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It is pointed out that insight into the threshold region of electron-atom ionization can be
gained by examination of the nature of the doubly excited states of the compound ion. A study
of these states for H has been initiated with two types of variational wave functions. One,
4gr, has the two electrons at roughly equal distances from the nucleus; the other, 4&, has
one electron at a very much farther distance so that it sees the dipole potential caused by the
inner electron and the nucleus. Both functions are constructed to be eigenfunctions of the
operator Q~, which projects out all states of the target of principal quantum number less than
N, and renders the energy subject to a minimum principle. If the number of states for which
4 ~ yields a lower energy than OD is proportional to,N~, then an extrapolation argument
shows that the threshold yield curve will be effectively proportional to E(S &)~,. Calculations
have been done to N= 5 for O'D and E= 9 for + Only the lowest of the +&states is lower than
the corresponding CD state. The results suggest y in the range 0&y & 2. Some comments on
Wannier's theory of ionization are made.

I. INTRODUCTION

The theory of low-energy electron-impact ion-
ization of atoms by electrons is fraught with dif-
ficulties from beginning to end. The difficulties
are both mathematical and conceptual in nature.
The mathematical difficulties derive from the
long-range nature of the Coulomb potential com-
bined with the intrinsically three-body nature of
the wave function in the final state. In almost all
cases, however, these problems are related to
conceptual questions of immediate physical signif-
icance. If the two electrons come away from the
nucleus or residual ion (considered an infinitely
heavy point charge and always referred to as the
nucleus) with approximately equal and opposite
velocities, then it is a reasonable argument that
each electron sees the nucleus directly and that
classical mechanics can be applied. ' The point
here, of course, is the virtual identity of Coulomb
scattering in classical and quantum mechanics and
the fact that the classical approximation becomes
more exact as the energy gets lower. If, on the
other hand, the electrons come off with quite dif-
ferent velocities, the validity of classical me-
chanics is a much more questionable item. Here
the quantum mechanical argument is that the in-
ner electron may shield the outer electron from
the nucleus thereby making the potential it sees
shorter range than Coulombic. In that case its
behavior may not be governed by classical me-
chanics, and the classical approximation may get
poorer as the energy is lowered. ' The classical
or classical-like arguments have the general ef-
fect of leading to near linear' or linear' threshold
law. Specifically the latter has been deduced by
taking an asymptotic form that has been derived
for the wave function describing the two outgoing
electrons4 as being essentially two-Coulombic in
nature. On the other hand, the shielding argu-
ment leads to an E'~' threshold law because only
the inner electron is Coulombic. The disparity

of these results has naturally promoted a con-
troversy as to which if any of these threshold
laws is correct.

It is the purpose of this paper to examine some
of these questions from a consistently quantum
mechanical point of view. We shall attempt to
avoid questions concerned with the controversiap
asymptotic form above threshold'y4 by considering
the process as a continuation of real or virtual
processes below threshold. It also allows calcu-
lations to be done in a fairly unambiguous way.
We believe that this is the most important aspect
of our work, for if any question be raised con-
cerning the variational forms of our wave func-
tions, the way has been opened for other forms
to be proposed and tested on the impartial bal-
ance of quantitative comparison. The one ques-
tion that this approach can probably not answer
is any subtle questions of analytic continuation
from negative to positive energies. We shall be
more detailed concerning what effects we believe
this can have in Sec. III; for the present it is
only relevant to note that the one advantage of the
two-body Coulomb force is that the continuum so-
lution merge continuously with the discrete solu-
tions. Similarly, if we correctly describe the
major physical situations that can occur below
threshold in the three-body problem, then we
can reasonably suppose that what we extrap-
olate them to be will be substantially correct.

What are the physical processes which extrap-
olate to ionization'P They are of two types: (1)
Inelastic processes in which the orbital electron
is raised to a highly excited state N with N finally
going into continuum, and (2) double excitations
in which both particles can be considered simul-
taneously caught in an excited bound state, also
it will turn out, characterized by the principal
quantum number N, where again N finally goes
into the continuum. Whereas the former are
real both in the sense that they occur at energies
above the energy necessary to excite the Sthtlevel
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and the processes correspond to rigorous time-
independent solutions of the Schrodinger equation,
the double-excitation processes can be considered
virtual inasmuch as they occur belom threshold
and they do not cox'respond to rigorous time-inde-
pendent solutions of the Schrodinger equation. '
Nevex'theless they do occur, and they can have a
profound effect on the scattering both below Rnd
above the thresholds in question.

The threshold lam is derived by summing all
inelastic cross sections in the neighborhood of an
excited state N and analytically extrapolating the
result in X to positive-energy states. The rele-
vant matrix element is the transition amplitude
for scattering from the ground to the Ãth state.
But the key point i.s that the secular dependence
of this matrix element on E is not determined by
the inelastic wave function in its asymptotic re-
gion but in a more interior region. Just mhere
this 1ntex'1ox' x'eglon ls and mhRt the relevant fox'Dl
of the wave function is there is monitored by the
douMy excited states. The point here is that the
inelastic wave function at threshoM is dominated
by its resonant behavior belom threshold.

