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The energy dissipation produced by the electric fields and currents associated with a dislocation moving
through a metal is calculated from the Boltzmann equation. The applied stress required for steady motion
is found to be proportional to the dislocation velocity divided by the electrical resistivity, in good agreement
with low-temperature yield- and Row-stress measurements on bcc metals. The forms of the electric Gelds and
currents are derived, and these are found to exhibit Friedel oscillations and to depend in a unique way on
the dislocation velocity. The displacement field of a dislocation is believed to be significantly wider and more
gradual in an fcc than in a bcc lattice, and this feature can be taken into account either by (1) inserting
dislocation widths into the calculation, or (2) assuming perfect electronic screening of the dislocation de-
formation potential. The stress or drag coefBcient obtained from the width calculation shows a very small
temperature dependence, while the perfect-screening result is temperature-independent. The problem of a
dislocation moving in a magnetic Geld applied along its length and perpendicular to its direction of motion
is also considered. Under suitable conditions, it is found that oscillatory effects of the cyclotron-resonance
type may occur in the stress or drag coefhcients.

I. INTRODUCTION

'HERE is considerable interest in determining the
nature of the interaction between conduction

electrons and moving dislocations. At low temperatures,
this interaction may be the main retarding force on
moving dislocations in metals, and we have previously
suggested' that the energy dissipated by conduction-
electron currents could be the origin of the markedly
temperature-dependent component of yield and Qow

stresses observed in bcc metals. ' 7

Vfe present here an extension of previous work, ' '
using the Boltzmann equation approach to calculate
this energy dissipation. In Sec. II, we present a general
formulation of the problem, which is closely analogous
to the acoustic attenuation theory of Cohen, Harrison,
and Harrison. ' Section III treats the case of dislocations
moving in zero applied field, and gives further details
on the results of previous work. In addition, two possible
mechanisms which may explain the much smaller tem-

perature dependence of dislocation drag in fcc metals
relative to bcc metals are presented. The 6rst method
introduces dislocation widths into the calculation. The
larger widths appropriate for fcc metals relative to bcc
metals reduce the size and temperature dependence of

the drag appreciably for the former. The second method
assumes that, because dislocations are more spread out
in fcc than in bcc lattices, electrons are able to screen
almost perfectly the deformation potential in the former.
This produces a temperature-independent drag of about
the right magnitude. Present experimental results are
not su%.cient to determine which of these methods
(presumably two different approximate descriptions of
the same physical mechanism) is nearer the truth. In
Sec. I&, the eBect of an applied magnetic field is con-
sidered and cyclotron-resonance eBects are found. For
bcc metals, the effect is small, producing a change of
perhaps 5/~ in the stress on drag coefficients under
optimum conditions. If the dislocation width concept is
used to describe fcc metals, the magnetic effect is found
to be comparable in size and form to the bcc case. How-
ever, use of the nearly-perfect-screening assumption
predicts quite marked oscillations in the stress, having
magnitudes of 10—

30%%uz of the zero field value. For this
and other reasons the magnetic Geld experiments should
be critical in clarifying the problem. The form of the
electric fields and currents produced by a moving dis-
location is derived in Sec. V, and the possibility of de-
tecting these is discussed. Section VI presents a sum-
mary and discussion of the results.
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II. BOLTZMANN-EQUATION FORMULATION

Cohen, Harrison, and Harrison have given a general
treatment of the problem of ultrasonic attenuation in
metals, using a solution of the Boltzmann equation ob-
tained with the trajectory method of Chambers. "Using
the notation r'= r(t'), v'= v(t'), the solution is

f,(r', v', t')e t' '& t'dt'/r. ——f(r,v, t) =

Rev. "R.G. Chambers, Proc. Roy. Soc. (London) A65, 458 (1962);
A238, 344 (1957).
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Here f(r,v, t) is the electron distribution function, which

gives the probability of Gnding an electron at point
(r,v) in phase space at time t; f, is the distribution func-
tion after scattering, and T is the electronic relaxation
time. If u(r, t) is the velocity imparted to ions and im-

purities by the moving dislocation, f, has the form of an
ordinary Fermi distribution function centered about
velocity u; i.e.,

f,(r,v, t) = fp(B(r, v —u, t) —Ep), (2)

Here, Ep is the energy at the bottom of the conduction
band, and V~ is the deformation potential of the moving
dislocation.

The solution to the linearized Boltzmann equation is
found by expanding f and f, to terms which are of
first order in u:

f(r,v, t) = fp(hp(v) —Ep)+ ft(r, v, t).

