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A simple model is proposed which unites many data on alloys of bismuth containing small amounts of
antimony. Contrary to the usual interpretation of these data, we propose a crossing of the conduction
and valence bands at L at about 6 at.% antiinony (i.e., the direct gap, which is responsible for the very
small efFective masses in bismuth, vanishes at this composition).

BILE pure bismuth and antimony are semimetals
(good conductors at T=O'K), their alloys are

semiconductors (insulators at T=O'K) over a wide
range of composition. These alloys have been the sub-

ject of much experimental investigation, especially in
the range of low antimony concentration. This article
will consider the atomic fraction of antimony, x, to
range from 0 up to about 0.2.

The data of these alloys are usually interpreted in
terms of the known band structure of bismuth' ' as
indicated in Fig. 1. There are conduction band minima
at 3 equivalent L points in the Brillouin zone, and a
valence band maximum at T. (The nota, tion is that of
Ref. 3.) Because the valence and conduction bands
overlap, there are always carriers in these bands and we

have metallic behavior. When antimony is added, this
overlap is reduced and disappears4 ' altogether at
x=0.06. At larger values of x, there is a thermal gap
and we have a semiconductor. (Metallic behavior re-
turns' when x)0.3.)

The purpose of this article is to point out that the
behavior of these alloys can be accounted for by as-
suming that the relative positions of these 3 levels are
linear functions of x:

T4g
——L,=EpP —O.x,

L, L,=Eoo—px, —
where'

Ep'= 38.5 meV,

E,P= 15.3 meV.

The coefficients n and p are estimated below. (Note that
the symbols L„L, and T4; denote both levels and
their energies. )

In interpreting the data in the metallic region
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(x(0.06), one generally assumes that the direct energy
gap E, is the same as in pure bismuth' (E,'). There is
evidence for this in magnetoreQection measurements'
on an alloy with x=0.114. Hebel and Smith observe
direct transitions in this alloy which are characterized
by the same direct gap and effective masses as in pure
bismuth. Yet at x=0.15 the thermal gap' is 24+3 meV.
It seems unlikely that L,—L would remain at 15 meV
as x varies from 0 to 0.114 and then jump to 24 meV at
x=0.15. (As the valence and conductions have a similar
structure, 7 the thermal gap is probably also the direct
gap)

An alternate possibility is that L, and L cross and
have just reversed positions at x= 0.114. (Interchanging
L, and L would not affect most measurements as they
are "mirror" bands, except possibly in the heavy-mass
direction which is usually not studied experimentally. )
The crossing would occur at x=0.114/2=0.057. Then
from Eqs. (1) and (2)

P=E,'/0. 057=270 meV. (3)

This is consistent with the thermal gap mentioned
above, for at x=0.15, L —L,=25 meV.

We complete the model by determining n to 6t the
de Haas —van Alphen (dHvA) areas. This gives

o, =500 meV. (4)

E,=L.—ma, x(L„T4,—) . (5)

Then E, appears at x„=0.06. Jain' finds x„=0.05 and
Ellett et al. find 0.07. E~ is shown in Fig. 2 and is in fair
agreement with experimental data. The main discrep-
ancy occurs at the lower values of x and this may be ex-
plained qualitatively as follows: The thermal gaps are
determined from the temperature dependence of the
resistivity, and these measurements cannot be readily
extended below about 25'K because of impurity conduc-
tion' ' and size effects. 7 But at 25'K the T45 valence
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The model, Eqs. (1)—(4), should be valid for x at least
as large as 0.15.

With these numbers, L, and L, cross before a thermal

gap appears. Thus in the semiconducting region L &L,
and the thermal gap is defined by
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FIG. 1. Schematic band structure of
pure bismuth at T and I. near the Fermi
energy. Crosshatching indicates electron
(at I.) and ho1e (at T) carriers.
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band may be important even if it lies below I., because
it has a much larger effective mass, i.e., density of states.
Thus at x=0.075 the T45 band contributes about half
of the electrons in the conduction band. The interpreta-
tion of the data becomes complicated but one can see
that the effective thermal gap will be somewhat larger
then given by Eq. (5) for the smaller values of x.

Further energy data come from tunneling measure-
ments' on samples with x=0.12 and 0.135. In both
samples the two highest-lying valence bands are 25+5
and 40 meV below the bottom of the conduction band.
The upper one is in approximate agreement with E&= 17
and 21 meV at x=0.12 and 0.135, respectively. At
x= 0.12, the T45 level lies 54 meV below the conduction
band. If this is the level observed at 40 meV, the modi6-
cation in the model required to fit it would be small and

would not appreciably alter the agreement with the
other data.