In Sec.II me deal with doubly exc1ted-state cal-
culations and in Sec. III with the derivation of the
threshold law. One of the forms of the doubly
excited wave function has been motivated by Wan-
nier's theory of ionization' according to which the
threshold lam is dominated by processes in which
the energies and the radial distance of the es-
caping electrons are not too different from each
other. In Sec. IV me discuss his theory a l1ttle
more and point out that his derivation cannot be
justified in a completely classical theory of elec-
tron-atom (or ion) ionization.

The second form of wave function is one where-
in the outer electx"on naturally sees an x ' poten-
tial coming from the degenerate perturbation of
the states describing the inner electron. This
potential causes a change in the normalization
factox' when this function is extrapolated into a
continuum inelastically scatter ed function mhich
ln one x'espect DlRkes 1t RppeRr like R Coulomb
function. This derivation is the subject of the
Appendix, but it is also shown there that notwith-
standing the normalization factor, the ionization
threshold law coming from such states is essen-
tially the sa,me as that given by the Born approx-
imation (E312). Here it should be emphasized that
although the calculations are done for the e-H
system, that the xesults should hold for electron-
atom systems generally because atomic states
become hydrogenic for large ¹

We shaD calculate doubly excited (i. e. , autoion-
ization) states of H . There are two reasons for
dealing with this negative ion: first it is the sim-
plest negative ion, but more important the eigen-
functi. ons of the target atom are known exactly
and therefore we can use the Q-operator tech-
nique~~' without approximation. Also following
Wannier' me shall deal mith only total S states
in the belief that the threshold law cannot be al-
tered in form by higher angular momentum states.

The tmo wave functions which we use area

V(~) N I— A I(xl) AM(x2)

vÃ/ y,

&&/&(cos8 l2), v ~ jV (2.],)

and

Z BI.(X) '~ 'I (~) XI'2)
1 $ 0 ~ +2

1

~(- I) (2I. I)'~,(cose»). (2.2)

The physical meaning of @u,( ) is easily under-
stood; it describes the tmo electrons in doubly ex-
cited states at roughly equal radial distances from
the nucleus. (We assume v =N. ) The functions
B~(x) are t times the radial-hydrogen wave func-
tion. The angular correlat1ons indicated by the
electron-electron repulsion are taken up by the
linea, r variational parameters C~~~ of which N-. 1
are effectively free and one is determined by
normalization. Physically it is clea, x that the
calculation will make them such as to concentrate
the electrons on opposite sides of the nucleus. It
is also cleax that for neither pa.rticle does this
function contain states of hydrogen with principal
quantum less than¹ I.e., for i=1, 2,

J'~„(,)(.,).
n (jv; x (n. (2.3)

Thus the function is an eigenfunction of the Qjv
operator, ' and variational calculations will give
eigenvalues mhich, if they lie below the Nth state
of the hydrogen atom, mill correspond to re~~o-
nances in the elastic and inelastic channels.

Although the physics of +D(&A is also readily
understood, the mathematics needs some expla-
nation. The following is a precis of Mittleman's'o
generalization to arbitrary X of the analysis which
Temkin and Walker" have given for the N =2 state.
Let us start with the following ansatz for the
closed- channel wave function:

Z(X) "-'"XI( I' ~XI'2)
r~

x( —I) (2I+I) pf(cosel2). (2.4

The functions u~f(r) are to begin wjth undeter-
mined functions, [The factor (—I) (2l+ I)'~' is
the essential part of the Clebsch-Gordan coeffi-
cient by which F&~(Q]) and Y& m(Q2) couple to
form PI(cos8 l2). ] If one varies the up@ in the ex-
pression for expectation of the energy, then one
arrives at coupled differential equate. ons whose
longest range terms are of the order x ' and to
that order the equations may be written

(
2 (Ã)d s

~

U(Ã) (2.5)dh tj'
U(+) is a column vector of the up@ and (+) is a
tridiagonal symmetric matrix whose elements are



given by

(N) 2=[I(l+ I)/~ ] 5II,

lower than N must also be excluded. Equations
(2.12) guarantee this to be the case. For a given
N there are a total of q- 1 values of n and X for
which {2.12) must be satisfied, where

+ 3Kl'[(N —I )/(4l —1)]' 5 p

q = I+~(~-1)/2. (2.i3)
1

+3%l[(N —I /4/ —1)] '
lql +~

Introducing the transformation

~(~) B(~)U(A)

(2.6)

(2.7)

such that B S B is diagonal, we find
that the components of the column vector V(&)
satisfy the equation

,~+~~. le~ , (r)=. 0, j=l, 2, . . . , X, (2.8)

where b~& are the eigenvalues of S . Let Bfj
N

"the"-- t d 'g-- t-, th"th fun t''.
O'D(&& of Eq. (2.4) takes on the form of Eq. (2.2) and
acquires an additional "quantum" number jwhich
orders the sequence of eigenvalues of $5') and their
corresponding eigenvectors.