Following standard procedure, ' '~ one finds

tif t

ft(r, v, t) = — e-«-'&I'{v' Le E(r', t')
88p

(4)

—VVD(r, t')+mu(r', t')/rj V&(r—', t)/r), (5)

where E is the electric field produced by the moving
dislocation. Following CHH, we Fourier-analyze all

quantities and obtain for the electron current

where E& is the Fermi energy and the single-electron

energy is given approximately by

h(r, v, t)=-,'mv'+Vrt(r, t)+Ep=hp(v)+Vr, (r,t). (3)

1S

2Ep gQg&&

Vaq=- r„
3

where u~ll is the component of u~ parallel to q, and I",
specifies the screening of the potential by conduction
electrons. Following Brown, " we adopt the Bardeen
or static dielectric screening function, "

t7 )' 4kp' —q' 2kp+g
I'p=

~ 1 -', + -- ln, (11)
lItTpl Skpttt 2kp —g

where kF and gTp are the Fermi and Thomas-Fermi wave
vectors, respectively.

Using Maxwell's equations relating the field to the
total current, one finds

where S is the conduction-electron density, 0-p is the dc
conductivity, and the various tensors are defined by
Eqs. (13)—(19).

A = (8—'+ I+V)

K=(1+tr/ap B—')

B '= (t'/y, i/P, —i/P) (—diagonal),

V,,=O, i~ j~1,
Vyy= pqI'q,

(13)

(14)

(15)

(16)

(17)

Ep=(tr t K 'tr ~ A —I—V) (Neup/trp)
ECHE= E, , (12)

(Tp

where
GOT Q Vzg

ei(p r ttt) (6)—SLUE
J,(r, t) =P tr, E,+

er (1 itor) e— and

where the conductivity tensor e is given by

y=co/4srop, p= (t7c/co)'y,

p, = (cia)'/3(1 itor), — (19)

—8
tr= dv(ev)g(v)

asap

A. being the electronic mean free path.

(7) Using these results, Eq. (6) can be rewritten in the
form

and J.,= K—'tr A Neu, = J Neu, . (20)

a(v) = ev' exp{iq (r' —r)
Taking into account collision drag effects, '" the

energy dissipated by electrons when the dislocation
to(t' —t) —(t—t')/r)dt' (g) moves from the jth to the (j+1)th lattice position is

The requirement of Galilean invariance restricts ~ to the
values

(j'+I) rD

dt d'r J,(r, t)

co= (tI b —2srn)/rD, (9) D

where n is any integer, b is the Burgers vector, and r D is
the time required for the dislocation to move from one
lattice position to the adjacent position.

All quantities can be expressed in terms of u~. A
simple but reasonable form for the deformation potential

"H. N. Specter, Solid State Phys. 19, 291 (1966).

~ Err —V
Vrt(r, t) mu(r, t) Nmu'(r, t)

+
e eT 7

(21)

I2 R. A. Brown, Phys. Rev. 141, 568 (1966)."I. M. Ziman, Etectrorts ottd Phortorts (Oxford Umversity
Press, London, &960), p. 200.

Cylindrical symmetry reduces the problem to a two-
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dimensional one, and, Fourier-analyzing, one finds

Xsssrg)L(cm) '

(2»r)'r
dsq u, (ReS»)u„(22)

k, L,Q)

S,= J,+ E.((»+1, (23)

where J+ is the adjoint of J, and E.(( is the effective-
Qeld tensor,

iV
E ii —— e-'K—'(r A—2+—

err
(24)

where I is the dislocation length and the integration
extends over the (1-2) plane in Fig. 1. S» is the dissi-
pation tensor given by

(I b.vd)

FIG. 1. Calculations in wave-vector space are most easily
carried out in the (1,2,3) coordinate system specified by the unit

A,

vectors j, in the direction of q, I, along the length of the dislo-
cation, and the cross product of,these two, jg. The natural co-
ordinate system in real space (r,g,h) is specified by the Burgers
vector or glide direction, b, I, and the direction of their cross
product g.

bvd (vs)2 y
»e &edge) (x',y) = 2—

i

—
i

2»r 5 vii (g"+y')III. RESULTS FOR H=O

We note that the eRects of applied fields are included at Fig y
this stage through their inQuence on o.

If there are no applied 6elds, o and the other tensors
discussed in Sec. II are diagonal. In particular, " 2 —

yg
+ 2i —-1, (34)

1 (Zrs+ys)2
30p

o 11=o „=- (a- tan-'a),
(1—i(or) as

and
30p x'= x—v~t. (35)o 22

——o 22 ——o.,= [(1+as) tan-'a —a], (26)
(1—i(or) 2as

Similar results are found for the other nonvanishing
components of interest, I ('~g'~ and I (-""~. The

(27) Fourier transforms are readily calculated. Using the
(1,2,3) coordinate system of Fig. 1, we 6nd

where

a= gA/(1 i(or) . —

The components of S in this case are given by

(36)(edge) —I (edge) A+I (edge) A
q qlt g q1. gL q

(eerew) —I (screw)g
q q~

p ipI'
2+ +1

Qi (or
(28)S11 Sl I

Q
where

(25) where b is the Burgers vector, vd is the dislocation
velocity, e2 and v& are the transverse and longitudinal
sound velocity, and

where

S22= Sss =Sr = —2 +1, (29) bvd $ sin(o» cos»o»
(edge)—

q t I

(cm)' g
(38)

alld

v=i/p+pr,
b= (1—i/0),

Qi= (1+io~~/y),

Q, = (1—io,/P).

