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1. The electrons obey the Lax 2-band model'?

E(I+E/E,)=2%: I*k/2m; (6)
and

mo/mi=1+2|M|*/E~2|M;|*/E,, (7

where M ; is the appropriate momentum matrix element
and is independent® of x, and m, is the free-electron
mass. Equations (6) and (7) are probably incorrect in
the heavy-mass direction'®?® and this may lead to small
errors.

2. The hole effective masses are independent of x.
(Actually the hole density of states effective mass is

1ZR. N. Brown, J. G. Mavroides, and B. Lax, Phys. Rev. 129,
2055 (1963); B. Lax, J. G. Mavroides, H. J. Zeiger, and R. J.
Keys, Phys. Rev. Letters 5, 241 (1960).

13 M. H. Cohen, Phys. Rev. 121, 387 (1961); J. O. Dimmock,
MIT Laboratory Report No. 1, 1964, p. 41 (unpublished).
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about 259, larger at x=0.05 than in pure bismuth."
This effect is unimportant for our purposes.)

To proceed we take the hole masses from Ref. 2 and
from the electron masses given there we calculate the
matrix elements M, Then from E,=|L,—L,| and
Ey= T4 —max(L,,L,) we calculate the electron Fermi
energy Ep by equating the number of electrons and
holes. The dHvVA area and the cyclotron mass ratios are
then readily calculated. The latter is given by

m(x)/m*(0)= (E,+2Erp)/(E,'+2EF).  (8)

These ratios are compared with experiment in Fig. 3;
the agreement is good.

The crossing of L, and L, at x=~0.06 is an essential
part of this model. It should be easy to prove or dis-
prove by magnetoreflection®!? measurements.

I wish to thank W. Goldburg for reading the manu-
script.

14 G, E. Smith, Phys. Rev. Letters 9, 487 (1962).
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The total adiabatic potential is represented by a model based on electrostatic interactions among the
ions and conduction electrons, Born-Mayer repulsion between the ions, a local pseudopotential interaction
between ion cores and conduction electrons, and conduction-electron kinetic, exchange, and correlation
energies. The three model parameters are determined for sodium and potassium by requiring agreement
with the crystal binding energy and its first two volume derivatives at zero temperature and pressure. The
phonon frequencies and Griineisen parameters, the bulk-modulus pressure derivative, and the thermal
expansion coefficient as a function of temperature are then calculated. These calculations are in good

qualitative agreement with experimental results.

I. INTRODUCTION

HE aim of our present research program is to
begin with the atomic description of crystals and
calculate the thermodynamic properties. For nearly-
free-electron metals it is convenient to describe the
mechanical system of ions, electrons, and forces by
means of pseudopotential perturbation theory. Thermo-
dynamic functions may then be calculated by lattice
dynamics theory.
Simple local pseudopotential models have been used
to calculate the phonon spectrum of several metals,*~7
* This work was supported by the U. S. Atomic Energy
Commission.
1W. A. Harrison, Pseudopotentials in the Theory of Metals
(W. A. Benjamin, Inc., New York, 1966).
21L. J. Sham, Proc. Roy. Soc. (London) A283, 33 (1965).
3S. H. Vosko, R. Taylor, and G. H. Keech, Can. J. Phys. 43,
1187 (1965).

¢ T. Schneider and E. Stoll, Physik Kondensierten Materie 5,
331 (1966); 5, 364 (1966).

and reasonably good agreement with experiment has
been obtained. In the present paper we calculate the
spectrum of Griineisen parameters for sodium and
potassium; this calculation may be compared with
experiment in the form of the thermal expansion coeffi-
cient as a function of temperature. We have chosen to
use Harrison’s! modified point-ion pseudopotential, with
two adjustable parameters, and we also include a
Born-Mayer repulsion between ion cores, with one
adjustable parameter.