Of the N eigenvalues, 5@&, a certain number, j
=1, 2, ... , JD, will be negative, and for those
functions the equations will asymptotically contain
Rn attractive x ' potential. For each N and j the
corresponding equation will contain an infinite num-
ber of negative eigenvalues which to an excellent
approximation are related by"

le&. I=e Nj le&. I; s= 1, 2, ... , (2.9)
(s+1) 2v/o. . (s)

&Vj

where Q~. = (IA~. I- 4)4 (2.io)

The solutions of those equations are Hankel func-
tions ~'

H. {iI e&.I'"r)
¹

which asymptotically approach exp(- Ie~&I'~'r) At.
short distances Eq. (2.8) becomes altered and essen-
tially nonloca1. in character. In fact the attractive
x ' potential must become less singular, for the
r ' solutions are not regularly behaved at the origin.

For variational purposes we have taken
Q'

( )
—w' g c 1Ã (2.ii)

m=~

In order that @D( ~) be an eigenfunction of Q~, it
is necessary that

J& = 2N (lowe—r o-rder in N), (2.14)

where the term in parentheses may very well be a
fractional power of ¹ The eigenvalues themselves
go up quadratically with N. Selected values are
given in Table I. The differences in b& are seen
to be proportional to N and independent of j for the
lower values. In fact the b~& can be fitted to a rea-
sonable approximation by a formula of the form

I .-=XV'- B(q)~+C(~). (2.15)

Some feel for the eigenvectors B~&(+) can be
gleaned from Table II. There it can be seen that
aside from a normalization constant N'~' the eigen-
vectors are fairly independent of j for small / and
that they get extremely small for large l as long as
j is small. For large j they tend to oscillate and
they are of the same order of magnitude.

40—

35—

30-

20-

If the U~j(x) contains exactly q terms, then together
with nol mallzatlon Rll the coefficients Rre unique
functions of a. Thus for variational purposes the
function +D(W) contains only one variational param-
eter, a, as opposed to%'g(&) which, as was stated,
contains N- 1 parameters. It is very important to
realize, because the 8' and D calculations are based
on the same Q& operator, that the shifts hq are
ideally the same and therefore can be omitted in the
comparison of the respective energies that wiD be
made (Table III).

The matrices ( ) were inverted for all %=2 to
X= 100. The number of negative eigenvalues is
clearly linear with X as is evident from Fig. 1 in
which JD is plotted as R function of ¹ In fact it is
quite certain that

1, v~ (~)B (~)d.~=o, n&~, X&n.
nX

(2.12)
10—

Note that the Q~ operator is symmetric. ' Although
the form of@B(&j), Eq. (2.2), appears to contain no
bound states of lower K for the target particle (r,),
it might contain lower states in the exchanged coor=
dinate (r,). In order that the calculation be subject
to a minimum pr j.nciple and in a one-to-one corre=
spondence with resonances, the possibilities of or-
dinary exchange inelastj. c scattering from a state

0
'

I I I I I I I I I

0 10 20 30 40 50 60 70 80 90 100
N

FIG. 1. The number of negative eigenvalues (4 ) vsD
¹ Both J'& and N are defined on1y on the integers.
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TABLE I. Ualues of - bN. for selected values of ¹

N(JD) 10(4) 20 (8) 30 (13) 40 (17) 50 (21)

TABLE III. Comparison of energies (in Ry) . Energies
are measured relative to the Nth threshold energy (-N ~) .

1 262 1123 2584
2 187 971 2355
3 116 822 . 2128
4 47.4 676 1905
5 533 1684
6 393 1466
7 256 1251
8 122 1039
9 831

10 625
11 423
12 225
13 29.3
14
15
16
17
18
19
20
21

4646 7307
4339 6922
4035 6541
3733 6162
3435 5786
3140 5413
2847 5043
2558 4676
2271 4312
1988 3951
1708 3593
1431 3238
1157 2886
886.3 2538
619.0 2192
355 ' 2 1850
9.472 1511

1175
842.7
513.7
188.2

The significance of these properties will emerge
in the next sections in which we utilize these prop-
erties to derive an effective threshold law. We
shall also discuss there the significance of the re-
sults of the variational calculations. The results
themselves are summarized in Table III. The col-
umn marked Jg is the number of eigenvalues of the
R calculation which are lower than the correspond-
ing eigenvalues of the D calculation. From the fore-
going as well as the succeeding discussion this
emerges as a very important function of N. It can
be seen that we have only calculated it up to N = 5,
although the extrapolation to N =6 appears to be
quite secure. Note also that Jg is limited to the

0.2
1 0.2
2 0.19

0.09
2 0.17

0.11

—0.015 79
—0.009 92
—0.004 09
—0.000 12-
—0.0025
—0.0005

3 ~ ~ ~ ~ ~ ~

~ ~ ~I

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

—0.004 07
—0.012 72
—0.009 96

&0
—0 ~ 0074

&0
—0.0056
—0.000 30

&0
—0 ~ 0043
—0.000 17

&0
—0,003 45
—0.0014

&0
—0.002 91
—0.0014

&0
&0

K2

With symmetrization this value reduces to ED
= —0.375 at a = 0.25.

