electric

field. Looking along the field direction (x), the
potential energy becomes

Vix)=-rx- Z/ x| (31)

and at the point
x=(Z/A)V2 (32)
V(x) for positive x¥ has its maximum value

Vmax: —MV2 gz (33)

This maximum decreases with increasing electric
field at a faster rate than the energy E [Eq. (30)],
so that when A is such that E equals Vi, 45 the sys-
tem will be ionized. This occurs when

A=(1/4Z)E? (34)

and gives an upper bound to the ionization field
since the effect of tunneling which will occur at
lower fields has been neglected. Using Eq. (34)
we obtain an ionization field in the case of hydro-
gen of 0.06535 a.u. For such a large value of the
electric field, the tenth-order term in Eq. (30) is
found to give a slightly larger correction than the
eighth-order term. Therefore the asymptotic
series in this case is truncated after eight terms.
Our result compares favorably with a recent two
parameter variational calculation result!! of 0. 065
a.u. and a field emission experiment!? which in-
dicates that at a field strength of about 3 x 108
V/cm (0.0585 a.u.) the ion H* predominated. Our
result is significantly smaller than the WKB result
of Rice and Good,® who quote a value of the ioniza-
tion field of about 0.14 a.u. - above this value
they found the ground-state wave function is every-
where oscillatory.
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TABLE I

sixth order.

Perturbation wave function coefficients
B(k,1,7). Although the calculations were done to tenth
order, for brevity the results are reproduced only to
The large number of significant figures
kept are of importance for doing tenth-order expectation

value calculations.

TABLE I (continued)

116

o~

~.

Bk,1,j)

~

[~s.

B(k,1,7)

U T G 1 OT O R R R R R R R R R R R B B R B B D 00 0D GO 00 00 00 O GO O GO DO DO DO DO DO DO = b |3

o e R R R R R NDN NN NDNOOOOO OO0 WWWWHFIMIMIEMEM HEMEHNNDNO OO

DT W0 U R 00T OU R WN®I0UI R WO U R WO U W N DN N DD

0.100 000 000 0 x 10*?
0.500 000 000 0
0.750 000 000 0
0.250 000 000 0
0.416 666 666 7x 10™1
0.625 000 000 0
0.416 666 6667
0.8333333333x 1071
0.662500 000 0x 101
0.331250 000 0 x 10™1

0.177500 000:0 x 1071
0.716 666 666'7
0.133 333 333.3
0.125 000 000 0 x 10~1
0.350 000 000 0
0.262500 000 0
0.750 000 000 0 x 101
0.833 3333333 x 10~2
0.185156 2500 X 1072
0.617187500 0% 10*1

0.179947 9167 x 10+
0.443750 000 0

0.819444 4444 x 10~1
0.902777 7778 X 1072
0.5208333333% 1073
0.125703 125 0 x 1012
0.8380208333 x 1071
0.316 145 833 3 x 10™1
0.947 916 666 7

0.1996527778

0.243 055 555:6 X 10~1
0.148 8095238 x 102
0.187 500 000 0

0.150 000 000 0

0.500 000 000 0 X 10~1
0.8333333333x 1072
0.595 238 0952 x 1073
0.398367 1875 % 1073
0.1991835938 x 10*3
0.937640 6250 x 1072

0.351687 500 0x 102
0.865178 5714 x 10*1
0.1767373512x 10™!

DDA DDDAID DD DDDDDDDAIDNDD DDA DD D SO UTUTU UG OO Ul OO OO Ul | R

DD AR R R R BRRDONN NNNMNNDNNDNDNS O C OO OO OCOOUITUIUT U U U1 W W W W W W W W ki =

= e [ —
WO TIDU R WNOWP-TJNU OWWO-TJ® Ul WO WO -3

0.290376 984 1

0.353670634 9% 10!
0.2752976190 X 1072
0.111607 1429x% 10=3
0.148843 7500 x 10+2
0.1116328125x 10*2
0.4210937500x 107!