Since we want our theory to be consistent with all
the thermodynamic properties, the adjustable param-
eters are determined to obtain agreement with the
measured crystal binding energy, lattice spacing, and
compressibility at zero temperature and pressure. With

5A. O. E. Animalu, F. Bonsignori, and V. Bortolani, Nuovo
Cimento 64, 159 (1960).

6 N. W. Ashcroft, J. Phys. C1, 232 (1968).
7P. S. Ho, Phys. Rev. 169, 523 (1968).
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the parameters so determined, comparison between
calculated and measured anharmonic properties is a
meaningful test of the theory.

II. LOCAL PSEUDOPOTENTIAL FORMULATION
OF THE ENERGY

We consider a metal containing N similar atoms, each
atom contributing Z conduction electrons. The basic
approximations in the description of this system are
the rigid ion approximation, the adiabatic approxima-
tion, and the one-electron approximation. The conduc-
tion-electron energies are then derived by perturbation
theory to second order in the pseudopotential.l:®* We
then assume the pseudopotential is a real, local poten-
tial. Note this assumption implies the pseudo-wave
functions are equal to the true conduction-electron
wave functions. The total adiabatic potential for the
ions is U, and is composed of the ion-ion potential
U plus the total conduction-electron energy Ug:

U=U;+Usg. (2.1)

We will list the detailed contributions to these poten-
tials.

The ion-ion potential includes the overlap repulsion
Ug, for which we take the Born-Mayer model,® and
the electrostatic energy Ugg, as calculated by Fuchs!®
for point ions of charge +4Ze in a uniform negative
compensating charge.

Ur=Ugr+Ugs. (2.2)

The ions, labeled by the index %, are located at the
arbitrary positions r,. Then the repulsive energy is

UR:%Zlnn’aeXP(_'Y!rn_rn’l)y (2.3)

where > ', excludes n=#', and «, v are positive
parameters. The electrostatic energy may be written

Us =N (Z26/2) (4r/9)" 4 SoS_q~* exp(—g?/4n?)
FNY e | ta— 1 | Terfc(n| ta—1a])
—[@n/v/7m)+ (/%) ]}, (2.4)

where
Sq=N"13, exp(—1q-T,). (2.5)

Here Q, is the volume per atom and 5 is the Ewald
convergence factor; note Ugg is independent of 7.
The >_'q is over all wave vectors q except q=0. If the
configuration of ions forms a perfect lattice, then the
structure factor S, equals 8, o, where Q is any reciprocal
lattice vector.

The total conduction-electron energy is conveniently
expressed in terms of the matrix elements wg, of the
bare single-ion pseudopotential. We write the total
electron energy, evaluated in the electronic ground

8 R. Pick and G. Sarma, Phys. Rev. 135, A1363 (1964).

? M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Clarendon Press, Oxford, 1954).

10 K. Fuchs, Proc. Roy. Soc. (London) A151, 585 (1935).
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state, as a uniform-electron-gas part Ug¢ and a band”
structure part Upsg.

=Uge+Uss. (2.6)
The electron-gas energy is
UEg=NZ[(3/5)€p+ex+eg—l-'wC()]. (27)

Here the kineticenergy per electronis 2ep= £ (2k52/2m),
where kp is the Fermi wave-vector magnitude and m is
the electron mass. The uniform-electron-gas exchange
and correlation energies per electron are ex and e,
respectively. The final term wep in (2.7) is the q=0
matrix element of the jon-core part (non-Coulomb
part) of wg.
The band-structure energy is

Ups=N 3¢ SS_Fq, (2.8)
where F, is the energy—wave-number characteristic

Qg®  wpwp—o(fo—1)

-— , (2.9)
8me? [1+ (fo—1)(1—g4)]
Zmezkprllkpz'— ¢ |2krtq
fo—1= In I—l—l:l . (2.10)
whig? L 4krq 2kr—q