(30)

(31)

(32)

(33)

bvd (1—4 sins»o»)I («&= —iqj.
2(cm)'

&vd sin pq cospq
(screw)

qL
(cm)' g

(40)

The ionic velocity functions are found by taking the
time derivative of Eshelby's expressions for the ionic
displacement functions of a moving dislocation. " One
finds, for example, with respect to the (2,j,k) system in

"C. Kittel, Qual(gm Theory of Solids Uohn Wiley 81 Sons,
Inc. , New York, 1963), Chap. 1/, p. 236."J.D. Eshelby, Proc. Phys. Soc. (London) 462, 307 (1949).

and

g= [1+2(vs/vi)'].

The cylindrical symmetry has removed any dependence
on g~, and orq reduces to gad cosqq in this continuum
approximation.

Introducing a Debye cutoff in the g integration in Eq.
(22), one finds that the applied stress required to supply
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the energy dissipated by this mechanism is

S(edge) —PT/$2I —S (edgei+S (edge)

Snsbvg
(2

sin'p cos'y
dq (ReS„)

1 QD

+—
(1—4 sin'p)'

(ReS,), (41)

while

Embeds
S (screw) — dg

0 O

sin y cos p
dp (ReSi). (42)

If one inserts the complete forms for S~~ and S~,
Eqs. (41) and (42) are quite complicated and the inte-
grals can only be done numerically. However, one can
convince oneself that the following approximations are

(1) S (edge) and S&(screw) are ((S~ ~

edge)

temperature range of interest (0 to 200 or 300'K); (2)
the dominant contribution to the Sll( g ) integral comes
from the region where g is large (i.e., g&gD/10). In
this high-g region, qA)&1, and, if we also assume that
co7-&10 ', which should be valid for most materials, we
find)

where p is the dc electrical resistivity. The electron drag
coeKcient, measured in ultrasonic or internal friction
experiments, is simply given by 8= (Cb/p). If we neglect
other dislocation drag mechanisms, we can equate S to
the yield stress. More accurately, we mean the flow
stress extrapolated back to the elastic line on the stress-
strain curve. ' The term "yield stress" is used because
it represents a fairly well-defined point on this curve, at
which interactions between dislocations (work-harden-
ing) should be negligible. For measurements at constant
strain rate, as discussed previously, ' ez can be assumed
to be approximately independent of temperature, so
that all of the temperature dependence is contained in
p. Separating p into its ideal and residual parts, and
inverting Eq. (48), we find

1 Co'(&)+f s)

S C

2.0

I I I I I I I I I I I I I

A plot of 1/S versus p, should then give a straight line
whose slope and intercept determine the dislocation

ReS„=
(~A) ~gA P g'

(1-1,)+ 11+ I, I, (43)
gTF

l.5

where we have neglected terms of order (~r)' with
respect to 1, and terms of order 1 with respect to qA.
Following Pines" and others, » we replace AT@ by a
somewhat smaller screening vector, g, =0.433 gTp, and
adopt the approximation

0.5—

7r(gi)A)
&(*-) (45)

xmf..p (ADA)'
S= 5(x.)+

3 616m'.

One then finds, from Eq. (41) (dropping the labels on S),

I I I I I I I I I I I I I

002 004 OQ6 OQB O.IO O.I2 O.I4

p (p, G cm)
I

(a)

I I I I I I I I I I

where x = (pic/g, ), and

1 3
g(x ) = 1+ — ln(1+x '), (46)

2(1+x ') 2x„'

0.6

a

= 0.4
Cll

g(x )= (2 tan 'x —/x„) (4&)

0.2
p, oth 5: and+ are typically 1, so that the second term
of (45) may be neglected and the equation rewritten as

I I I I I I I I I I

mEr bgDgpg(x„) sd—=C—
7

24re' p p
(48)

2 4 6 8 lo

p (pQ cm)

(b)

l2

6 D. Pines, Solid Sta,te Phys. 1, 367 (1955)."K.Krebsr, Phys. Rev. 138, A143 (1965).

FIG. 2. The inverse yield stress versus the ideal resistivity for
(a) K (Ref. 3); (b) Fe (Refs. 3 and 6), Cr (Ref. /), V (Ref. 4),
and W (Ref. 4).
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velocity and the residual resistivity of the specimen,
respectively. Several examples are shown in Fig. 2,
and the dislocation velocities and residual resistivities
found from these and other such plots are listed in Table
I. If one now takes these values and uses them in Eq.
(48), one finds the theoretical S-versus-T dependence
shown by the smooth curves in Fig. 3.