This number is inferred by extrapolation from the
values of ED.

cThese numbers are upper bounds and are not ex-
pected to be the true Jgr for all three N= 7, 8, 9.

number of negative eigenvalues of the 8' calculation.
For N =7 to 9 this upper bound is two and is also
given in the table.

III. IMPLICATIONS FOR THRESHOLD IONIZATION

It may appear that the variational wave functions
we have used, in particular 4'gr, are overly restric-
tive and that specifically if we had used shielded
Coulomb radial wave functions we would have found

TABLE II. A comparison of the eigenvectors N 8 . for N=50 and N=100 and for selected values of l and j.(/
lj

N 100 50 100 50 100 50 100 50

1
2

3

5
10
20

0.8027
0.8012
0.7998
0.7983
0.7968
0.7877
0.7716

0,8020
0.7990
0.7961
0.7930
0,7900
0.7741
0.7385

1y3 72
—1.334
—1.296
—1.259
—1.221
—1.002
—0.656

—1,354
—1.278
—1.203
—1.129
—1.056
—0.706
—0.088

1 ~ 726
1.589
1.455
1.326
1.202

—0.544
—0.239

1.659
1,392
1.143
0.911
0.696

—0.144
—0.815

-1.965
—1.655
—1.367
—1.100
-0.855
+ 0.233

0.900

—1.817
—1.239
—0.745
—0.329
+ 0.015

0.871
0.201

1
2

3

5
10
20

2.116
1.562
1.076
0.655
0.292

-0.887
—0.637

1.857
0.877
0.144

-0.378
—0.724
-0.770

0.793

—1.806
—0.780
—1.520
—1.281
-0.630
+ 0.819
—0.609

10

0.880
—1.656
—0.520

0.765
1.167

—0.911
—0.602

3.60 x 10-
1.44 x 10-7
2.76 x 10-6
3.37x 10 5

2.93 x 10 4

7.89x 10 i

—0.840 x 100

50

3.75 x 10-«
—2.20 x 10 ~4

6.35x 10 ~3

—1.20x10 "
1.65x 10 ~0

—4.09 x 10 6

—2.40x 10 i
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TABLE IV. The effect on (@W of varying v in 4W.

v Lowest root Second root

8

9
10
11

9
10
11

—0.00345
—0.00167
—0.00046
+ 0.00015

—0.00291
—0.00292
—0.00098

—0.00141
&0
&0
&0

—0.00141
—0.00014

&0

more energies of the two-Coulomb type (El') lower
than their dipole (ED) counterparts. We do not be-
lieve this to be the case for the following reasons.
The number of variational parameters in +g goes

-up as N, therefore one has more freedom to simu-
late the effects of shielding, should this have been
required. To test this point even further we have
varied v in +~ away from N. The effect of this
change can be described as making the mean radial
distances of the electrons be slightly different from
each other and, thus, to give partial shielding more
room in which to operate. The results are summa-
rized in Table IV. It can be seen that in only one
case does it reduce an eigenvalue (v = 10, N = 9) and
there only the lowest one (which was lower than ED
anyway). Its effect on all higher eigenvalues is to
raise them, and in fact in only one case does the
second eigenvalue remain bound.

Furthermore, it must be added that the function
4IIr (for v=N) is explicitly symmetric whereas @g
is not. Although we do not expect this to be a sig-
nificant factor for large N, Table III shows that it
can have a significant lowering effect for small N.
Finally we reiterate that +D only depends on one
variational parameter. Thus to the extent that this
calculation is biased, it predominantly favors the
two Coulomb functions +g.

Therefore it is the calculations themselves which
convincingly demonstrate that the @D functions dom-
inate. In other words, in most doubly excited
states the electrons tend. to be at greatly dissimilar
distances from the nucleus. For example, in Fig.
2 we see that the second auto-ionization state of the
N = 5 calculation has a mean radius of r, at approxi-
mately 37a, whereas r, =—136a,. This in turn ean be
described as the direct effect of shielding of the
outer electron from the nucleus by the inner elec-
tron. '

However, as will be shown belo~, the threshold
law for ionization will be determined by those few
states in which the electrons emerge at comparable
distances from the nucleus. The present calcula-
tion clearly shows that such equal energy events
can occur. In order to extrapolate a threshold law
from the present results we shall proceed as fol-
lows. " To every two-Coulomb auto-ionization
state below the Nth threshold, we shall associate
an i:nelastic scattering wave function above the Nth
threshold in which the inelastically scattered par-
ticle will also be described by a Coulomb wave.