Here f, is the Hartree dielectric function. The factor
(1—g,) in F, represents an approximate correction to
the exchange and correlation energy of the conduction-
electron gas, due to the nonuniformity of the gas
(note this factor appears in Upg for ¢<0). Following
Hubbard" and Sham,? a reasonable form for g, is

=q%/2(g*+tkr?). (2.11)

We have determined the parameter £ in the following
way: According to lattice dynamics theory! the com-
pressibility should be the same when calculated directly
from the second volume derivative of the total potential
U, or when calculated from the method of long waves.
The exchange and correlation contribution arises in the
first calculation from the term (ex-+ec¢) in (2.7), and
in the second calculation from the function g, in (2.9),
through (2.8). The requirement that these agree fixes
£. The result for £ depends on the form used for €¢, and
is given in Sec. ITI below. We note the result is identical
(for any e¢) to the ¢ determined by Geldart and
Vosko?® from the electron-gas compressibility.

We have chosen Harrison’s' modified point-ion model
for the present calculations; accordingly the pseudo-
potential matrix elements are given by

1 4nZe B8
WBe= “l: - + ——‘—'—:I .
ol ¢ ey

U J, Hubbard, Proc. Roy. Soc. (London) A243 336 (1957).
12D, C. Wallace, Rev. Mod. Phys. 37, 57 (1965).

BD. J. W. Geldart and S. H. Vosko, Can. J. Phys. 44, 2137
(1966) ; 45, 2229(E) (1967).

(2.12)
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Here B8 and p are parameters which we determine below
by fitting the observed crystal energy and its volume
derivatives. For ¢=0, the ion-core part which appears
in (2.7) is just

Weo=P/La. (2.13)
III. CALCULATION OF THE ENERGY AND

ITS VOLUME DERIVATIVES

We first simplify the ‘total adiabatic potential per
ion, U/N, for a bee lattice. It is convenient to introduce
75, the radius of the sphere whose volume is the average
conduction-electron volume:

(4r7.3/3)=Qu/Z. (3.1)

With 7, in units of the Bohr radius (@o) and with energies
in Rydbergs (e?/2a), the contributions to the total
potential are as follows:

N-Wr=3% 3 naexp(—7v|7a|), (3.2)
N-1Ugs=1.79186(Z53/r;) (Ref. 10), (3.3)
N-U po=2[ (2.21/r.2) — (0.916/r.)

—(0.115-0.031 Inrs)+ (8/2)], (3.4)
N-WUps=2"q Fq. (3.5)

In evaluating the Born-Mayer repulsive energy (3.2)
we have taken Z’ » over nearest and next-nearest
neighbors. In addition, from studies of the ionic poten-
tials for alkali halides as reviewed by Tosi,** we take a
fixed value of v for both sodium and potassium:

1/v=0.339X 1078 cm. (3.6)

In (3.4), the first term in square brackets is $er, the
second is ex, and the third is the Pines-Noziéres's inter-
polation approximation for ec. With this form for e,
the parameter £ of (2.11) is given by

£=0.916/(0.458+0.012r,). (3.7)

Finally in (3.5) the 3" is over all reciprocal lattice
vectors except Q=0. ] .

The total adiabatic potential may be compared with
measured quantities at zero temperature and pressure
by means of the following equations:

(U/N)=—BE—1Iz, (3.8)
QLd(U/N)/d20]= —QP=0, (3.9)
Q[ (U/N)/d9u]=2uBo. (3.10)

In (3.8) the binding energy per atom of metal is BE,
a positive quantity, and the ionization energy for each
ion is 7z. We have neglected the zero-point vibrational
energy in (3.8), since this is about 0.001 Ry for Na and
K. Equation (3.9) is the requirement that the pressure

14 M. P. Tosi, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Ac,ademic Press Inc., New York, 1964), Vol. 16,p. 1.

15D, Pines and P. Noziéres, The Theory of Quantum Liquids
(W. A. Benjamin, Inc., New York, 1966), Vol. 1.
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Tasrte I. Experimental data used in the present analysis.
All quantities are estimated at 7=0°K, except for (w?), which is
based on neutron scattering measurements at 90°K for Na and
9°K for K.