It may be noted that theory and experiment are in
better accord at low than at high temperatures. This is
expected since other dislocation drag mechanisms
(phonon drag, impurity and grain boundary pinning,
etc.) should become comparable to or greater than the
electronic component at higher temperatures. If one
could subtract the part of the dislocation drag due to
these mechanisms, the straight-line relationship would
presumably hold for the electronic component at ele-
vated temperatures, but since there is no standard
procedure for doing this we have not attempted it.

Reference to the table shows that the dislocation
velocities obtained are fairly large, being about 10'%%uo of
the speed of sound in most cases. These values contrast
with those obtained from etch-pit experiments, namely,

TAax, E I. Dislocation velocities and residual
resistivities for various bcc metals.

2.0

I.5

I

vc, I,O

0.5

5.0—

5.0—
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l0—

50
I

(00
I

I50

T ('K)

I
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'C7

ca
Q

-2.Q co

0
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Element

V
Fe
Cr
W
Mo
Nb
Ta
K

vq(cm/sec)

5.88Xi04
2.i8X i04
6.22 X i04
i.S9Xi04
2.27X i04
7.83X i04
6.64X i04

ii.86

pp(pa cm)

3.88
2.06
3.35
i.39
2.i7
5.06
3.85
0.054

0
I I I I I I I I I I I I I I I I

40 80 l20 l60 200 240 280 320
T ('K)

(b)

FIG. 3. Theoretical (smooth curves) and experimental (points)
yield stress versus temperature results for (a) I (Ref. 3) and
V (Ref. 4); (b) Fe (Refs. 5 and 6) and Cr (Ref. 7).

10 ' cm/sec or less. However, this discrepancy may be
more apparent than real, since this experimental ap-
proach gives only an average velocity over a large dis-
tance, 1 mm, and affords no information on how long
or how often the dislocation may have stopped. We are
concerned here with the primary velocity with which a
dislocation moves between neighboring lattice positions
separated by one Burgers vector. The speed of this
motion should be determined by the strength of the
atomic bonding, just as is the speed of sound-wave
propagation, and, on this basis, velocities several percent
of the speed of sound seem quite realistic. Moreover,
several recent experiments are in qualitative agreement
with our results. '

We note that, although the residual resistivities are
of reasonable size, they are, in general, somewhat higher

than one might have expected on the basis of specimen
purity. Further, the same residual resistance seems to be
appropriate for the Fe data of two different investi-
gators. This was also found to be approximately true
for other metals, where more than one set of data was
available. These facts suggest that the residual resistance
in this theory should be viewed as a parameter which is
characteristic of the electronic mean free path in the
highly strained region close to the dislocation core.
This seems reasonable, since the dominant part of the
interaction takes place for large rt, &gn/10, so that most
of the energy dissipation takes place within a distance
of several Burgers vectors from the dislocation center.

For for) 10 ', the approximate expressions (43) and
(48) are no longer accurate, and one must consider the
more complicated complete expressions for S~l and S~.
Thus, for example,

's R. M. Fisher and J. S. Lally, Can. J. Phys. 45, 1147 (1967);
K. Maruk, awa, Institute for Solid State Physics, University of
Tokyo, Technical Report No. 222, 1966, Sec. A (unpublished);
F. Vreeland, Jr., in Dislocation Dynamics, edited by A. R. Rosen-
held, G. L. Hahn, A. L. Bement, and R. I. Jahee (McGraw-Hill
Book Co., New York, 1968), p. 529.

(qA)s
ReS„=

3P+ (~r)sj

Lx MT(Zr —x G)T)aC+Z@Xj
X 2+

P~'+(&r —*s~r)'7
(50)
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50—
I l I I

I
I I I I

I
I I I I

I
I

8
CJ

4%
C

CS

O

I
I

tA

40—

20—

10—

I t I I I I I I I I I I I I I I

100 200 300
T ('K)

where x=g/g„a&=god cosy, and

2= —r(1+x'r) — (1+((ur)'(1+x'r)),
(qA)s

(51)

x= (1+x'r)1-1+(NT)'(1+x'r)$ — x'(air)'r, (52)
(gA)'

(gA)' (gA)'
Re&1 f,

3
'

3
(53)