The basisof this association, which is very funda-
mental to this extrapolation, is essentially that of
effective range expansions generally: namely that
a continuum function at low energy looks at small
distances very much like a bound-state wave func-

0.24

0.22—
0.20—

I
0,18— I L

I
\

0.16— I

0.14— I
t

0.12— I
I

0.10 — n

008- I
'

\
\0.08-

j~

)

I (p (g v&)(r) N=5, j=2006- 'i
I

i I
0.04' I

i

I I
002 II i

I t00
i

-0.02 1 I

I I

-0.04;,'
-0.06

II I I-0.08 -&g

I

-0.10—
-0.12—
-0.14 — v

Ii

-0 16 ——-
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(r p) (r I ) ~r

FIG. 2. Comparison of hydrogenic 5s function (R5s)
and dipole radial function {v52). The fact that the energy
of +~ is lower than 4 W for the case given indicates that
the radial distribution of the twc electrons is more
accurately given if each is as shown rather than if both
were described by hydrogenic functions. The && are
the positions of nodes of v5&.

tion of the same Hamiltonian providing the absolute
energy difference of the states is small. ' For
those states which are two-Coulomb-like, the rela-
tionship (2.9) will not be accurate between the low-
est (s = 1) and next lowest (s = 2) resonant energies.
This is because the interior of the wave function for
for s ~ 2 no longer determines the energy fNj(s)&
however, that is not essential for our purposes.
What is essential is that the behavior of the first
and second resonant function and all higher reso-
nances as well as the low continuum above the Nth
threshold are similar to each other for r, and r,
small, and they are given by +~.

Similarly to every +D state which gives @ lower
energy we shall associate an inelastically scattered
wave which asymptotically sees a dipole potential.
[In those cases Eq. (2.9) should be accurate for all
s. ]

Below we shall extrapolate the threshold from
4'~ states. This can rather cleanly be done and
gives the dominant contribution. The contribution
from 4D states is considered in the Appendix.

The two-Coulomb wave function above threshold
becomes

&& P&(cose 12), (3,1)

where EI(frNr I) is a continuum Coulomb function.
The index j labels the state of the +g calculation
whose energy is lower than the corresponding j
state of the +D calculation. In general then

1y 2y ~ ~ ~ p Jp 0 (3.2)

Although for the results presented in Table III
where comparison of D and W calculations can be
made, J~~ 1, it must be assumed that as N gets
larger, Jgr will also. We shall assume that asyrnp-
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totically for large N, Jg can be represented as

lim J@fxN& 0&y & 1.

The function &@j, however, is an inelastic scat-
tering wave function, and k~ is a wave numbex' of the
the inelastically scattered wave. The cross section
for excitation of the Nth state is given by

J
o~=k~ + l(y~. l VI4'. .)I', (3.4)

where 4i 1s the initial stRte Rnd V 1s the 1ntel Rct1on

'=~'' "&O'2}~S a-
(slnkt'1/O'Y1)+124'2)/&2 (3 5)

V= 2/~, —2/~„ (s.e)

(rydberg units are used throughout). We define the
yield to a group of states in the vicinity of the Nth
state as Q (not to be confused with the projection
operator Q~}:

(3.7)

Now if the energy of the hydrogen atom is labeled
ur(N}, then

~(~) =-1//', (3.8a)

the total energy being given by

E=k '+ac'.

When N is large, we can replace the sum in (3.7)
by an integral:

Q- fo~d&~ fr~cur . (3.9)

The matrix element in (3.4) can be written explicitly

Eq. (2.15), so that the sum over j in (3.4) contrib-
utes" a factor J~. Equation (3.9) then leads to

Q o- f0~(k~'~'N') 2Z~3cku . (3.11}

Using (3.3a) for Zg, inverting (3.8a) in the form
N~ l~l '~2, and proceeding into the continuum
wherein so is positive Rnd 0 ~ zo & E defines the range
of 1ntegx'Rtlon we find thRt

q J, w'' ~du. (3.12)

Thus finally

„@l(3—y) (3.13a)

In ordex to say something about the value of y, we
have plotted in Fig. 3 the results we have obtained
as a function of ¹ The solid stxaight line is the
same as that in Fig. 1 in the restx'icted range of

¹ It represents JD and therefore is an avex'age of
the squares; although it looks somewhat arbitrarily
drawn here, Fig. 1 shows that when one goes to
larger N there is essentially no ambiguity in it.
Similarly the curved lines are intended to represent
an average through the open circles (Zg» F)
There are not enough open circles to allow such a
curveunambiguously tobe drawn; however, as with
JD we expect that going to larger N will allow this
curve to be essentially uniquely continued. The
limited results do seem to fit better with the small-
ex fractional value of y. Further discussion is
reserved for the next section.

IV. DISCUSSION

Let us examine some of the assumptions that have
gone into the derivation of Eqs. (s.isa). Aside from
the material discussed above Eq. (3.1) and the ana-
lytic continuation into the positive energy domain, the
biggest assumption concerns the summation over j
in (3.4). We have indicated" that the only error this
could reRsonRbly cRuse 1s Rn 1ncx'eRse 1n the expo-
ent in (3.13a). To that extent the exponent -', (3- y)
may be a lower bound on the exponent, which would be
quite satisfactory for our purposes. [We believe,
however, that it is more accurate than that. ] The

Ej i
E

02E+1 o o l X 1 Nl'

x(~ /r&
'

)sin(n~, )~, (~ )«,d~ . (3.1Oa)1 18 2 j.

