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would be gandom jumping of protons between the two
equilibrium sites in the H bonds. A hindered rotation
of the HsSeOs and HSeOs groups (or what amounts to
practically the same, a proton interbond motion) could
explain the observed second moment data in the para-
electric phase. The relatively large change in the proton
second moment on going from the paraelectric phase to
ferroelectric phase I indicates a freezing in of both
hindered rotation and intrabond proton jumping. The
changes in EF6 tensors (f) at the Na" sites, however,
cannot be understood on the basis of proton rearrange-
ments alone. The proton ordering —like the deuteron
ordering in D—STSe—is accompanied by a distortion of
the Na+ and Se03 lattice. Unfortunately, there are too
many unknown parameters, so that a unique model of
ferroelectric phase I cannot be extracted from our data.
It should be pointed out, however, that the existence of
free 0—H groups is excluded on the basis of the infrared
spectra. On going from ferroelectric phase I to ferro-

electric phase II, the angular dependence of the proton
second moments is only slightly changed, but the Na"
EFG data indicate a rearrangement of both the hydro-
gens and the Se03 and Na+ ions.

Finally, one may add that from the room-tempera-
ture EFG tensors at the Na" sites one obtains —using
the point-charge model —the following effective charges
for the various ions:

ewe= e, eye= 1.1e~ eo= —1.0e, and eH =0.9e,

where e stands for the elementary charge, and an
antishielding factor (I—y ) = 6 was used.
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High-temperature series expansions for the spin-spin correlation function of the classical anisotropic
Heinsenberg model are calculated for various lattices and anisotropies through order T 8 (close-packed
lattices) and 7 s (loose-packed lattices). These series are combined and then extrapolated to give the
high-temperature critical mdices 7 (susceptibility), v (correlation range), and a (speciiic heat) as functions
of anisotropy. Our results are consistent with the hypothesis that the critical indices change only when
there is a change in the symmetry of the system, e.g. , in interpolating between the Ising and isotropic
Heisenberg models, indices remain Ising-like until the system becomes isotropic, at which point they appear
to change discontinuously. Previous results for the limiting cases are confirmed and extended.

r. INTRODUCTION

"UCH of the recent study of critical phenomena,
. both experimental' and theoretical, ' has centered

on the determination of and interrelations between the
values of the critical indices (exponents), which
measure the type and strength of the singular behavior
of various physical quantities at the thermodynamic
critical point. The most striking fact about the critical
indices is their remarkable insensitivity (for fixed
dimensionality) to the details of both dynamics and

*Alfred P. Sloan Foundation Fellow.
A review of this work, containing extensive references, has

recently been given by L. P. KadanoB, %. Gotze, D. Hamblen,
R. Hecht, E. A. Lewis, V. Palciauskas, M. Rayl, J. Swift, D.
Aspne s, and J. Kane, Rev. Mod. Phys. 39, 395 (1967). See also
P. Heller, Rept. Progr. Phys. 30, 731 (1967).

~ M. E. Fisher, Rept. Progr. Phys. 30, 615 (1967), which gives
ex tensive references.

kinematics s It is now appreciated, however, that,
within this context of broad similarity, there are small
but nonetheless important diGerences in critical indices
between systems with diGering dynamics and/or
kinematics. Note, as an example, the variation of the
high-temperature susceptibility index y in three dimen-
sions between the spin--', Ising model' ' (y—1.250), the

~ More precisely, some of these differences are actually not so
small, for example, a change in sign of the interaction (dynamics)
of the two-dimensional spin-$ Ising model on the triangular
lattice converts a ferromagnet to a paramagnet having no phase
transition )G. Wannier, Phys. Rev. '79, 357 (1950)j. However,
we are emphasizing here the strong parallels between the critical
behavior of, for example, the liquid-gas system and the ferro-
magnet (experimental) or the somewhat weaker similarity
(theoretical) of the three-dimensional Ising and Heisenberg
models.

4 C. Domb and M. F. Sykes, Proc. Roy. Soc. (London) A240,
214 (1957).' G. A. Baker, Jr., Phys. Rev. 124, 768 (1961).
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Fio. 1. A reducible graph and its skeleton. (a) A graph and its
contribution to OK e(12) in the unrenormalized theory. (b) The
skeleton graph and its contribution to SK e(12) and Gs(1; yrys) in
the renormalized theory.

dynamically diferent spin-st Heisenberg model~

(~1.43), and in turn, the kinematically different
spin-infinity Heisenberg modeP ' (&=1.38) . One is led

by these observations to the following questions:

(a) How many different types of critical behavior
are there, as classified by the critical exponents'

(b) Which features of the dynamics and kinematics
of a given system serve to determine its critical ex-

ponents and which are irrelevant?

(c) How, physically and mathematically, do the
features which are relevant exert their inQuence on the
critical indices'

Concerning (c), we have nothing to say other than
to point out that the question remains almost entirely
open, with the exception of a few exactly soluble models'

and the crude but appealing "droplet theory. '" It is the
purpose of this paper to explore questions (a) and (b)
within the context of the classical (spin-infinity)
anisotropic nearest-neighbor Heisenberg model.

6 G. A. Baker, Jr., H. K. Gilbert, J.Eve, and G. S. Rushbrooke,
Phys. Rev. 164, 800 (1967).

7 G. S. Joyce and R. G. Bowers, Proc. Phys. Soc, (London) 89,
776 (1966).

e H. E. Stanley, Phys. Rev. 158, 546 (1967); P. J. Wood and
G. S. Rushbrooke, Phys. Rev. Letters 17, 307 (1966).' See Ref. 2, Sec. 9.1. See also M. K. Fisher, Physics 3, 255
(1967);and F H Stillinger, Jr.., J..Chem. Phys. 47, 2513 (1967).

The choice of this model is dictated by the following
considerations: (i) Variation of the anisotropy param-
eters allows one to interpolate continuously between
a number of dynamically quite diGerent situations. For
example, " by varying the degree of longitudinal
anisotropy, one progresses from the Ising model
(longitudinal coupling only) through the isotropic
Heisenberg model to the so-called a-y model" (totally
transverse coupling). In addition, (ii) S= co~is sug-
gested by convenience. First, as workers on the isotropic
Heisenberg m.odel have noted, ' the corn.putation of
series expansion coefficients becomes simpler in the
classical, ,~ limit, when noncommutation may be
neglected. "Second, the series once obtained are empiri-
cally observed to be smoother (and, thus, more reliably
extrapolated) for S= oo than for finite spin. "Finally,
(iii) the Ising and Heisenberg limits have been studied
previously and constitute a useful check.""

The anisotropic Heisenberg model has recently been
investigated by Dalton and Wood" through a correla-
tion function decoupling (random-phase approxima-
tion) and via high-tempera, ture series for spin s (through
order T '). These authors mterpolate with a purely
longitudinal anisotropy between the Ising and isotropic
Heisenberg limits and conclude that the critical
exponents change discontinuously in the isotropic
limit —a result previously conjectured by Fisher"
and which the present work corroborates on the basis
of longer and more regular series in the S= ~ case.
Obokata, Ono, and Oguchi" have independently
obtained seven terms in the high-temperature suscepti-
bility series for S=s with longitudinal anisotropy
only. On the basis of a Pade analysis, they are unable to
draw strong conclusions.