We have evaluated (41) and (42) by computer integra-
tion, using the complete expressions for S~~, S~ and the
complete screening function r as given by Eq. (11).
These calculations conhrm that S~((S«over the
temperature range of interest. The transverse com-
ponent of drag is found to increase with increasing
temperature, and this is shown in Fig. 4 for a screw
dislocation in a typical metal. The relatively small
magnitude of the stress arises primarily because the

l5 t I I l I l I l I
I

I I I l I l l I I
I

I l I l l t I t l

14—

. II
ol IP8

9

-o 7

5

l I I I I I I I f I I I I l I I I l I I I l I I I l I I I

100 200 300

I rG. 5. Results of computer integration of the complete expres-
sion PEq. (50)g for S" (solid line) and the approximate results
given by Eq. (48) for Vparameters (dashed line), but assuming a
residual resistancejparameter ofP0.16 pQ cm. For this example,
co~T~10 at T= 100'K, and NstsT~I at T=40'K.

I"IG. 4. Stress versus temperature for a screw dislocation in a
typical free-electron metal assuming a conduction-electron density
of 5&(10"cm ' and a dislocation velocity of 10' cm/sec. Sz(' I')
has a very similar form.

(edge) — ($& )(e
—qXccsoq

q
cm2

cospg singe
(54)

with similar changes in the other components. The

'9 D. Hull and H. M. Rosenberg, in Proceedings of the Tenth
International Congress of Refrigeration, Copenhagen, 1959, edited
by A. Mae and M. Jul (Pergamon Press, Inc. , New York, 1960),
Vol. 1, p. 58.

"O. Vohringer and E. Macherauch, Phys. Status Solidi 19,
793 (1967).

"A. S. Keh and Y. Nakada (private communication).
'«R. N. Orava, G. Stone, and H. Conrad, Trans. Am. Soc.

Metals 59, 171 (1966).
"A.Hikata and C. Elbaum, Phys. Rev. Letters 18, 750 (1967).
'4 B. R. Tittmann and H. K. Bommel, Phys. Rev. 151, 178

(1966)."R.E. Peierls, Proc. Phys. Soc. (London) 52, 23 (1940).

displacement 6eld we have assumed for a moving
screw dislocation has no dilation. U, in fact, this is not
the case, this result could be greatly altered.

The numerical integration result for S» is shown in
Fig. 5. Here, we have used the parameters of U, but have
assumed p0=0.16 pQ cm in order to obtain values of
co 7 )1, where or is the maximum frequency associated
with the dislocation wave packet g~vq. The dashed line
is the approximate result of Eq. (48) using the same
parameters. The agreement is seen to be rather good for
car & 10 ~. For cov )1, Sl l passes through a maximum and
subsequently decreases. To our knowledge, such a
maximum has not been observed experimentally in
either yield-stress or damping experiments. However, a
leveling oR of the yield stress at low temperatures,
which is predicted even by the approximate form of the
theory, has been observed in both Fe ' and K."Whether
or not a maximum is observable would depend to a large
extent on the value of the residual resistance parameter
pe, since, as discussed above, this is larger (and the ef-
fective relaxation time correspondingly smaller) than
the value corresponding to sample purity. The example
given here is, of course, purely hypothetical, since
p0=3.88 pQ cm in V, and we include it only to call at-
tention to the possibility of such an eRect in other
materials.

The yield- and Qow-stress data for fcc' " and hex-
agonal metaP' show a very small temperature depen-
dence compared to bcc metals. In addition, ultrasonic
experiments on fcc metals show a damping coeKcient
which is insensitive to temperature. ""One possible
explanation of these results is found by introducing dis-
location widths into the calculation. In the usual
manner, "we dehne ) as the half-width of the dislo-
cation. It is believed that the core distortion is spread
out over a considerably larger region in fcc than in bcc
lattices, and reasonable width estimates are ) =~b for
bcc, and ) =1 or 2b for fcc metals. The only change in
the theory occurs in the ionic velocity function. For
ex™pie,in Eq. (34), one replaces y by (y+X) every-
where. The Fourier transforms are still easily calcu-
lated, and one 6nds
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~ 2.0

CD

l.0

k=b

)t=2b
S0

I I I 1 I [ I I I I I ! I I

0 l00 200
T(oK)

FIG. 6. Stress-versus-temperature results for dislocations of various
widths in Cu, assuming us=10' cm/sec.

points, show a damping coefficient which is relatively
insensitive to temperature. '3" Presumably, the only
dislocation drag mechanism operative in this experi-
ment, other than the electronic component, is that due
to phonons, which should be small at these temperatures.