Quantity Na K
VA 1 1
Qq(aod) 255.52 485.3b
7s(ao) 3.937 4.875
£ 1.81 1.77
BE (Ry) 0.08° 0.07¢
Iz (Ry) 0.38d 0.324
By (10" dyne/cm?) 7.412. 3.67b.t
(w?) (1026 sec™?) 2.87e 1.070

a Reference 20.

b Reference 22.

¢F. D. Rossini, D. D. Wagman, W. H. Evang, S. Levine, and I. Jaffe,
Natl. Bur. Std. (U.S.), Circ. 500 (1952).

4 C. E. Moore, Natl. Bur. Std. (U.S.), Circ. 467 (1949).

e Reference 21.

f Reference 23.

g A. D. B. Woods, B. N. Brockhouse, R. H. March, A. T. Stewart, and
R. Bowers, Phys. Rev. 128, 1112 (1962). The value of (w?) for sodium is
tabulated by D. L. Martin, Ref. 25.

( h%j A. Cowley, A. D. Woods, and G. Dolling, Phys. Rev. 150, 487
1966).

P is zero, and (3.10) gives the bulk modulus at zero tem-
perature and pressure, By. Zero-point vibrational contri-
butions have also been neglected in (3.9) and (3.10).

We have determined the three parameters a, 8, p by
fitting the experimental quantities on the right-hand
sides of (3.8)-(3.10). The experimental data are listed
in Table I. In this fitting procedure we found that
agreement between theory and experiment could be
obtained for small variations of the parameters. For
potassium, for example, the calculated quantities remain
unchanged for correlated variations of «, 8, p within the
limits =25, 44, 4-0.04, respectively (see Table II for
units). We also found that this small arbitrariness of the
parameters was removed by requiring agreement
between calculated and measured values of the average
of the phonon frequencies squared, denoted by (w?).
Experimental values of (w?), determined by inelastic
neutron scattering measurements, are given in Table I.
The calculation of {w?) is outlined in Sec. IV below.
The parameters «, 8, p determined in this way are listed
in Table II.

The various calculated contributions to the total
potential and its volume derivatives are listed in Table
III. Several interesting results for Na and K may be
observed from this table. First, although the various
contributions to the uniform-electron-gas energy Upgg
are not small, they nearly cancel, and the total binding

TasLE ILI. The Born-Mayer repulsion coefficient o and the
modified point-ion pseudopotential parameters 8 and p, determined
to ol()ta)in agreement with measured values of (U/N), P=0, By,
and (w?).

Parameter Na K
a (Ry) 10.5 124
B8 (Ry ad®) 37 66
p (aq) 0.50 0.69
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TasLE III. Calculated contributions to the energy and its volume
derivatives at T=0°K. All quantities are in Ry.

Energy Na K
contribution  (U/N) QP QBo (U/N) QP QBo
Zer 0.145 —0.095 0.159 0.09 —0.062 0.103
€x —0.23 0.078 —0.103 -0.19 0.063 —0.084
e —0.07 0.010 —0.010 —0.065 0.010 —0.010
B/ 0.15 —0.145 0.290 0.14 —0.136 0.272
N-WUkge —0.00s —0.152 0.336 —0.02s —0.125 0.281
N-1Usgs —0.00 0.004 —0.021 —0.00 0.005 —0.017
N-1UR +0.00 —0.004 0.016 -+0.00 —0.004 0.020
N-WUgs —0.455 0.152 —0.202 —0.365 0.123 —0.163
Total —0.46 0.000 0.129 —0.39 —0.001 0.121
Experiment —0.46 0.000 0.129 —-0.39 0.000 0.121

energy of the crystal is due almost entirely to the
electrostatic energy Ugs of the lattice of point ions
imbedded in a uniform negative background charge.
On the other hand, the contributions of the uniform-
electron-gas energy and of the electrostatic energy to
the pressure (first volume derivative of the total
potential) are nearly equal and opposite. The smallness
of the band-structure energy contribution to all of the
energy derivatives is in agreement with the nearly-
free-electron characteristics of the alkali metals. Finally
we note the band structure and Born-Mayer repulsive
energies are of increasing relative importance in higher
volume derivatives of the energy; this indicates their
importance in the anharmonic properties.