"See Sec. 2 for details."E.Lieb, T. Schults, and D. Mattis, Ann. Phys. (¹Y.) 16,
407 (1961).

"H. K. Stanley and T. A. Kaplan, Phys. Rev. Letters 10, 981
(1966).

» G. S. Joyce and R. G. Bowers, Proc. Phys. Soc. (London)
88, 1053 (1966); G. S. Joyce, Phys. Rev. 155, 478 (1967).

'4As noted in Ref. 6, there are also simplifications for S=-,'.
These, however, depend on isotropy in an essential way.

~' C. Domb and M. F. Sykes, Phys. Rev. 128, 168 (1962).
~6 Bomb and Sykes, Ref. 15, have six terms in the Ising sus-

ceptibility series and seven for the speci6c-heat series for general
spin. The best present data for the classical Heisenberg model
consists of eight terms (close-packed lattices) or nine terms
(loose-packed lattices) for the susceptibility (Joyce and Bowers,
Ref. 7, and Stanley, Ref. 8) and specific heat (Joyce and Bowers,
Ref. 7) .For the spin-8 isotropic Heisenberg model, six terms have
been derived in the second moment series PM. E. Fisher, in
Critical Phertorrterta, edited by M. S. Green and J. V. Sengers
(National Bureau of Standards, Washington, D.C., 1966); and
R. J. Burford, Ph.D. thesis, University of London, 1966 (un-
published) j. For further references, see Ref. 2 and a compre-
hensive but older review, C. Domb, Advan. Phys. 9, 149 (1960).

"Second moment series for the S=~ Ising model have been
derived by M. K. Fisher and R. J. Burford, Phys. Rev. 150, 583
(1967).See, however, Ref. 59.

»
¹ W. Dalton and D. W. Wood, Proc. Phys. Soc. (London)

90, 459 (1967).
"M. F. Fisher, Phys. Rev. Letters 16, 11 (1966)."T.Obokata, I. Ono, and T. Oguchi, J. Phys. Soc. Japan 23,

516 (1967).
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The present work proceeds according to the following
plan: Section 2 discusses the Hamiltonian of the model
and outlines the derivation of high-temperature, zero-
field. series expansions in powers of T ' (inverse tem-
perature) for the susceptibility ()t), the second moment
of spatial correlations'7 (u2), and T times the zero-field
specific heat (Csr sr~) to order T ' (close-packed
lattices) and T ~ (loose-packed lattices). These quanti-
ties are expected to have singular behavior as T—+T,+:

Section 3 describes the methods of extrapolation used
to extract the critical indices" y, v~, and n from the
high-temperature series. In Sec. 4, we present our
results for various lattices and anisotropies. In Sec. 5,
these results are summarized and brieQy discussed.

In view of the considerable number of lattices,
anisotropies, and diGerent values of the critical ex-
ponents which will be considered, it will perhaps prove
useful to summarize here our conclusions as they relate
to the questions (a) and (b) posed at the outset. For
the classical three-dimensional anisotropic Heisenberg
model, we Gnd that our results are consistent with the
following hypothesis: The high temperatur-e critical
wdices are correlated ie a ore-to-ore mmeer mich the

symmetry group of the order parameterin the ground state-
manifold" (T=O, zero Geld). For example, at T=O the
magnetization of the isotropic Heisenberg ferromagnet
is free to point in any direction, while the magnetization
of the Ising or x-y models have, respectively, an up-
down or planar-rotation degree of freedom only. Ke
therefore expect and, in fact, Gnd different critical
indices for these three cases.

No exact results are available for our model con-
cerning the thermodynamic properties of the low-

temperature phase; however, it is plausible to assume
that the symmetry of the order parameter in the low-
temperature phase (T(T„zero Geld) is the same as its
symmetry at T=O. If this is so, then the hypothesis
stated above correlates the critical indices with the
symmetry of the ordered phase.

2. FINDING THE SERIES COEFFICIENTS

The Hamiltonian of the spin-infinity (classical)
anisotropic Heisenberg model is

PH= Q b (1)S (—1)+x~ Q )t o(12)S (1)S (2), (2.1)
$,2,a

"For a review of the de6nitions of the critical indices see Refs. 1
and 2. Following Ref. 17, we distinguish between the true and
effective correlation ranges, whose divergences as T—+T,+ are
characterized by the critical indices v and v&, respectively. Scaling
implies v= v~, a result which for the S= ~~ Ising model is exact in
two dimensions and conhrmed numerically in three."Notice that, since our model is classical, elementary arguments
suKce to determine its ground state for a variety of anisotropies
and lattices. See Sec. 4 and Appendix 3.

=0t

b(1) =0,
otherwise,

all sites j.. (2.2)

Familiar limiting forms of the Hamiltonian (2.1) are

(a) rt, =rt„=r),=1, classical isotropic Heisen-
berg model (Refs. 8,
12, 13),

(b) g,=))„=0, )),=1, spin-infinity Ising model
(Ref. 15),

(c) rt, =rt„=1, rt, =0, classical z-y model.

%e will study in detail the interpolating forms

(d) 0(k=rt, =rt„&g,= 1, prolate anisotropy, inter-
polates between (a)
and (b);

(e) 1=q,=))„&)t.=X&0, oblate anisotropy, inter-
polates between (a)
and (c). (2.3)

The thermodynamic behavior of the system follows
from the partition function

ZI e, jb}]=Tre e~= lldQge e~
1

(2.4)

where the trace for the classical system reduces to a
simple integral over solid angle for each unit spin vector.
Thermodynamic averages are calculated as

(X)—=Z 'Tre &~X. (2.5)

In the absence of interaction,

ZL =0 fb}j=—ZoI:fb}j=II(4 )L
'

hIb(1) Illb(1) I3,

(2.6)

and all correlation functions involving two or more
distinct sites factor.

A particularly important quantity in our formulation
is the spin-spin correlation function,

(12)—= (S (1)Se (2) )—(S.(1))(S,(2) )

=I b'/bb (1)bbp(2) j lnZ, (2./)
+ We take the lattice to be cyclically connected, so there is

complete translational invariance.

where numerical arguments stand for lattice sites and
are summed over the entire lattice, " while the Greek
index n stands for the Cartesian components x, y, z.
The classical spin vector S(1)=I S,(1), S„(1),S,(1))
has unit magnitude. b (1) is the dimensionless magnetic
field at site j.. The dimensionless exchange interaction
o(12) =PJ(12) measures the coupling strength between
sites 1 and 2. The pure numbers p are anisotropy
parameters. In computation we will always specialize
to the case of zero 6eld and nearest-neighbor inter-
actions,

e(12)=s, 1 and 2 nearest neighbors
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~s =g Irt —&sI'OR-(»2) (2.8b)

C =-',s 'rf„(d/d )OR (1, 1+6), (2.8c)

where s is the number of nearest neighbors and d is a
nearest-neighbor lattice vector. The zero-field dimen-
sionless susceptibility x measures the linear response
of the n component of the magnetization per site to a
homogeneous magnetic field in the 0. direction. p, 2 is the
second moment of OR (12) and is a measure of the
range of correlations. "C is the 0. contribution to the
dimensionless specific heat per site at zero Geld,

&jr~a= Q~ Ca.
To calculate the spin-spin correlation function

OR s(12), we have used a diagrammatic expansion
developed by Englert and others" in the context of
the Ising model. We present here without proofs an
outline of our procedure for computing OR p(12). The
interested reader is referred to the literature for further
discussion. "'~ There are two forms of the expansion,
bare and renormalized. YVe have used the renormalized

expansion; however, for pedagogical reasons, we give
both here.