A dislocation in fcc lattice corresponds to a situation
in which atoms are deviated by relatively small amounts
from their normal positions over a large region of the
crystal, at least in comparison to the bcc case. Because
of this, one is led to postulate that the electrons may be
able to screen the deformation potential almost per-
fectly. This approximation is inserted by putting I', = 1,
and it is clear from Eq. (43) that the temperature-
sensitive part of the stress then vanishes, and that one
finds the temperature-independent result

Embv~pgnP
{edge)—

96

5-versus-T curves resulting from a computer integration
for Sl& are shown in Fig. 6, using parameters which
should be reasonable for Cu. We assume that the total
stress is the electronic component plus a constant term
$0, indicated by the dotted line, which has been esti-
mated from yield-stress data for pure Cu." The
S-versus-T curves are seen to depend markedly on the
width parameter, the results being quite similar to the
bcc case for P = 4b, while the temperature dependence is
extremely small for ) = 2b. It is found that the electronic
component of S can be approximately represented by
the expression

S(X)=exp( —gDhn) (Cvq/p), (33)

where n is a parameter which depends on X, but is
generally of order 1. We note that the temperature de-
pendence could be even smaller, if one considered the
nonelectronic component to be increasing with tempera-
ture, as might be appropriate for phonon drag.

However, a number of experimental results indicate
that an alternative explanation may be more suitable
for the fcc case. It is found that adding small percentages
of impurities to fcc metals markedly increases the yield-
and Qow-stress temperature dependence, ""suggesting
that, even in very pure fcc metals, the small temperature
dependence observed may be impurity-controlled. For
bcc metals, the main effect of adding impurities is to
add a constant term to the stress, while the temperature
dependence is not greatly affected, '~ suggesting that any
temperature dependence associated with impurities is
small compared to that already present in the pure
metal. As mentioned previously, ultrasonic experiments,
in which dislocations are vibrated between pinning

This is 10~(dyn/cm') for a typical metal, and the S,
components are again negligible. The drag coeKcient
in this case is 8= (Xmb'vsgDP/96).

The existing experimental data for fcc metals can
probably be explained equally well by either approach.
Indeed, it seems likely that, in some improved theory,
the two approaches might appear as two diferent ap-
proximate descriptions of the same phenomenon, since
the basic effect of each is to emphasize the contribution
of somewhat longer-wavelength components of the
Fourier synthesis. However, as will be discussed in the
next section, the energy dissipation of moving disloca-
tions in an applied magnetic 6eld depends markedly on
the amount of screening. Such experiments should
therefore be able to establish which approximation is
closer to the truth.

IV. ELECTRON DRAG IN AN APPLIED
MAGNETIC FIELD

We consider only the simplest situation, that of an
applied field H directed along the length of the dislo-
cation (axis 3 in Fig. 1). The conductivity tensor, and
thus the tensors K and S, are no longer diagonal.
Equations (4.1) and (4.2) of CHH give the complete
expressions for o for this geometry (qJ 8). As for the
zero-applied-field case, the dominant contribution to
the integrals in (41) comes from the high g region,
gogo/ts. In this region S» is much greater than either
the transverse (Sss and Sss) or off-diagonal components
(Sts and Sst) of S, and to a good approximation has the
same form as given by Eq. (28). Using the same large-g
approximations as CHH for 0-~~, it can be shown that

(gh) {(z/—I/I I')(1+g'I')+gr(gr (1+g'I')sl
ReStt=

{I1+(~r)'7IZI'+2g'I Zn(~~)' —Zr~~j+g'(~r)'l
" W. P. Mason, Phys. Rev. 143, 229 (1965).
"A. S. Keh and Y. Nakada, Can. J. Phys. 45, 1101 (1967).

(57)
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FIG. I. Stress versus cu /~, for a bcc metal.

where Zz and Zz are the real and imaginary parts of

with
Z = 1—(s-/2a) cothZ,

Z= (7r/~, r) (1 in r), —
(58)

(59)

&o, being the cyclotron frequency (eH/mc). The magni-
tude of the effect depends sensitively on the size of a7.

relative to re. For eq 10' cm/sec, rdr values as large as
10 to 100 are possible. Numerical integration of the
first term of Eq. (41) using Eq. (57) gives the results of
the type shown in Fig. 7, where we have plotted the
stress at constant temperature against the ratio or /nr,
co being the maximum frequency associated with the
dislocation wave packet, g~v~. The curve corresponds to
the parameters of V, but assumes a large relaxation time
v = 10 "sec. As discussed in Sec. III, it is unlikely that
such large "effective" relaxation times could be attained,
and since the total change in yield stress or drag
coefficients is only 3 or 4%, even for this optimum
case, it is doubtful whether the behavior of Fig. 7 could
be observed in any detail. One might hope, however, that
at least the general shape of the curve, showing a small
decrease from the H=O case to a minimum in the
vicinity of or /nr, 1, and a subsequent sharp rise,
might be experimentally observable. A measurement of
the value of co, at which the minimum occurs would
constitute a direct measurement of the dislocation
velocity.