The screened pseudopotential form factors for Na
and K, calculated with 8, p listed in Table II, are in
qualitative agreement for 0<¢<2kr with the Heine-
Abarenkov form factors listed by Harrison.!

IV. CALCULATED PHONON FREQUENCIES AND
ANHARMONIC PROPERTIES

In Sec. II, the total adiabatic potential was given for
arbitrary positions of the ions. From this expression we
may calculate the harmonic potential energy coeffi-
cients, evaluate them in the perfect lattice configuration,
and construct the dynamical matrices ax for all phonon
wave vectors k in the first Brillouin zone. The ay are
real symmetric 3)X3 matrices whose eigenvectors are
the phonon polarization vectors vis, s=1, 2, 3, and
whose eigenvalues are Mwy,?, with M =mass of the ions
and wy,=phonon circular frequencies. Since we assume
periodic boundary conditions in arriving at the phonon
solutions, the potential energy coefficients are calculated
at fixed volume and there is no contribution from the
uniform-electron-gas energy. Detailed contributions to
ay :v, where 4, i’ are Cartesian indices specifying the
matrix elements, are found to be as follows:

Born-Mayer repulsion contribution.

ay 2. a cos (k “Tn) €Xp (=v7a) { A/ra)be
- [’Y"‘ (l/rn)] ("nirni’/rn2)}

+%a'y Z,n eXP(“'Y”n)[’Y" (2/7‘")]5,;;1 . (4'1)
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Electrostatic energy contribulion.

226 2w cos (k- 1a){[(20/ (v/m)ra?) exp(—nrs?)
+(1/72?) exfc(nrn) J6: — [[(40%/ (v/7)
+(6n/ (v/m)ra?) ] exp(—n'ra®)+ (3/74%) erfe(nra)]
X (rnitnir/ra")}+ (47226/Q0) 2 o exp[ — (Q+k)*/4n7]
XLQ+k):(Q+k)«/ (Q+k)* ]+ (42%2/3)

XL(r/Qa) = (r*/n/m) Joswr. (4.2)
Band-structure energy contribution.
220 Fou(Q+k):(Q+Kk) i —3F X o FoQ%iir. (4.3)

Here we have used 7,= | r,| . Although our derivation is
in principle different from Sham’s,? the above results
agree with his local pseudopotential results, except for
the difference in our parameter §.

The average phonon frequency squared is simply
obtained from the average over k of the trace of the
dynamical matrices, and is given by

3M(Py=ay 3w exp(—vra)[v— (2/7.)]
+22.4 PF(NT=8q,q).

The individual phonon Griineisen parameters are yx,,
defined by

(4.4)

Yrs= — (d lnwks/d ana) . (4'5>

These quantities may be calculated from the Hellmann-
Feynman theorem,'®'7 as we have done previously.!s
In matrix notation, with indices suppressed, the
diagonalization of a dynamical matrix is represented by

viav=Muw?, (4.6)

where the right-hand side is a diagonal matrix. The
volume derivatives of the eigenvalues are then given by
diagonal elements of the matrix equation

v {da/dQJv=M[dw?/dQ,].

The individual vy, were calculated in this way.