DeGne "bare semi-invariants" by

MP(1i at' ' 'o'&) =Lbilbb (1) ' ~ ~ bb, (1)j 1nZoL{b)j.
(2 9)

Consider a particular connected graph G of e lines and

p vertices Take two .of the vertices to be fixed (external)
and label them by the lattice points 1 and 2. Label the
remaining p-2 (internal) vertices 3, 4, ~ ~, p in some

arbitrary manner. Label each line in the graph by a
Cartesian index y. Let l; denote the number of lines

terminating in the vertex i. Assign to each such graph
a contribution to OR s(12) according to the following

rules.
Rule A

(i) For each line write a factor rf„v(ij), where i,j are
the end points of the line and. 7 is its Cartesian label.

(ii) For each ilterrtu/ vertex (e.g., 3) assign a factor

~4,Inxwriting (2.8) we have made use of the simpli6cations
which occur for T) T, and under conditions (2.2) .

ss H. K. Stanley, Phys. Rev. 158, 537 (1967).
~6 F. Englert, Phys. Rev. 129, 567 (1963); C. Bloch and J. S.

Langer, J. Math. Phys. 6, 554 (1965).
"D. Jasnow, Ph.D. thesis, University of Illinois, 1968 (un-

published) . M. Wortis, D. Jasnow, and M. Moore (to be
published) .

which becomes diagonal in u and P for T&T, (the
critical temperature) and b=0. Under the condition
(2.2) we calculate (2.7) as a power series in v, the
coeKcients of which are, of course, functions of the
anisotropy parameters p . Once the spin-spin correlation
function is known, we can immediately form power
series for the physical quantities to be studied"'4":

x-= /OR-(» 2) =x (%, % 0*) (2 8a)

Mho(3; pr ~ ~ y4), where y, , i=1, ~ ~, 4, are the
Cartesian labels of the lines terminating in 3.

(iii) Assign to the two external vertices factors of
Mi,+to(1; crier ~ ~ yi, ) and Mis+i'(2; Pyr ~ yi, ).

(iv) Sum freely the Cartesian label of each line over
all directions and the lattice label of each internal
vertex over all lattice sites.

(v) Divide the result of (iv) by the symmetry
factor g of the graph in question. g is the order of the
symmetry group of the graph under permutation of
lines and internal points. "

(vi) To find OR s(12), sum the contributions
according to the above rule of all topologically distinct
graphs with the two Axed vertices j. and 2."
An example of a graph and its associated contribution
to OR p(12) is shown in Fig. 1(a) .

In a uniform magnetic Geld the semi-invariants are
independent of lattice site (although, of course, they
still depend on the Cartesian indices). Thus, on spe-
cializing to the nearest-neighbor, zero-field situation
(2.2), each graph G contributes a term of the form

(-/g)CI:1, 2;G&Z( II M)(II.,), (2.10)
vertices lines

where CI 1, 2; G] is the number of nonzero terms in the
lattice sum A(iv) for fixed Cartesian labels y. CI 1, 2; Gj
is just the "embedding constant'"' of the graph G with
Axed points 1 and 2, i.e., the number of ways that the
graph 6 can be embedded in the lattice with its external
vertices on Gxed sites 1 and 2, all internal vertices on
lattice sites, and each line along a nearest-neighbor
bond. It is important to note at this point that the
lattice sums in Rule A (iv) are free, i.e., two or more
vertices may fall on the same lattice site. Thus, our
"free" embedding constants are not those of Ref. 30.
A method of computing the free embedding constants
will be presented elsewhere. "

The unrenormalized expansion described above is
straightforward, but the number of contributing graphs
increases very rapidly in high orders. It is more con-
venient in practice to perform a selective resummation
which eliminates all "reducible graphs. '"' A reducible
graph in this context is a graph containing one or more
parts (not containing either of the fixed points 1 or 2)
which can be separated from the rest of the graph by
cutting at a single point. Such parts are called reduciblt,
parts. Where a graph has been simplified by cutting
away all its reducible parts, the remainder is called a
skeleton. Skeletons are by construction irreducible.
For example, Fig. 1(a) is reducible, having Fig. 1(b)
as its irreducible skeleton.

~ See F. Englert, Ref. 26, Appendix A.
"When the lattice points 1 and 2 are the same, tnere is an

additional contribution 2fs(1; aP) Lsee Eq. (2.11) belowj.~ See, for example, the review by Domb, Ref. 16, and M. F.
Sykes, J.W. Kssam, B.R. Heap, . and B.J. Hiley, J. Math. Phys.
/, 1557 (1966)."D. Jasnow, M. Moore, R. Simpson, and M. Wortis (to be
published) . Actually only the irreducible graph embedding
constants are needed (see below) .
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By lumping together all graphs belonging to the
same skeleton, one arrives at a renormalized prescrip-
tion" "for calculating OR,e(12) .

Rule B

Rule 3 is the same as Rule A with the following
exceptions:

(a) Replace MP's by M&'s (to be de6ned below) in
A(ii) and (iii).

(b) To 6nd OR e(12), sum over all topologically
distinctirredleible graphs" in A(vi).

An example is provided by Fig. 1(b) . The renormalized
semi-invariants M~ are obtained in terms of self-energy
parts" G„. G„(1;cx& ~ n„) is computed by considering
irreducible graphs with one fixed, external vertex
(labeled 1), into which come e lines with 6xed Cartesian
labels 0.~ ~ a„. All additional lines and vertices are
given dummy labels. Each graph contributes according
to Rule C.

Rule C

(i) Same as A(i).
(ii) For each internal vertex (e.g., 3) assign a factor

M4(3i v&' ' 'vis) ~

(iii) To the vertex 1 assign a factor unity.
(iv) Sum freely over all dummy labels.
(v) Divide the result of (iv) by g', the symmetry

factor for the graph with ore 6xed point.
(vi) To Gnd G (1; n~ ~ n„), sum contributions from

all topologically distinct irreducible graphs with one
6xed point 1 into which come m lines labeled n~ ~ .0.„.

The relation between M& and the G„'s is given by

M((i; o.g ~ ~ n()

and unscrambling (2.11). In practice the limiting
factor in our calculation was the rapid proliferation of
graphs in higher orders' The Mg's were obtained in
analytic form to O(v") as functions of the parameters
g . These were fed (along with graphs, symmetry
factors, and embedding constants) into a computer
program which evaluated M~'s to O(v') and carried
out the calculation of Rule 8 and the subsequent
summations (2.8). This program ran on an IBM 7094
and took roughly three minutes per set of anisotropy
parameters per lattice type. We have obtained series
for the triangular lattice, the three cubic lattices, and
the spinel. Results for the fcc lattice are presented in
detail in Sec. 4; in Appendix A the series for x and pm

are presented for several combinations of the g . The
series for other lattices are somewhat less regular
(particularly the two-dimensional lattices); therefore,
it is more dificult to form reliable estimates of critical
exponents.