The normalization factor of Apg is proportional"
to X-312. Since there are erms 1n X~j, t e co-
efficients Cpg~ like the. BEj +, Table II, are pro-
portional to 8 'I'. (We have verified this to be so
up to N = 9. ) The normalization of Ef(0~1) at the
origin, corresponding to the Coulomb analog of a
plane wave at infinity, » is k~ 'I2, the sum of in-
tegrals over E converges very rapidly'3 and is quite
independent of the upper limit. We therefore have

1

g
0 ] 5 6

N

I I

8 9 10

(s.lob)(y~. l V I4'.)~ 1/@~~I 1P.

Vfe shaQ assume that the dependence on j for N
large is secondary, as with the coefficients b~& of

FIG. 3. Sobd straight line is JD vs N representing
the squares. The other curves are various analytic fits
of the open circles to represent eJ~. Table constant of
proportionality has been chosen to be unity.
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J~ fx- logN. (3.3b)

This would change the form of the threshold law to

Q —E'i' log E. (3. 13b)

process of analytic continuation which is used in
going from (3.11) to (3.12) together with the re-
stricted analytic form used to represent J~(~) may
have lost more subtle energy-dependent factors such
as logE or oscillating factors. From most practical
points of view logarithmic terms are not important,
since they are completely dwarfed by the power-
dependent factors; if the factors are oscillating,
then we would expect (3. 13) to describe the en-
velope of the curve.

The smallness of J@in the present calculation
might be interpreted to mean either that y is small
or that the constant of proportionality is small in
(3. 3a). We believe that it is the former which is
more suggested by our results; for otherwise one
would not have expected J~(N) to be 1 at N= 3 and
then to remain there to at least N=7. Rather one
would have expected Jg only to become 1 at a
larger value of N. It is for this reason that the
agreement of Jg with a fractional power dependence
in Fig. 3 appears to fit the limited results so nat-
urally. Note also from Table III that Jgr cannot
exceed 2 for ¹ 9.

Nevertheless it will clearly require much larger
N in order for a precise value of y to be determined.
Although we are in the process of extending this
calculation, we cannot promise that results will
be forthcoming soon. It will require considerably
more numerical sophistication to avoid overflow
and cancellation of significant figures. (The com-
puter is an IBM 360-91 with approximately 15
significant figure accuracy. )

On the basis of Fig. 3 we would estimate 0(y~&.
Indeed the most likely alternate possibility in
our opinion would be a logarithmic increase of
J& with N,

(4. 2b)

a,nd p = —', [(1002 —9)/(42 —1)], (4. 3)

r-. =r.(t),i (4. 4a)

is a solution of Newton's equations for energy E,
then

r.' =B 'r (B'~'t). (4. 4b)

are (geometrically similar) solutions for energy
E' =BE. The solutions (4. 1b) can be written as an
explicit function of time using the solution of joint
motion

(4. 5)

which is valid when E (( Zx '. This can then be
consistently inserted in (4. 1b) (which itself is valid
only when &r &( x). Letting C,max(E) be the max-
imum value of C, which leads to double escape
at energy E, one finds that the corresponding so-
lutions (4. 1b) can be written

1 1

(4. Ic)

The first type of solution (4. Ia) ean exist even at
E =0, and it corresponds to particles appearing at
infinity with equal (necessarily zero for E = 0)
speeds. Geometrically similar solutions continue
to exist for E)0, thus the threshold dependence
(increase in the number of solutions) is determined
by the increase with E of solutions of the second
kind (4. 1b). These correspond to events in which
the two electrons come off with slightly different
energies. Wannier' has shown that the contribu-
tion of these to Q is proportional to C, itself. To
get the dependence of C, on E Wannier appeals to
a similarity principle, whereby if

3 1

&x=C ~4
1

3+1
~X =C2X

(4. 1a)

(4. 1b)

where &x is the difference of the radial distances
of the two electrons from the nucleus (assumed
fixed and of charge 2) and x is the mean radius:

(& 2+& 2/12 (4. 2a)

Although we think Wannier's exponent is not cor-
rect, our results are not extensive enough to rule
it out. (This would correspond to y = 0. 75. Also
we cannot rule out a linear theory, 4 y = 1, although
that seems even more improbable in our opinion. )
Wannier's theory, which has recently been revived
by Vinkalns and Gailitis, "is based on a rather
brillia. nt analysis of the classical orbits (i. e. , so-
lutions of Newton's equations) which describe two
electrons emerging from the vicinity of the nucleus
and not being caught again. Basically Wannier
finds for E zero or slightly greater than zero that
the solutions are of two kinds:

Applying (4.4b) then leads to the conclusion
1 1

C max(E) ~E ~ + 2 P
2 (4. 6)