With the parameters as determined in Sec. III, we
have calculated the phonon frequencies to an accuracy
of 0.5% and the Griineisen parameters to an accuracy
of 1%, for sodium and potassium at 505 k vectors in
(1/48) of the first zone. The frequencies are compared
to inelastic neutron scattering measurements in Figs. 1
and 2. The over-all agreement is fair, but not within
experimental error. By slight adjustments of the
parameters a, 8, and p, we can bring the calculated
curves into agreement with the measurements within
experimental error, except that our simple model does
not show the observed kink in the longitudinal [001]
branch. The calculated Griineisen parameters along
symmetry axes are shown in Figs. 3 and 4. These
quantities are all positive and show large variations over

4.7)

18 H. Hellmann, Einfuhrung in die Quantenchemie (Franz
Deuticke, Leipzig, 1937).

17 R. P. Feynman, Phys. Rev. 56, 340 (1939)

18D, C. Wallace, Phys. Rev. 139, A877 (1965).
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Fic. 1. Calculated phonon dispersion curves (solid lines)
compared with the 90°K measurements of Woods et al. [Phys.
Rev. 128, 1112 (1962)] for Na.

the zone. All the calculated vy, lie in the range ~0.9 to
~1.8 for Na and ~0.95 to ~1.7 for K. The average
ks, averaged over the first zone, is 1.18 for sodium and
1.21 for potassium.

We have calculated two anharmonic quantities which
may be compared with measured results. The first is
the pressure derivative of the bulk modulus; for zero
temperature and pressure this may be written

(dB/dP)+1=—[QdB(U/N)/dQ*]/
[ (U/N)/d2.2].

At finite temperatures, (4.8) is the main contribution
to the pressure derivative of either the isothermal (Br)
or the adiabatic (Bg) bulk modulus. Our calculations of
(4.8) are compared with measured room-temperature
results in Table IV; the agreement is quite satisfactory.

The thermal expansion coefficient 8 is most con-
veniently calculated from the thermodynamic equation

(4.8)

BBr=—(8*F/0TdN)a,r, (4.9)
|«
3 _
[0,0,1] [ARAD] (NN} fo.L1]
-~ - 00 T Ch
° 00 L b
i 7]
& L 6
-<> S
z+ T
A
T2
[} o -
L
T
°r ’ H P r N

Fic. 2. Calculated phonon dispersion curves (solid lines)
compared with the 9°K measurements of Cowley ef al. [Phys.
Rev. 150, 487 (1966)] for K.
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F16. 3. Calculated Griineisen parameters for Na.

where Br is the isothermal bulk modulus, F is the total
Helmholtz free energy, T is the temperature, and € is
the total volume. We neglect the explicit anharmonic
contribution, which arises from the anharmonic free
energy,'® and the electronic excitation contribution,
since these are quite small for Na and K up to room
temperature. The resulting quasiharmonic lattice-
dynamical contribution is expressed in the dimensionless
quantity

(ﬁBTQa/ak)

= (BN)™ Zk,s Vs (reows/ BT s (Fires+1),  (4.10)
where % is Boltzmann’s constant and
fixs=[exp (hwis/kT)— 171, (4.11)

We note in the high-temperature limit (4.10) becomes
the macroscopic Griineisen constant.

We have calculated (4.10) for bcc Na and K at fixed
volume, namely, the zero temperature and pressure
volume listed in Table I. These calculations are com-
pared with the corresponding measured quantity in
Figs. 5 and 6. The experimental data used was 8 for Na
from Siegel and Quimby® (75-300°K), By for Na from
Refs. 20 and 21; B for K was calculated from the
volume-versus-temperature data of Ref. 22, By for K

ol | 0ol | Lo,
Lo
T L 7
<
T ]
L T |
05
r H P T N

Fic. 4. Calculated Griineisen parameters for K.

19°S. Siegel and S. L. Quimby, Phys. Rev. 54, 76 (1938).