Careless errors tend to creep into this sort of graphical
expansion. Our series agree with available series in the
Ising" and isotropic Heisenberg" limits. In addition
our methods apply with only trivial modi6cations'~ to
the Ising model with arbitrary spin. We have checked
with available S=~2 Ising series. '~ These checks are
quite comprehensive for the following reasons:

(a) All components of OR e(12) show up in the
susceptibility (2.8a); thus, a check of x checks the
complete OR e(12) .

(b) Once a lattice was chosen, the only input vari-
ables were the q . Hence, a check of the series for one
set of anisotropy parameters provides a check on the
whole program.

In addition, there are internal checks. A fairly strong
check is to calculate (S(i)s)=—1 as a power series in v.
Terms of 6rst order and higher must vanish.

XMP(1. ng ~ ~ ~ cx(), (2.11)

where the derivatives act only on the M&. Now, the
G„'s depend on the interaction v(ij) and the M'„'s, so
that (2.11) has the form of a nonlinear equation
determining the Mg's in terms of the 3E„'s and the
interaction. The observation that 6„ is at least order
v" allows (2.11) to be solved iteratively in powers"of v

at high temperatures.
The graphical simplilcation of Rule B carries with

it the necessity of calculating the G„graphs (Rule C)

3'Stanley, Ref. 25, lists necessary graphs for loose-packed
lattices to order o' and close-packed lattices to order P. He
calculates correlation functions for the isotropic classical Heisen-
berg model, but his method does not apply to the anisotropic case.

gIThe G 's are analogs of the mass operator of many-body
theory; MP and Mg are analogs of bare and renormalized prop-
agators; Eq. (2.11}is an integral form of the Dyson equation, and
the whole procedure of going from Rule A to Rule 3 is simply a
progagator renormalization.

3. ANALYSIS OF SERIES

Suppose" F(v) is one of the functions to be studied
(x, pm, CJr~); it is known through a 6nite number of
terms in its expansion,

F(v) = gf~v'+R(v)

where

R(v) = g f~v'
l-I+1

"Through 8th order on the close-packed lattice one needs 71
graphs for the G 's and 202 graphs for the spin-spin correlation
function.

"Appropriate changes in the unrenormalized semi-invariants
are all that is required."The methods of analysis as presented in this section apply to
series for the close-packed lattices. The series for the loose-packed
lattices require slight modiacation of the methods presented. The
basic principles are the same, however. See, for example, Ref. 4
and Stanley, Ref. S.
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t=f-/f-— (3.4)

we take Eq. (3.2) literally; this suggests that for large

e, the asymptotic behavior of p„ is

p (') 't.1+(Cits)+o(1/tt )3, I (3 5)

The leading dependence on 1/ts yields the familiar

result that if one plots the numbers p„versus 1/I, the

limiting straight line through the points intersects the
1/tt=0 axis at the critical point 1/n, =jtT,/J= f„and-
the limiting slope is g/t&, . The rapidity with which the
p„settle down to linear behavior is indicative of the

approach to the asymptotic form (3.3). There are

numerous examples of this type of extrapolation in the
literature '4

A. Neville Table

To aid in the extrapolation procedure we form the
Neville Tables' (N.T.). The construction of the table
for an arbitrary sequence {s„}is demonstrated. The
sequence of linear extrapolants {l„o&}, quadratic
extrapolants {1"&},etc., are formed by

is the unknown remainder. The circle of convergence of
the series for F(t&) passes through the singularity (or
singularities) of the function which lie nearest the
origin. In addition, the nearest singularity in the
physical region" of the e plane will generally be identi-
fied with the critical point. In the series analyzed, the
known coefficients are all positive, indicating (if the
trend continues) that a singularity at s=n, on the
positive real axis is on the circle of convergence. "It is
assumed' that the coefficients f„have the asymptotic
form

f„A (1/n, ) "Ng, as ts-+ ~, (3.2)

since, by Appell's comparison theorem, " (3.2) implies

F~B/(n —n) '+' n—+s. (along real axis), (3.3)

for I{»—1.~ All available evidence'' indicates that
(3.3) is the form taken by the quantities represented

by F.
Analysis of the series essentially reduces to fitting the

asymptotic behavior of the coeKcients to the form
(3.2), which is the starting point of the ratio test
analysis. 4 Forming the ratios

f„=ttt&„/(I+g'). (3.7)

The second method for extrapolating the value f,= 1/v,
is then to form the N.T. for the sequence {f„}.The
sequence of extrapolants should again approach t,.

C. Evaluating the Critical Index

Two basic methods are used to determine the critical
index g defined in Eq. (3.2) . Given an estimate f,'= 1/v,

'

to t„ the sequence of estimates {g„}to g can be formed,
where4 ~

g-= ttL(t./f') —G. (3 g)

From Eq. (3.5) {g„}~gas 1/ts if the estimate t,' is
good.~ Then one can form the N.T. for the sequence

TAnLE I. Neville Table for {p„jfromx, (0, 0, I).
Entries are estimates of t,.

The number /J» is just the intercept at the 1/N=O
axis of the curve of pth degree drawn through the p+1
successive points s„, s'„ t, ~ ~, s „, with {z„}con-
sidered a function of 1/n. The sequences {l f»} are
displayed in a tabular form called the Neville Table.
The various sequences give estimates for the extra-
polation. to 1/st=0 of the sequence {s„}allowing for
curvature of successively higher degree. For example, if

z„=s'(1+a/rt+b/n') for all I,
the sequences {l„ts&},{t„ts&},~ ~ ~ would all be constant
and equal to s'. If b were positive, the sequence {l„&'&}

would monotonically increase toward the value s'.

B.Finding the Critical Point

There are two basic methods used to extrapolate to
the value of t,=1/n, for a given series F(r&). The first
is to form the N.T. for the sequence {p„}.Then, as
described in the example above, each sequence of
extrapolants should tend to the value 1/v, =f„as
defined in Eq. (3.5). If higher-order terms in 1/ts are
not important in (3.5), then the early sequences should
provide a good estimate of 1/n, . An example of this
type of N.T. for the series x, (0, 0, 1) is shown in
Table I.

If one has an estimate g' for the value g appearing in
Eq. (3.2), then one can form the sequence of estimates
{f } for „fhwere

l„(0)—=s„,

t„t» =p-'Lml. t~» —(I—p) l~ tf~'&] p
—1 2 ~ ~ ~

PN,

(3 6)

37The physical region corresponds to positive temperature.
Hence, if the exchange interaction J&0, the positive real axis of
the v plane is the physical domain.

» E. C. Titchmarsh, The Theory of Eunctions (Oxford Univer-
sity Press, London, 1939), Chap. 7.

"P.Dienes, The Taylor Series (Dover Publications, New York„
19573.

'0 For g a negative integer, Ii has logarithmic behavior. For
g& —1 the singular part of I' behaves as in (3.33. See Ref. 2.

4' D. R. Hartree, Numerical Analysis (Oxford University Press,
London, 1952). See also Ref. 6.