0.110781250 0 x 10™!
0.219791 666 7

0.307291666 7 x 101
0.266 203 703 7% 10~2
0.115 7407407 x 10~°
0.982142857 1% 10~1
0.8184523810x 10~
0.297 619 047 6 x 10~1
0.595 238 095 2 x 10~2
0.6613756614x 103
0.3306878307% 107¢
0.1635923828 x 10+
0.545307 9427 x 103
0.158 6455078 x 1013
0.397:307 2917 X 10*2
0.8274392361x 10!
0.139006 6964 x 10*1
0.195303 1994

0.220803 0203 x 10!
0.187 458 664 0 x 10™2

0.105406 746 0 X 10=°
0.3100198413% 107°
0.1028118164 % 10™
0.6854121094 % 10+3
0.264808 3147 x 1073
0.807 036 8304 X 10™2
0.192429 005 5 x 1072
0.357440476 2 x 101
0.542348710 3

0.652488425 9% 101

0.5823206019x 10~2
0.3410218254 % 103
0.1033399471x 10~
0.142307 4777 x 10+2
0.113845 9821 x 102
0.443 995 5357 x 10!
0.114434523 8 x 10*!
0.218154 7619

0.312500 0000 % 10!
0.3188131313x 1072

0.2074314574 x 10~3
0.676406 9264 x 10~
0.5078125000x 10!
0.435267.8571x 101
0.1674107143 x 10~1
0.372 023 8095 x 10™2
0.507305194:8 X 1073
0.405 8441558 x 10™%
0.150312 6503 x 10~°
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Angular Distribution of Molecular Photoelectrons*

John C. Tully, T R. Stephen Berry, and Bryan J. Dalton;t
Department of Chemistry and The James Franck Institute, University of Chicago,
Chicago, Illinois 60637
(Received 16 May 1968)

The nonrelativistic differential cross sections for photo-ionization of molecules arederived
and are worked out in detail for systems with random orientation. The more important
contributions due to electric dipole, electric quadrupole, magnetic dipole, and two-photon
(nonresonant) absorption have been included. Processes such as vibrationally induced auto-
ionization have been discussed. The significance of these results with regard to the design
and interpretation of photo-ionization experiments is also considered. The angular dis-
tribution of photoelectrons from H, is calculated as an example.

I. INTRODUCTION

The angular distribution of photoelectrons emit-
ted by a randomly oriented set of molecules is, in
general, correlated with the polarization and prop-
agation directions of the incident light. Recent
measurements of angular distributions of molecu-
lar photoelectrons! have demonstrated the useful-
ness of such measurements in obtaining informa-
tion about initial states of some systems.

It has been well established that afomic photo-
ionization, in the electric dipole approx1mat1on,
yields an angular distribution of the form & +§

X cos?9, where 6 is measured from the polariza-
tion direction of incident linearly polarized light.?
Reference 2 also states that “ Averaging over the
rotational orientations of molecules also gives
this form.” In this paper we derive expressions
for the nonrelativistic differential cross sections
for photo-ionization of randomly oriented diatomic
molecules, giving explicit equations for the coef-
ficients & and @ in terms of the transition matrix
elements, The more important contributions due
to electric dipole, electric quadrupole, magnetic
dipole and two-photon (nonresonant) absorption
have been included. The pure electric dipole con-
tribution is the largest for normal photon intensi-

ties. Interference contributions from the next-
higher multipoles may affect the differential photo-
ionization cross section by a few percent. Pro-
cesses such as vibrationally induced auto-ioniza-
tion have also been considered. The resulting ex-
pressions indicate the types of information one
might be able to obtain from photoelectron angu-
lar-distribution measurements and may be help-
ful in the design of future experiments.

In nuclear physics, problems involving the cor-
relation between directions and polarizations of
various radiations are quite common. As a re-
sult, the development of formalisms for treating
these processes has been very extensive.? Al-
though certain nuclei share with molecules the
feature of being nonspherical, the method of hand-
ling angular distributions from aspheric targets
differs in the two cases. In the case of a mole-
cule, the period of rotation is generally long com-
pared with the time scale of the various photoelec-
tronic processes. Consequently we can treat
photoejection from a single molecule as if it oc-
curred with the molecule oriented in a fixed direc-
tion in space. We may then average the angular.
distribution over molecular orientations in the
sample. In the case of nuclei, the radiative life-
times are long compared with rotation periods so