*R. 1. Beecroft and C. A. Swenson, J. Phys. Chem. Solids 18,
329 (1961). (We have used the revisions given in Ref, 22.)
63’71 l(\f%lg) Diederich and J. Trivisonno, J. Phys. Chem. Solids 27,
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Fic. 5. Calculated (solid line) and measured (dashed line) curves
of the thermal expansion coefficient, in the form of (8B1Q,/3k)
at fixed volume, for Na.

from Refs. 22 and 23. The experimental curve was
corrected thermodynamically to the fixed volume in a
manner described previously.?

The agreement between theory and experiment is
within experimental error in the high-temperature
region for both Na and K. At intermediate tempera-
tures, however, the calculated curves are too high. Fur-
thermore, the over-all agreement cannot be improved
substantially by varying the parameters «, 8, and p.
Our interpretation of this discrepancy is that we do not
have the correct dispersion of the i, in the inter-
mediate-to-small k region.

V. SUMMARY AND COMMENTS

We have studied the energy and lattice dynamics of
bee Na and K, for a simple model based on electrostatic

15[ K T T
// _
« 1.0 f i
N /
d /
dosl |/ —— calculated |
/ — — measured
O-O 1 1
100 200 300
0 TCK)

Fi1G. 6. Calculated (solid line) and measured (dashed line) curves
of thermal expansion coefficient, in the form of (8BrQ./3k) at
fixed volume, for K.

2 C, E. Monfort and C. A. Swenson, J. Phys. Chem. Solids
26, 291 (1965). . )

2 W, R. Marquardt and J. Trivisonno, J. Phys. Chem. Solids
26, 273 (1965). ]

% D. C. Wallace, Phys. Rev. (to be published).
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TasLE IV. Comparison of calculated and measured pressure
derivatives of the bulk modulus.

Quantity Sodium Potassium
(8Br/3P)r(300°K) 3.95 3.85b
(8Bs/dP)r (300°K) 3.60° 3.97d
(@B/dP) (Calculated, 0°K) 3.63 3.83

a Reference 20.

b Reference 22.

°¢W. B. Daniels, Phys. Rev. 119, 1246 (1960).

d P. A. Smith and C. S. Smith, J. Phys. Chem. Solids 26, 279 (1965).

and Born-Mayer repulsive energies between the ions
and a modified point-ion pseudopotential. The model
parameters were fixed to obtain agreement with the
measured crystal binding energy and its first two
volume derivatives. We then calculated the spectrum
of phonon frequencies and Griineisen parameters, the
pressure derivative of the bulk modulus, and the
thermal expansion coefficient for temperatures up to
room temperature. T'wo discrepancies between measure-
ments and our calculations are apparent.

First, the calculated thermal expansion coefficient is
somewhat high at intermediate temperatures for both
Na and K; this indicates that some of the calculated
Griineisen parameters are too high. The second dis-
crepancy concerns the heat capacity and elastic
constants. We have extracted the lattice specific heat
at constant volume from the measurements of Martin25;
the corresponding Debye temperatures are in good
agreement with our calculations except at low tempera-
tures (<10°K for Na; <6°K for K). Along with this
we have found the calculated elastic constants to differ
from the low-temperature experimental results by
=~5%,. Such discrepancies reflect the limitations of the
local pseudopotential and the approximate treatment
of the conduction-electron exchange and correlation.

In comparing theory and experiment for the thermal
expansion coefficient, the function (8ByQ./3%k) was
studied because it is theoretically simple; according to
(4.10) it is just a weighted average of the phonon
Griineisen parameters. In addition, the zero-pressure
experimental data were corrected thermodynamically to
fixed volume conditions without increasing the experi-
mental uncertainty of the curve. This was possible
because of the smallness of this volume correction.2

Finally, we note the Born-Mayer repulsive exponent
v was taken as fixed in the calculations described here.
Allowing v to vary has no essential effect on the general
results; if we decrease v and repeat the calculations, we
find that « decreases accordingly, 8 and p remain nearly
the same, and the calculated results are essentially
unchanged.

%D, L. Martin, Phys. Rev. 139, A150 (1965).