3.8000
3.7263
3.6804
3.6503
3.6292
3.6135
3.6014

3.5789
3.5428
3.5299
3.5234
3.5194
3.5168

3.5066
3.5105
3.5106
3.5093
3.5091

3.5132
3.5106
3.5076
3.5087

"C.Domb and M. F. S& hes, J. Math. ph& s. 2, 63 (f96f).
"Tins means that

I t, t.'
~
/t. &&1/L, where L is—the number of

terms available in the series for F(v3. This is usually satisfied in
practice.
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{g„}.An example of this type of N.T. is shown in Table
II for the same case x, (0, 0, 1).

It is felt that a method for finding g which does not
rely on a choice of t, should be used as a check. The
procedure, due to Stanley, ' is to form the sequence
{g„},where

The important feature here is that Q(e) has radius of
convergence equal to unity. This allows an estimate of
(2rt) without knowledge of e, or p. The series Q(v) may
be studied by the methods described above, as if the
critical point were known exactly. As a 6nal consistency
check, the series for4'

(d/de) lnQ(v)

TAnLz II. Neville Table for {g = (y—1)„}from x, (0, 0, 1)
using Eq. (3.8) with t,'=3509.

0.1858
0.1954
0.2014
0.2055
0.2085
0.2107

0.2252
0.2261
0.2262
0.2263

0.22'78
0.2266
0.2264

0.2250
0.2260

44 That appears to be the case for the second-moment series.
"D.S. Gaunt, Proc. Phys. Soc. (I.ondon) 92, 150 (1967).

The number /„&'& is given by Eq. (3.6) with {p„}in place
of the general sequence {s„}.Then Eq. (3.5) implies
that {g„}-+gas 1/N. The extrapolation is performed by
forming the N.T. for the sequence {g„}.The method is
good if the early variations in the series are not too
large; that is, if {l„&'&}converges smoothly and quickly
to t, . This procedure is not successful, therefore, if
{p„} shows a high degree of curvature. 44 In general, the
method is useful in determining trends in the series.

D. Speci6c Methods for the Second-Moment Series

Two other techniques were used to reduce the second-
moment-series data. Recalling that tts~(T T.)—
it is advantageous to form a series involving only v&.

"
To do this one need only divide the series, R(tt) =
tts(tt)/x(n). Then E(e) has the asymptotic behavior

Z(n)~(e -e)-'"'
and is studied by the methods described above. Alterna-
tively t' one may form the sequence {(r') },where

(r')„=—b„/&t„,

with b„ the coeKcient of e" in the second-moment series
and c„the coeKcient of e" in x.Recalling the asymptotic
behavior assumed for the {a„}and {b„},the generating
function

has been formed for several cases. Each coeKcient is
then an estimate of the quantity 2ot+1.

E. Method of Pade Approximants

The method of Pade Approximants' ' has been used
to support results from the ratio tests. Best results
came from using the value of e, from the ratio tests as
input in the Pade analysis. The Pade results were
fairly consistent with results of the other methods.

F. Comments

We have dealt at length with the methods used to
extract information from the series. The series analyzed
in this paper converge more slowly to their asymptotic
behavior than one is used to in Ising-model studies,
and the presence of curvature is the norm rather than
the exception. The N.T. is a good way to perform the
extrapolation under these conditions. Systematizing
the extrapolation procedure by means of the N.T. is
therefore felt warranted.

The use of N.T.'s is de6nitely not a cure-all. When
series are regular but, for example, the p„sequence is
curved (as indicated by linear extrapolants), the N.T.
helps one estimate the limit point of the sequence.
When there is a change in trend, for example, in the
{p„}or in one of the sequences derived from it, the
N.T. must be used with care in conjunction with the
usual 1/I plot. Also, the {l„&o'} for the larger values
of p are not reliable, as they depend on the early terms
in the sequence. The early terms reQect the behavior of
the system far from the critical region.

4. RESULTS

This section presents in detail the results of series
analysis for the fcc lattice. A careful analysis was also
done on the bcc series and gave the same critical indices
as the fcc except where speci6cally mentioned below.
The bcc series are somewhat more diKcult to extra-
polate reliably;~ consequently, the corresponding con-
fidence hmits for bcc results are larger than fcc in a

4e See for example, G. A. Baker, Jr., in Adeances in Theoretical
Physt'cs, edited by K. A. Brueckner (Academic Press Inc., New
York, 1965), Vol. I.

47 An alternative way to take account of some curvature is the
"n-shift method. " See, for example, Ref. 2. We have used this
method as a cross check. Results are consistent with the ones
quoted.

48 One 6nds for the bcc series a marked alternating behavior
superimposed on what appears to be a smooth trend. See Ref. 36.
This is presumably a reQection of the enhancement of antiferro-
magnetic behavior due to the sublattice structure: For loose-
packed lattices under conditions (2.2), the free energy is invariant
under the replacement v-+ —v. Under the same replacement the
ferromagnetic physical (staggered) susceptibility goes into the
antiferromagnetic staggered (physical) susceptibility. The very
plausible additional assumption of a unique critical point leads
one to suppose (for example, in the case of the ferromagnetic
physical susceptibility) that there is, at v= —v, on the circle of
convergence, a singularity due to the (weak) anomaly in the
antiferrontagnetic physical susceptibility. While this additional
singularity is always asymptotically dominated by the stronger
singularity at v =v„ it nevertheless slows the approach to the limit.
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3.40—
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For X in the range 0&X &0.6 and for X= 1, the series
are very smooth and kT,/ J is given to within confidence
limits's of &(0.10-0.15%). For 0.6&X(1 the series
become more dificult to analyze. The sequences Ip I
/define in (3.4)j for the susceptibility series seem to
develop a point of inQection, making it very difBcult to
extrapolate the latest trends. %e take this as evidence
that in this region the series have not yet fully settled
down to their asymptotic behavior. One might say that,
as A~i, it takes the system more and more interaction
bonds (i.e., more and more powers of X) to "realize"
that it is not isotropic. All things considered, we set
confidence limits of & (0.2—0.3) % for 0.6 &X(1.

Fro. 2. The critical temperature t,=AT,/ J versus anisotropy h
for the fcc lattice in the case of (a) prolate anisotropy and (b)
oblate anisotropy. See Eqs. (2.3d) and (2.3e).

ratio of roughly 3 to 2. Series for the triangle, simple
cubic, and spinel lattices are quite irregular and do not
allow precise estimation of critical exponents from the
number of terms which we have derived. There is no
indication that these lattices would not support our
general fcc and bcc conclusions, if sufhcient terms were
available to estimate their asymptotic behavior.

For a given set of anisotropy parameters (rf„s)„,sl,),
there is a choice of which component x, p,2, C to
study. In practice we will concentrate on the component
which yields the most regular and strongly singular
series. For example, for sf,=ri„=0, r),=1 (S= oo Ising
model), the quantity y, is analogous to the usual Ising-
model static susceptibility, which for S=—, in three
dimensions behaves as (T T,) si4. On —the other hand,

x,=x, is similar to the S=-', Ising-model static perpen-
dicular susceptibility, which is a much more weakly
singular quantity, thought to behave like the energy
density. " "Prolate" and "oblate" anisotropy were
defined in (2.3d) and (2.3e). Other cases which do
not fall directly into these classes will be dined in
terms of the anisotropy parameters (rf, sl„, rf,) .