If one uses the approximation of nearly-perfect screen-
ing for fcc metals discussed in the previous section, the
magnetic-field behavior is quite striking. One Ands, for
the dissipation tensor,

ega {ReL(1—ivor) cothZj(1+x') —a&r ImL(1 —inrr) cothZ)(1+x')')

i 1+(err)s(1+xs) )
(60)
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FIG. 8. Stress versus au /cs, for Cu parameters (vs= 10'
cm/sec) assuming perfect screening.

Inserting this result into Eq. (41) and performing a
computer integration, one 6nds the results shown in
Fig. 8, using parameters appropriate for Cu. The oscil-
lations are much more dramatic, being about 10-30%
of the zero field stress. Again, because of the somewhat
large residual resistivities associated with the region
near the dislocation core, there might be an inherent
difhculty in obtaining co v values even as large as 10.
Nevertheless, this problem should be much less severe

for fcc than for bcc metals, and it seems likely that some
oscillatory behavior should be observable if the perfect-
screening approximation is the most valid approach for
the fcc lattice. The locations and separations of such
oscillations could be used to determine, among other
things, the primary velocity of a dislocation moving
between adjacent lattice positions.

For the purpose of comparison, we show in Fig. 9 the
results for Cu parameters obtained when the perfect-
screening approximation is not made. The bottom curve
results from treating Cu as if it were a bcc metal, i.e.,
inserting (57) into (41), while the top curve is found by
using (57) for ReStt and, in addition, inserting a width
of X = 2b into the ionic velocity function as in Eq. (54).
It is clear that the use of dislocation widths produces a
magnetic-field behavior much closer to the bcc results
than does the perfect-screening assumption. Such
experiments should therefore clearly establish which

description of the fcc dislocation is most valid.
We note also that these effects are somewhat en-

hanced by going to lower electron densities, while the
required magnetic fields ( 10~10' G) are reduced if the
effective electron mass is small. It might be of interest,
therefore, to examine a semimetal, such as Bi, even

though the calculations given here do not pertain to that
situation.
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where r"' is a, unit vector in the direction of r', rp'= 2kp
~

r'
~, and &p is the angle between r' and b. These results are

appropriate for an edge dislocation moving in a bcc metal. It is revealing to rewrite the effective electric field in the
form

(74)

where the deform. ation potential for the moving dislocation is given by

2+pf &$ 1 sin(2kpr'+~~7r)
Vg f(r') =

~

— sing —+2kpCp
3 &2~ r' (2kpr') «'

We note also that the total current associated with the moving dislocation is given by

(kpb 4 sin'&p 5 sini/ 4 cos'q 3 cos&p

Jt, „/,(r') =J,(r') —1Ven(r') = 1Vevd~ v — +j-
& 2p rp' r, ' fp tp

Np'
+r"'(2kpvgr) cos'(p sin p

gTF2

cos(r p'+ ,'7r)- 4kp'+gTp' sin(r p'+ ~v-)—

+ (2kpvdr) cosp
(» )p/2 gTP' (rp')'/'

(76)

The consistency of the results is verified by showing that the relation

V E= —47rV Jt,g, (77)

obtained from Maxwell s equations and the continuity equation, is satisfied.
The total charge density is obtained from the divergence of F,«. One finds,

kpb$ sini/ sin(rp'+~pr)
p(r') = —1Ve (2v kpapCp)—

2' (rp')'/'

+(2kpvqr) cosip sing
(r ~) 5/2 (» I)5/2

cos(r p'+ ~ v) (4kp'+I7Tp') sing sin(r p'+ @v)-—(2kpvdr) cos p

For v~= 0, this result reduces to that of Brown for a sta-
tionary edge dislocation, as required. We note that the
Maxwell field E, given by Eq. (71), does not give the
correct microscopic charge density, since it does not con-
tain the important deformation-potential term. One
could now insert this charge density into an integral in-

volving the Sternheimer antishielding factor to obtain
the electric field gradient using the same methods that
have previously been used for impurity atoms and sta-
tionary dislocations. ""Such electric field gradients
are known to produce sizable NMR line-broadening for
stationary dislocations. ""For a moving dislocation,
therefore, there should be additional broadening, com-
parable in magnitude, proportional to (2kpvdr) and
(2kpvqr)'. Observation of this effect, however, would re-

quire that the mobile dislocation density be comparable
to the total dislocation density, and, if the high disloca-
tion velocities obtained in this work are indeed correct,

"W. Kohn and S. H. Vosko, Phys. Rev. 119, 912 (1960)."T.O. Ogurtani and R. A. Huggins, Phys. Status Solidi 24,
30~ (~961).