In Eq. (4. 6) the (quasi-ergodic) assumption ha.s
been made that all initial conditions for particles
entering the emergent zone are essentially equally
probable. From the remark above Eq. (4.4a) this
then translates itself into

1 1

q~E 4+ 2P (4. 7)

which is Wannier's threshold law. '
The key assumption in this theory, in our opinion,

is expressed in Eq. (4. 6). We wish to show first
that this assumption cannot be justified in a strictly
classical theory of the whole ionization process.
In that case the cross section emerges as a statis-
tical average of events in which the orbital particle
is initially bound. (Radiation damping is neces-
sarily excluded. ) The question one asks in ioniza, —

tion is what happens as the energy of the impinging
particle increases, the characteristics of the bound
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particles remaining the same. In othe~ noxds, the
variation uith energy of the initial condition (i. e. ,
one particle incoming, the other particle bound)
does not satisfy the similarity principte, Eqs.
(4.4). But Newton's equations, in that case, cover
the whole collision process. In other words, if the
orbits corresponding to the solutions (4. 1) be traced
backward in time, it will be found that the over-
whelming majority of them originate in trajectories
in which the two electrons were originally approach-
ing the nucleus from infinity, or in which if one of
the particles is bound it will be bound with the
wrong energy. These are initial conditions that
must be excluded even from the most general type
of distribution used to describe the real initial con-
ditions. Thus we conclude that from a completely
classical point of view the distribution of C,m~(E)
does not necessarily obey (4. 6). It may be a very
sensitive function of E (near threshold) and/or
the result may not depend on C2(E) alone but on C,
as well; it may also depend on the statistical dis-
tribution that one chooses to describe the initially
bound orbits. It is, then, consistent with these
arguments that classical Monte Carlo calculations
do not reveal" the Wannier threshold law.

The same objection cannot a Priori be raised
against a quantum mechanical collision. For, in
that case, the concept of an individual orbit does
not apply throughout the collision process. Never-
theless the above consideration does raise the pos-
sibility that the way which particles emerge into
the classical zone may also be a highly sensitive
function of E. We believe that this in fact is the
case, since even if one cannot speak in terms of
orbits, the Hamiltonian does remain the same
throughout the collision. The assumption would be
more justified in our opinion in the problem of the
threshold production, say, of two negatively
charged hadrons by nucleon collisions with nuclei.
In that case the short-range interactions only come
into operation in the quantum mechanical zone,
and they are so strong and complicated that they
can legitimately be expected to make the final
state completely oblivious to the initial state.
Note that our approach to this problem completely
avoids this assumption, but by the same token it
cannot say anything about it.

In addition to this quasi-ergodic assumption there
remains the question of the validity of the classical
theory. This is a very difficult question which has
not been definitively answered. We believe that in
the ionization of atoms by electrons the theory does
have some validity in the region (hr/r) «1. How-
ever, when the difference in the two radial dis-
tances gets large, then we believe that quantum
effects (shielding) will have a profound role. ' The
present results tend to bear out this reservation. "a

Finally we mention the experimental situation.
Although an experiment can never prove a thresh-
old law, the experiment of McGowan and Clarke"
has convincingly shown that there is some nonlin-
earity in the e —H ionization curve between thresh-
old and 0. 4 eV. For if there were not, then the
measured position of the first resonance in e —&
elastic scattering" would not coincide essentially
with precision calculations, "which in our opinion
cannot seriously be questioned. In the region 0. 05

In this Appendix we shall derive the normalization
factor for a particle scattered in an attractive x '
potential. We shall also estimate its effect on the
ionization threshold.

The inelastically scattered wave satisfies the
equation

IbN. l

(Al)

It is important that this equation exclude regions
near the origin; this is evident from the general
solution of (Al)"

f . (r).=~r~t'~. (k r)+ar~&N. (r), (A2)
N N jn

which oscillates infinitely rapidly (and thus is un-
acceptable) as r-0. nN. is given by

Ng

Ng Ng
(A3)

Using the asymptotic form of the Bessel function
for kNr ))n~& in (A2) gives

(A4)

We demand that r 'fN. (r) be normalizedto aplane
wave, so that

lim fN. (r) =k sin(kNr i 5),C
(A5)

+ ~oo

where C is independent for kN. Comparison of
(A5) and (A4) shows that A and 8 are proportional
to uN-~~2.

On the other hand, A and J3 must also be related
to the solution for smaller values of x. To get this
relation we must first rewrite (A2) in a region
where hap &(&Nj, but where the x-' potential is
still operative. The function f~j(r) can there be
approximated by the small argument expansion~
of the Bessel functions. I.e. , for kNr « nN&
but ~o~,

.(r)=—&r' '(~k r) /I" (I+in)+Br' '/sin(in )
Ng

N cos(inn) N
-k rin (k r)'

1(1+in) r(I - in)
(A6)

(E(0.4 eV McGowan and Clarke find very good
agreement with Wannier' s E'"' law, but it is
perhaps significant because the experiment
is hardest there) that below 0. 05 eV the yield curve
does appear more nonlinear. Brion and Thomas"
in e —He ionization also find a yield curve which
appears to be more nonlinear than Wannier's law.
Since the region of nonlinearity is much greater
there, this may provide a better experimental
test of the theory.