A. Critical Point

Figure 2 shows a plot of kT./J as a function of X for
both prolate and oblate cases, as obtained from suscepti-
bility and second-moment series. The curve for the
prolate case is qualitatively similar to the one presented
by Dalton and Wood" for the 5= ~ anisotropic Heisen-
berg model in the random-phase approximation. For the
three limiting cases, X=O, 1 /see Eq. (2.3d) and
(2.3e) j, T, decreases as the symmetry of the Hamil-
tonian increases from up-down (Ising) through planar
rotation (x-y model) to complete rotational invariance
(isotropic Heisenberg). For both prolate and oblate
cases, as ) increases from zero to one, the increase of the
"disordering" component of the Hamiltonian causes T,
to decrease.

4' M. F Fisher, J. M. ath Phys 4, 124 (19.63)..

B. Indices y and vq

In this section the values of the indices 7 and v~ are
presented as a function of anisotropy. For the cases of
prolate and oblate anisotropy p and 2v& are shown for
various values of ) in Table III. In the former case the
indices refer to x, and p2' and in the latter, to x, and
p2'. The values of the indices for several typical cases in
which all three parameters (rf„sl„,sl,) differ in magnitude
and/or sign are shown in Table IV. In each instance the
indices apply to x and p,&, where the Cartesian com-
ponent 0. is listed. Except in cases explicitly noted to
the contrary, the confidence limits are +1%."

The results in Table III suggest that, as far as the
critical indices are concerned, the isotropic Heisenberg
limit, A=i, is singular. For both prolate and oblate
anisotropy p and 2v& remain nearly constant for
0&X&0.6, dip slightly in the region 0.6&) &1, and
shoot up to the isotropic Heisenberg value very close to

Prolate case

&y, —1
2Q

Oblate case
v

2'

0
0.2
0.4
0.6
0.7b
0.8b
0.9b
1.0

1.23 1.25
1.23 1.25
1.23 1.25
1.24 1.25
1.21 1.23
1.19 1.20
1.19 1.20
1.38 1.40

1.32
1.32
1.32
1.32
1.30
1.28
1.28
1.38

1.34
1.34
1.34
1.34
1.32
1.31
1.30
1.40

~ Unless otherwise noted, confidence limits are ~1%.
No con6dence limits given; series not showing asymptotic behavior.

~ Of course, no statements can be made about the uncertainty
in the true T, or the true critical indices on the basis of series of
finite length. The numbers given reAect the apparerlt smoothness
of the series and the apparenr consistency of various different
extrapolation procedures, as bused ors the sslslber of serrus which we
have available. Even where the series are smooth, there is always
the hidden hypothesis that the series are long enough for the true
asymptotic behavior to have set in. We refer to such uncertainties
as "confidence limits. " The criterion is in the last analysis sub-
jective: we would be "surprised" if the number in question fell
outside of the quoted limits.

~~ This is a conservative estimate based on the diGerence in the
result of extrapolations using f,'s which diGer by 0.10-0.15%.

TABLE III. Indices 7 and 2&& for prolate and oblate anisotropy. ~
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'A= i. There is evidence, as already suggested in Sec.
4 A, that the series are not fully asymptotic in the
region of the dip, 0.6 &X(1.In Fig. 3, for the case of
prolate anisotropy, the values of g„= (p—1)„,calculated
from Eq. (3.9) applied to y„are plotted versus 1/n
for various values of X. For ) =0.2, the points are quite
linear and extrapolate to g 0.23. For X=0.6, there is a
break with an indication of a rapid increase in the g .
For )%.=0.7 and 0.8, there is indication that the curves
will turn upward, but at X=0.9 there is no indication.
However, at X= 1.0 (Heisenberg limit, not shown) the
curve is again quite linear (comparable to X=0.2),
extrapolating to g 0.38.~ The oblate case behaves
similarly. Figure 3 is taken as evidence that for 0.6 &X(4

the true asymptotic behavior is not being reflected in

the terms available. On the basis of this discussion, we

surmise that the criticalindices 7 and 2vi are constant for
al/ protate (obtate) anisotropies at their Ising (x-y)
tiatues and change discontinuously at the discrete point
)i=1 to theisotropic Heisenberg tiatues ss It .is interesting
to note that this step-function behavior for y was found

by Dalton and Woodis for the spin-~~prolate Heisenberg
model in the random-phase approximation.

With this understanding of Table III, we proceed to
examine the more complex combinations of anisotropy
parameters represented in Table IV. We propose that
three sets of critical indices are sufhcient to characterize
the dominant singularities for all cases we have been

.25—

.24—

.25—

.22

.2{—

.20—
I

.i 8—

.{7—

.{6—

.{5—

0
1 {

.I

t/n

FIG. 3. The sequences {g„},defined by Eq. (3 9) applied to x,
versus 1/n for various values of P in the case of prolate anisotropy,
From (3.5), {g I~(7—1).

~~In this light, the characteristic overshoot of the region
0.6&X&1 seems like a kind of Gibbs phenomenon and would most
likely disappear from the left as more terms in the series became
available. Each coeKcient in the series is a Qnite polynomial jn g.
The p„'s and, therefore, the critical indices must vary smoothly
with X except in the limit yc—+ ~.

TABLE IV. Indices p and 2u& for various typical combinations of
the anisotropy parameters. »

2
3

5
6
7
sb
9

10c

11c

12'

0.1
0.2
0.4
0.5—0 5
0.4
1.0
1.0
1.0
1.0

1.0

1.0

0.5
0.5
0.5—0.5—0.5—0 5
1.0
0.75
0 ' 2—1.0

1.0
—1.0

1.0
1.0
1.0
1.0
1.0
1.0—0.5
0.0
0.0
0.0

—1.0
—1.0

Comp.

1.23
1.23
1.23
1.225
1.225
1.225
1.31
1.21
1.23
1.23

(1 32)
1.32

(1.38)
1.23

(1.38)

1.25
1.25
1.25
1.245
1.25
1.245
1.33
1.23
1.25
1.24

(1.34)
1.33

(1.40)
1.24

(1.40)

Unless otherwise noted, confidence limits are +1%.
No confidence limits given; series not showing asymptotic behavior.

'bcc indices in parenthesis, confidence limits +1.5%; fcc confidence

limits +1.5-2.0%.

able to analyze. "We will refer to these as

Ising-like:

x-y-like:

y= 1.23, 2vi= 1.25, (4.1a)

y=1.32, 2vi=1.34, (4.1b)

's In the speciac (fcc) case when all dominant couplings are
antiferromagnetic the series are not suKciently regular to analyze
reliably. See below, Table V, and Appendix B.All other cases are
covered by the indices (4.1).