PP E. A. Faulkner, Phil. Mag. 5, 843 (1960).
'~ T. O. Ogurtani and R. A. Huggins, Phys. Rev. 137, A1736

(1965).

very high strain rates would be required to attain this
condition. '

It is also possible that the true electric field and total
current, given by Eqs. (71) and (76) might be detectable.
The electric field oscillates at a frequency of 2k~v~, about
10" cps, and is quite sizable, having magnitudes of
about SX10', 2.6, and 8X10 ' statv/cm at ~r'~ =f/,
10b, and 100b, respectively. The first, nonoscillatory
term in the total current density has zero divergence,
and would produce no net current through any closed
surface surrounding the dislocation. The second, oscil-
latory term has the same frequency as the electric field,
10" cps, and has magnitudes of about 10", 10' and
10' statA/cm' at ~r'~ =b, 10b, and 100b. For the elec-
tromagnetic effects of these fields and currents to be ob-
served by detectors external to the yielding specimen,
the dislocations would have to be within the skin depth
distance from the surface, which would be about 10 '—

10 ' cm for these frequencies, so that boundary condi-
tions would no doubt alter the nature of the signal con-
siderably from what one would expect on the basis of
the simple results of Eqs. (71) and (76). Nevertheless,

any measurement which could determine even qualita-
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tively the frequency and intensity of such fields could be
processed to yield values for two previously undeter-
mined quantities of great importance: the primary dis-
location velocity and the mobile dislocation density.

VI. SUMMARY AND DISCUSSION

The applied stress required to do work at a rate equal
to the energy dissipation of the effective electric field
and conduction-electron currents associated with a
moving dislocation in a metal has been shown to be pro-
portional to the dislocation velocity divided by the elec-
trical resistivity. This result is in good agreement with
yield- and fIow-stress measurements on bcc metals at
low temperatures. Two possible formulations of the
problem of a dislocation moving in a fcc lattice have
been given. One of these makes use of the concept of dis-
location widths. It is found that the larger width param-
eter appropriate for fcc materials markedly reduces the
electronic component of drag, and thus the temperature
dependence of the total dislocation drag, with respect to
the bcc case. The second approach also makes use of the
idea that a dislocation is wider in a fcc than in a bcc
lattice, but inserts the concept into the calculation from
a different viewpoint, by assuming that, because of this,
electrons are able to screen the deformation potential
almost perfectly. A temperature-independent stress or
damping coefFicient is obtained by this method, in agree-
ment with the result of a simple scattering calculation
by Holstein, '4 who also assumed a screening function
FQ 1o

Application of a magnetic field along the length of
the dislocation, perpendicular to the direction of motion
is found to produce effects analogous to cyclotron-
resonance phenomena in acoustic experiments. For bcc
metals, the effect is small, producing only very slight
oscillatory behavior in stress versus co /~, curves, with
a minimum near co /&u, = 1, which is expected to be not
nore than a few percent of the zero field stress. The in-

corporation of dislocation widths into the calculation
leads to a behavior which is somewhat different, but
qualitatively similar to the bcc (zero-width) case. If,

however, the assumption of perfect screening is the
most valid approach for fcc metals, large oscillations in
the stress versus a /r0, curves are predicted, 10-30'Po
of the zero-Geld stress.

Expressions for the electric fields, currents, and charge
density associated with a moving dislocation are derived
in Sec. V. These are found to have functional forms of
the Friedel oscillatory type, similar to those obtained
for stationary dislocations, ""but depending critically
on the dislocation velocity. It seems likely that experi-
mental observation of the electromagnetic effects of a
moving dislocation is possible.

Recently, previous work on this problem has been
criticized by Elbaum and Hikata" on two counts: (1)
experimental results on Pb in the normal state from 4.2
to 15'K show a temperature-independent electron drag
coefficient"; (2) since most of the energy dissipation is
associated with the large tl(g&gD/10) components of
the Fourier synthesis, and since phonons for which
gA))1 have an interaction with electrons which is inde-
pendent of A, the result for the electron-dislocation in-
teraction should be temperature-independent, also.
With regard to the first point, it is clear, in view of the
new results presented in this paper for fcc metals, that
this objection no longer applies. With regard to the
second, we remark that there is no particular reason to
view the Fourier components of the displacement field
as phonons. On the contrary, the scattering processes
which electrons may undergo with the dislocation must
be such that the Burgers vector and displacement field
are conserved. This constraint may be what forces the
energy dissipation to occur via the mechanism discussed
in this paper, and any proper scattering calculation must
take it into account. We hope to make these ideas more
concrete in future calculations. At any rate, regardless of
the type of theory required for a complete scattering cal-
culation, we feel that the agreement between theory and
experiment is sufFJIciently good to verify the essential
correctness of the Boltzmann-equation results.

"C. Elbaum and A. Hikata, Phys. Rev. Letters 20, 264 (1968).