The electron Fermi surface in bismuth and in
bismuth-antimony alloys (x(0.06) is highly aniso-

tropic, but observers' ""Qnd no change in this anisot-

ropy as they increase the antimony concentration.
Thus we may regard as scalars the ratios m'(x)/m'(0)
and A(x)/A(0), where m' and A are the cyclotron mass
at the Fermi energy and the dHvA area, respectively.

To compare the model with the experimental values
of these ratios, we make the following assumptions:
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FIG. 3.The de Haas —van Alphen (dHvA) areas (closed symbols)
and cyclotron masses (open symbols) versus composition relative
to that for pure bismuth. The solid lines are the theoretical curves.
Circles, Ref. 10; triangles, Ref. 11;diamonds, Ref. 5; square, Ref.
14. The masses of Kao et al. (Ref. 11) and Smith (Ref. 14) are
from cyclotron resonance; the others are from the temperature
dependence of the dHvA amplitude.

FIG. 2. Thermal energy gap. The solid curve follows from Eq.
(5). The dashed line would be the thermal gap if the T4; valence
band were dominant (see text). Circles, Ref. 8; triangles, Ref. 7;
squares, N. B. Brandt and Ya. G. Ponomarev, Zh. Eksperim. i
Teor. Fiz. 50, 367 (1966) I English transl. : Soviet Phys. —JETP
23, 244 (1966)j.
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1. The electrons obey the Lax 2-band model"

E(1+E/Eo) =Q; i't'k, s/2rtt;

(7)

where 3f; is the appropriate momentum matrix element
and is independent' of x, and mo is the free-electron
mass. Equations (6) and (7) are probably incorrect in
the heavy-mass direction"' and this may lead to small
errors.

2. The hole effective masses are independent of x.
(Actually the hole density of states effective mass is
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about 25% larger at x=0.05 than in pure bismuth. '4

This effect is unimportant for our purposes. )
To proceed we take the hole masses from Ref. 2 and

from the electron masses given there we calculate the
matrix elements M, . Then from E,= iL, L, i

—and

Es T4s ———max(L„L,) we calculate the electron Fermi
energy Ep by equating the number of electrons and
holes. The dlvA area and the cyclotron mass ratios are
then readily calculated. The latter is given by

rrtc(se)/rnid(0) = (Eo+2Etr)/(Eo +2Ep ) . (8)

These ratios are compared with experiment in Fig. 3;
the agreement is good.

The crossing of L, and L, at x=0.06 is an essential

part of this model. It should be easy to prove or dis-

prove by magnetore6ection' "measurements.
I wish to thank %. Goldburg for reading the manu-

script.
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The total adiabatic potential is represented by a model based on electrostatic interactions among the
ions and conduction electrons, Born-Mayer repulsion between the ions, a local pseudopotential interaction
between ion cores and conduction electrons, and conduction-electron kinetic, exchange, and correlation
energies. The three model parameters are determined for sodium and potassium by requiring agreement
with the crystal binding energy and its erst two volume derivatives at zero temperature and pressure. The
phonon frequencies and Gruneisen parameters, the bulk-modulus pressure derivative, and the thermal
expansion coefBcient as a function of temperature are then calculated. These calculations are in good
qualitative agreement with experimental results.

I. INTRODUCTION

HE aim of our present research program is to
begin with the atomic description of crystals and

calculate the thermodynamic properties. For nearly-
free-electron metals it is convenient to describe the
mechanical system of ions, electrons, and forces by
means of pseudopotential perturbation theory. Thermo-
dynamic functions may then be calculated by lattice
dynamics theory.

Simple local pseudopotential models have been used
to calculate the phonon spectrum of several metals, ' '
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and reasonably good agreement with experiment has
been obtained. In the present paper we calculate the
spectrum of GrQneisen parameters for sodium and
potassium; this calculation may be compared with
experiment in the form of the thermal expansion coeffi-
cient as a function of temperature. We have chosen to
use Harrison's' modified point-ion pseudopotential, with
two adjustable parameters, and we also include a
Born-Mayer repulsion between ion cores, with one
adjustable parameter.

Since we want our theory to be consistent with all
the thermodynamic properties, the adjustable param-
eters are determined to obtain agreement with the
measured crystal binding energy, lattice spacing, and
compressibility at zero temperature and pressure. Kith
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