Heisenberg-like: y = 1.38, 2vi= 1.40, (4.1c)

with confidence limits of &1%.Which of these sets of
indices is to be associated with a given set of anisotropy
parameters appears to be determined by the lattice type
and the relative magnitudes and signs of the g 's as
shown in Table V. Note how the entries of Table IV
fit into the scheme of Table V. For example, the first
six entries of Table IV have a dominant s-coupling
which is ferromagnetic and give Ising-like indices in

accordance with Table V, A(i) . The confidence

limits shown in (4.1) refer to the well-behaved cases.
When, as in Table IV (8) one nears the discontinuity
of the step-function, one observes the characteristic
overshoot phenomenon mentioned above and in Ref. 52.
Correspondingly, the series indicate internally that they
are not yet fully asymptotic, and our critical exponent
estimates are expected to be unreliable, as discussed in

connection with the simple prolate and oblate anisot-

ropies of Table III. In addition the cases I e.g., Table
IV(10—12)j where the dominant anisotropy parameters
have mixed signs are quite difficult to extrapolate.
Confidence limits in these cases are correspondingly

wider; it does seem possible to assign these cases
unambiguously to one of the three categories
(4.1a)—(4.1c) .

When the dominant anisotropy parameters are all

positive LTable V—A(i), B(i), C(i)), there are no

lattice effects. In other cases, there are marked dif-
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TmLE V. Critical indices and ground-state behavior 'as functions of the anisotropy parameters.

Anisotropy parameters
Magnitudes Signs

Indices and~
ground state

fcc bcc
Component

studied

A. In. l & le I, le. l

fl.
I e. I

=
I es I & I n. I

C. Ie. l
= Iev I

= le*i

(i) e,&0
(ii) g.&0

(i) e ev&0
(ii) e &0; e„&0

(ni) e, e„&0

(i) e*, ew, e*&0
(ii) e„g„&0;q. &0

(nl) eg&0; rl~, ev&0
(rv) 'Vsse 'evg hz&0

B
xy
I

xy
xy
xy

P (s')

»y~~
x $(se)
s(x ye)

?(x' y' s')

I="Ising-like"; xy ="x-y-like"; H ="Heisenberg-like" (isotropic). See Eq. (4.1). The notation e' refers to the staggered version of the a
component. Parenthesized quantities were studied on the bcc lattice only.

ferences between fcc and bcc behavior. The fact that
the indices for the bcc lattice do not depend upon the
sign of the anisotropy parameters is a consequence of
a general symmetry for loose-packed lattices":

and
x.(n., n. n.) =x.(n. ~vs ~n.)

x.(—n., ns, ~.) =x:(n*,~vs, +n*), (4.2)

which holds for any combination of the ~ signs. x '
refers to the staggered susceptibility, "

x. =QP(12)m..(r2),
2

where

Z(&2) = I, 1 and 2 on same sublattice,

1 and 2 on diGerent sublattices.

(4.3)

~4Equation (4.2) holds for the Hamiltonian (2.1) under con-
ditions (2.2) for T& T, on any lattice admitting a two-sublattice
structure. A change in sign y ~—g for any given a can be com-
pensated by a corresponding change of variable S (1)-+—S,(1)
on one of the two sublattices. There is no loss of generality for the
loose-packed lattices in taking y &0. The generality of this result
depends on the fact that we are dealing with classical spins. For
finite spin there is an analogous but restricted relation involving
simultaneous sign changes of two anisotropy parameters."G. $. Rushbrooke and P. J.Wood, Mol. Phys. 6, 409 (1963).
A staggered second moment can be dered similarly.

Consider, for example, the case B(ii) of Table V for the
bcc lattice:

x.(n. ms, n.) =x.(n., I vs I, n.)

=xy('tf t i *)

=x:(n*,n., n*), (44)

where the first and third equality signs depend on (4.2),
while the second expresses rotational symmetry in the
x-y plane. Thus, for this case, the series for x, and x„'
are identical not only with each other (as indicated in
the "component" column of Table V) but also with the

susceptibility x, (rf„~ rf„~, r),), which falls into category
B(i). The dominant singularities in the bcc antiferro-
magnetic cases A(ii), B(iii), C(iv) are entirely in the
staggered susceptibilities, and it is the index of these
singularities which we identify with p. The much
weaker physical susceptibilities (which are, of course,
the staggered susceptibilities of the corresponding
ferromagnets) are entirely masked. "

It is a remarkable empirical fact that the classi6cation
of the critical indices in their dependence on the
anisotropy parameters (as given in Table V) exactly
parallels the classy. cation of ground-state symmetry
(degeneracy) as a function of anisotropy parameters.
For most" combinations of anisotropy parameters the
ground state of the Hamiltonian (2.1) subject to (2.2)
can be obtained from entirely elementary arguments,
as outlined in Appendix B. %hen these arguments go
through —and they do go through for just those cases
in which our series are analyzabl" -they predict three
different types of ground-state structure: (a) Ising-like,
in which the ground state is doubly degenerate with
respect to a coherent Qipping of every spin in the
lattice, (b) x-y—like, in which the ground state is
degenerate with respect to a coherent planar rotation
of every spin, and (c) isotropic-Heisenberg-like, in
which the ground state is degenerate with respect to a
coherent three-dimensional rotation of every spin. The
cases (a)—(c) above are in exact correspondence with
the occurrence of the indices (4.1a)—(4.1c). (For the
close-packed lattices with dominant antiferromagnetic
coupling the ground state has a more complex struc-
ture. ") This, then, is the content of the hypothesis
stated in the Introduction.
"We have attempted to remove the strong singularity in a man-

ner similar to that used by M. E. Fisher and M. F. Sykes, Physica
28, 939 (j.962), for the S=-,' Ising model. The resulting series
were not analyzable.

The exception is for the close-packed lattices when the domi-
nant anisotropy parameters are all negative, cf. Ref. 53.

5 Examples in the context of the S= ~ Ising model may be
found in Ref. 3 (G. Wannier) and D. D. Betts and C. J. Elliott,
Phys. Letters 18, 18 (1965).
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C. Specific Heat: e

The specific-heat series are very diKcult to analyze.
The loose-packed lattices cannot be used here because
the odd terms in the series vanish, leaving too few to
extrapolate reliably. For the fcc lattice the specific-heat
index behaves with respect to symmetry just as 7 and v&

do, and for the important limits,

o.=+0.1,

u—0,

(S= eo Ising) (Ref. 15)

(classical a-y)

(classical Heisenberg), (4.5)

where e, is the index for the singular part of the specific
heat. In (4.5) reasonable confidence limits for the
extrapolations might be as large as &0.1. In each case
quoted in (4.5) the specific heat C& sr s is either equal
to or proportional to the nonvanishing component(s),
C, defined in (2.8c). In other cases both the total
speci6c heat and the components were considered.
Generally the component which yields the most singular
(and most regular) 7( and ps series also yields the
smoothest speci6c-heat component. The other com-
ponents are, in comparison, numerically small and
slightly retard convergence of the total specific-heat
series.

The results indicate that the specidc heat of the
classical Heisenberg model may be Qnite, ~ in agreement
with the latest results' for the S= ~ case. There is an
indication of the possibility that the x-y model has a
logarithmic speciac heat.

D. Comment on the S= 00 Ising Model

For this model our series are the longest that have
been derived to date. We find quite convincing di6'er-

ences between the indices of this model and the S=-',
Ising model. These differences are summarized in
(4.6) for the three-dimensional lattices ss

gyp= 1.250&0.002, y=-—1 23~1%&

2vtis ——1.286&0.005, 2v —1.25&1%. (4.6)

's See Ref. 17.[We have added two terms to their ia (fcc), and
have corrected a small error in the eighth and added the ninth
term in ia (bcc). M. Moore, D. Jasnow, M. Wortis (to be pub-
lished}. Using the most recent estimates for 2 ~ (fcc} in M. F.
Sykes J.L. Martin, and D. L. Hunter, Proc. Phys. Soc. (London)
91, 6 1 (1967), might cause the lowering of the estimate, for
2~qrs in (4.8) by a few tenths oi a percent.