APPENDIX
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The radius at which the x ' potential is no longer
operative is defined as ro. %'ithin this radius we
assume that we can represent the solution for what-
ever (in reality very complicated and nonlocal) po-
tential does exist as

f~ (r).=nf (r). (Av)

The quantity g is the desired normalization factor.
It can be determined by equating the logarithmic
derivative of (A6) and (A7) at r = r, O. ne finds to
an excellent approximation

11 = Or'"/f(ro)[k~( ~4 Ror—0+80'ro')]"', (A8)

where ft, =-[f '(r)/f (r)] (A9)

In ordex' to estimate the effect of this on the ion-
1ZRtlon 1t 18 necessRx'y to hRve some ldeR of the
size of xo. A lower bound estimate of it is that ra-
dius at which the outex electronis compaxable with
the mean radius of the inner electron r,. (It cannot
be smaller for then it would no longer be the outer
electron. ) But for a hydrogenic atom in the Nth
state F, a(- ~'; thus it is clear that as N gets large,

must also. Hence

i1m q= if'(ro) r1(k ro)-'&'. (Alo)

QD ~ fk~[k~'12 %2 If '(rO) 1r0112 ] 2Z 1Pdgv. (All)

Using Eq. (2.14) for ZD, we obtain

q~ ~ fduf/If '(ro) I'ro . (A12)

In order to evaluate (A12) we must 1U1ow how

f '(r, ) depends on r, and how r, depends on N. The
only way that this can be done is to adopt a model
which will hopefully be both manageable and real-
istic. We shall assume that for r(r„ f~j(r) sees
a square well of depth —Vo. For xo we use half the
estimate derived in Ref. 11 [Eq. (2.24)]

Before proceeding let us note that for a finite N
the factor k~ '~' in (AB) or (Alo) is the same as one
would have for a pure Coulomb wave. It is this
factor which is directly responsible for the finite
thxeshold behavior in electron-impact excitation
of hydrogen. This simple fact which is the implicit
basis of the original derivation of this result by
Gailitis and Damburg2' is somewhat obscure in
their paper as a result of their very elegant and
very general mathematical procedure.

To calculate the effect on the ionization we must
replace EI(karl) in (3.1) by nf(rl) in view of the
fact that the dominant contribution to the matrix
element comes from x, small and x, comparable
with r, . In this case the sum (3.4) must be ex-
tended from j = 1 to j=/f1. Everything proceeds in
complete analogy with the development after Eq.
(3.1), and we again replace the sum over j in this
case by JD. The counterpart of Eq. (3.11) then be-
comes

with the limits,

0($(I (A15)

indicating that &~j remains between the Nth and
(N 1)st lev—el at the least ($ = 1) to being Rydberg
in nature at the most ($ =0). If we substitute (A14)
into (A13), then using (2.15) we find

~ ac+ ~

3+ &/2
(A16a)

Actual calculations for v&j(r) for %=5, j =2 (cf.
Fig. 2) show that r~~N', and it is otherwise quite
certain that $ = 0 cannot be exceeded as an estimate
of xo. For the purpose of the estimate, therefore,
we shall take

According to the model, the interior solution is

f .(r) =rising,

where X= (vO —c~.)Nj

From (Av) this means

f(r) = sinÃr.

Thus the secular dependence of f '(r, ) is clearly'4

[f '(ro)] I
~ K (A19)

To relate K to X we demand that f(r) have X2
nodes as is demanded by the orthogonality require-
ment (2.12), Actually (2.12) confines the nodes to
a radius r, ~ N' where v~j(r) overlap the radial
functions Apg(r2) describ1ng the inner electron.
However, Fig. 2 shows that the amplitude of the
inner osc1llations are minuscule, and only when
r, =—r, of Eq. (A16b) does the amplitude become
sizable. The condition

Kr = &2m'
0

(A2o)

replaces this by an evenly oscillating function of
uniform amplitude throughout the whole region.

It follows then that

For higher resonances of a given, N and j, 2x, gives
a good estimate of the region in which the dipole
potential operates and therefore characterizes the
size of the state. For the lowest resonance the
dipole potential alone does not exhaust the configu-
ration space of the major part of the wave function.
Equation (A13) amounts to saying that the more
complicated potential extends over half of the dipole
region. Calculations of Chen" are in remarkable
agreement with this estimate.

e~j is the binding energy of the state relative to
Eth threshold energy. For e~j we use the formula

(A14)

(A13)
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One substitutes all of this into (A12) to get
1

QD
~ fdte/N~ f, w ' dso

(A22)

Strictly speaking this, as well as the foregoing ex-
trapolations, shouMbe augmented by inclusion of the~ part of the wave function, in the language of the
Feshbach theory. ' However, it is clear when work-
ing below threshold that this contribution has a
scattered part which is a phase-shifted plane wave
by construction. Thus it is known to contribute in
the order F.'~'.
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