"M. Moore, D. Jasnow, M. Wortis (to be published).

Recalling the tables of results (see also Table II), we

consistently 6nd, for cases with Ising-like ordering,
values of y and 2i t lower than the S= ts results. Results
for the general spin Ising model have now been extended
to ten terms. ~

5. DISCUSSION

In the context of the anisotropic classical Heisenberg
model, the results provide some information in relation
to the questions (a) and (b) posed in the Introduction.
We 6nd three sets of critical indices. The anisotropy
parameters can be varied, altering the dynamical
situation, without changing the critical indices, as
long as the ground-state manifold does not change.
That is to say, the cases which could be treated"'7
indicated that the interactions matter only insofar as
they determine the symmetry of the order parameter in
the ground state. If, as is plausible, the order parameter
has the same symmetry for T&T, as it does at T=O,
the results correlate the high-temperature critical
indices with the symmetry of the ordered phase.

An interesting comparison can be made between our
x-y-like models and the model of interacting two-
dimensional classical unit vectors tHamiltonian (2.1)
with u= x, y and S(1)= (S,. (1), S„(1))$.s' Bowers and
Joycess find for the isotropic limit of such a model on
three-dimensional lattices indices y and o. in excellent
agreement with the values we quote for the x-y—like
models. The diGerence between the models is one of
phase space; the ground-state manifolds are identical.
Work is in progress to determine v~ for the "planar"
model. "

Several comments can be made on the relation of our
numerical results to the scaling laws. " Dropping the
distinction between v and v~, we can comment on

(5 1)

(5.2)

where d is the dimensionality of the lattice. In the
first place, the results (4.1a)—(4.1c) all indicate that
2v&y, implying a small positive value of g. However,
7 and 2i diifer by roughly 2%, and, as stated previously,
we have con6dence in our values for each of these
quantities to about &1%.Hence the possibility that
rl=—0 is not out of the question, although numerically
we Qnd a consistent slight diGerence between y and 2v,
suggesting g—0.02—0.03.

Our estimates of rr are admittedly imprecise (possibly
&0.1), but, taken at face value, (5.2) is remarkably
well satisfied for our three sets of indices (4.1a)—
(4.1c) and (4.7) Lusing n, in (5.2) for the Heisenberg
limit]. Recall that the S=s three-dimensional Ising
model presents a di%cuity with respect to (5.1) and
(5.2), since n= ~ and y= x implies i7= 0 and 2i =y. The
last equality does not appear to be the case. '~ ~ The

V. G. Vaks and A. I. Larkin, Zh. Kksperim. i Teor. I'iz. 49,
975 (1965) LEnglish transl. :Soviet Phys. —JETP 22, 678 (1966}g
proposed this as a lattice model of the X transition of liquid He'.

~'R. G. Bowers and G. S. Joyce, Phys. Rev. Letters 19, 630
(1967).See also H. E. Stanley, Phys. Rev. Letters 20, 150 (1968).

ss L. P. Kadanoif, Physics 2, 263 (1966);B. Widom, J. Chem.
Phys. 43, 3898 (1965).
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results of this work, on the other hand, indicate that
the S= ~ Ising model (and, indeed, all cases con-
sidered) are consistent with the relations (5.1) and
(5.2) . As stated in Sec. 4, the series for the S&-', Ising
models (and p2 for S= a~) are being extended. In view
of present problems with scaling theory, more precise
estimates of n and v will be most useful.

to maximize g g S S ' subject to the subsidiary
conditions g S '=Q„S "=1. By the method of
Lagrange multipliers, we are lead to extremize the
quadratic form

Qfg S.S '—-', XgS '—~2X2S "].
This gives
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y =g„=0,y, =i
n 44

1 1.3333 1.3333
2 5.0667 10.6667
3 18.8800 61.9022
4 69.4866 313.6000
5 253.6484 1 471.3803
6 920.5347 6 569.0511
7 3 326.3463 28 321.6706
8 ii 979.5328 ii8 979.2153

g =y„=0.5, g, =i
b e

1.3333 1.3333
5.0222 10.6667

18.5007 61.5526
67.2977 309.2069

242.8131 1 436.7542
871.0947 6 348.4609

3 111.8314 27 079.6495
ii 079.9968 112 529.7574

/It ip gz

n ~a b„'

1 1.3333 1.3333
2 4.8889 10.6667
3 17.2P-.~ 60.5037
4 59.4864 295.1111
5 202.2485 1 319.7991
6 680.7001 5 576.1756
7 2 273.9843 22 628.6321
8 7 553.1203 89 102.6500

~g

1.3333
4.9778

18.0622
64.4301

227.2428
795.1252

2 765.7862
9 576.89ii

=1,y, =0

1.3333
10.6667
61.2030

304.3556
1 395.0621
6 063.7043

25 385.7514
103 345.8207

x, (y, g„, g,) =-,'+Z a ~u"

APPENDIX A' SELECTED ZERO-FIELD SUS-
CEPTIBILITY AND SECOND-MOMENT

COEFFICIENTS (fcc LATTICE)

It follows from (82) that

Qg S S '=Xy=X2=) (83)

and that, if

t en S =S '=O. (84)

If the subsidiary conditions are to be satisfied, there
must be at least one n for which g '=X'. It, therefore,
follows from (83) that the very best we can hope for is

g S S '=
~ g,„~, where g, is the largest in

absolute magnitude of the g 's. A short computation
shows that this maximum can always be achieved by
choosing

S = sgn(g„) S ', for all a such that
I q- I

=
I rt- * l

=0, otherwise,

where sgn(x) =&1 for @~~0. (85) constitutes the
solution of the two-spin problem, and we note that,
even after application of the normalization condition,
there still remains an up-down (Ising-like), planar
rotation (x-y—like), and three-dimensional rotation
(isotropic, Heisenberg-like) degeneracy according as
the maximal anisotropy parameter in absolute value is
unique, doubly degenerate, or triply degenerate, respec-
tively.

For the bcc lattice (or any loose-packed lattice) the
sublattice structure guarantees that (85) can be
applied coherently, thus giving the ground state for the
entire lattice as indicated in Table V.

For the fcc lattice, on the other hand, nearest
neighbors of a given site can, themselves, be nearest
neighbors. Thus, (85) cannot be imposed coherently
without the additional requirement that

~e(m. nv e.) = & t. ~"
a-j. whenever g &0. (86)

APPENDIX B: DETERMINATION OF THE
GROUND STATE

The ground-state structure can be simply determined
if and only if the pair ground state of two coupled spins
can be coherently imposed over the entire lattice for
every nearest-neighbor pair. The basic problem, then, is

This further condition reduces the degeneracy for the
entire lattice as shown in Table V for the fcc, Note that,
when all the maximal anisotropy parameters are
negative (antiferromagnetic), (85) and (86) together
require S=S'=0, which is incompatible with nor-
malization. In this case, our simple argument fails, and
the ground state has a more complex structure.


