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It is shown that in g perturbation description based upon a zero-order single-particle
Hamiltonian, the diagonal and off-diagonal matrix elements of a single-particle operator
for an N-particle system are essentially just linear combinations of matrix elements for
two-particle systems. A similar statement applies to a restricted class of two-particle
operators. The theory is applied to the calculation of the leading terms in the relativistic
and mass-polarization corrections for the lithium sequence and to the calculation of the
2s —2p and 3s — 3p dipole transition probabilities of the lithium sequence. Comparison of
the transition probabilities with experimental data and with the results of refined variational
calculations shows that high ascuracy can be obtained.

1. INTRODUCTION
. Suppose that & °(F,, T,, ..., T5) =®°YN)is an approximate representation of the eigenfunction ¥z,
Ty ..., Ip) of an N-electron atomic system, r; being the position vector of the ith electron measured

from the nucleus. Suppose further that &°’ is the eigenfunction of a single-particle Hamiltonian Hy(N),
where

- 1.2 Z
Z beingthe nuclear charge. The expression & () satisfies the eigenvalue equation
Hy(N)®'? (N) =E ) (N)®O(N) (2)

and can be constructed from the orthonormal set of single-particle states ¢nthat are solutions of

Ho (08, = (-3V-2 +V)g = €0 . 3)
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The first-order correction, &'’ (), to ®° (n) is the solution of the first-order perturbed equation

N N
[H,) = ECON)O(N)+( 2 — 1 _20 y)a O(N)=ED(N)a N, (4)
i<jl?i -?jl i=1"

Chisholm and Dalgarno! have pointed out that the N-particle solution 1’ (N)of (4) can be written in terms
of the two-particle solutions &’ (2) of

[HyR)-E® )] & V@) +[ IF - F,I7" =Vr)-Vr)]d?(2)=E™ (2)8* (2). (5)

This statement is contained implicitly in much recent work on correlation. It appears to have been noted
first by Bacher and Goudsmit. > Chisholm and Dalgarno! have also written out the explicit form of the
solution of (4). In L-S coupling,

®V(ISLIN)=A 2 2 (D)S,Ly, LS,L [ TSL)[# 9 (T,S,L, [N- 2), &2 (T,S,L,| 2)], (6)
rllel rZSZLz

where [®¢°)(T,S L, |N-2), &1 (T,S,L,|2)]

isa vector-coupled product of normalized antisymmetric (N — 2)-particle eigenfunctions & (T',S,L,| N~ 2) and
normalized antisymmetric two- particle eigenfunctions ® ) (T',S,L, | 2), thefactor (T',S,L,, T',S,L,]TSL)isatwo-
particle fractional parentage coefficient, and A is the antisymmetrizing operator. All the two-particle
fractional parentage coefficients necessary to construct first-order wave functions corresponding to the
zero-order configuration 1s%2sb2p9 have been tabulated. 3

It follows from (6) that diagonal and off-diagonal matrix elements of any single-particle operator for
an N-particle system can be calculated to second order from a knowledge of the first-order two-particle
wave functions <I>‘¥’(2) and that to first order the matrix elements for an N-particle system are essentially
just linear combinations of the matrix elements for the two-particle systems. A similar statement holds
for a restricted class of two-particle operators.

In order to avoid algebraic complexity, we present the detailed development for the three-particle
systems described in zero order by the configurations 1s%:s2S and 1s2mp2p°,

2. THEORY
Define the single-particle operator
Q)= iJZj)lq (®), (7)
and the two-particle operator
Q,(N) = g q(29). (8)
i=j
To first order,
(BM)1Q, T M) =(i1Qy  WIF) + @lQ, »wlf, )
where (£]Q,‘PW)If) =(2, O W)1Q, W) W)) (10)
and (ilQ,1f) =<q>z.<°>(N)lQa(N)|<I>f<1> (N))+(<I>Z.‘1’(N)lQa(N)léf“”( )y. (11)

For the 1s2s 2S configuration, !

B0 (1s%s 2S)

=3"1/2[8 ) (15215), 3 (ns2S)] - 6~ /BN 1sns1S), ®©)(1s25)]- 271/ &©)(1sns3S), $©)(1s29)], (12)

and ®(1s2us 2S)
=AB2[2W(1521), B (ns25)]- 6-1/2[2D)(Lsns?S), SO (1528)] - 271/2[6 ) (1sns3S), 3(1s529)]}. (13)

For the 1s?mp 2P° configuration, *
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(O (1s2mp 2pP°)
=312 8(0(15215), 82 (mp*P°)]-671/2[ 8O (LsmpiP?), &° (15 25)] -2-1/2[ 3O (LsmpP°), &0 (1s %5)] (14)
and &V (1s2mp 2P°)
=A{3712[ $11)(15215),8( (mp2P°)]-6-1/2[ &1 (1smp'P°), &) (15 25)]
- 2712[ D (1smp®P°), 3O (1s 25)] }. (15)
It follows by direct substitution that
(1?5 25]Q, ©)(3) | 1s2us 25)

=3[(1s%15]Q,®(2)| 1s21S) + % (1sns 1S1Q, (2)| 1sns 1Sy +3 (1sus 351Q,”(2)| 1sns3S)] (16)
andthat (1s%s 25(Q, *(3)| 1s2us 2S)

=[(15*'5]Q, *(2)[ 1218) +3 (1sns 15]Q, V) (2)| Lsns 1S) +3 (1sns 35| Q, 1 (2)| 1sns 3S)]. 1)

The zero-order contribution (16) can, of course, be written more simply as a sum of @°’(1). We ex-
press it in the form (16) to elucidate the structure of the first-order contribution (17), which reduces
the three-particle expectation value to a sum of two-particle expectation values.

A similar analysis of the off-diagonal matrix element ( \Ilz.(3) |@,(3) I\I}c(.‘i)) yields the zero-order
contribution

(1s%s ZSIQl(O)(3)| lszmp2P°) =% (1smns 15IQ1(0>(2)| 1smp 1P°) +% (1sns 3S|Q1(0)(2)| 1smp 3P°) (18)
and the first-order contribution
(1s%rs25[Q, " (3)[1s2mp 2P° )y =3 (1sns 'S|Q, ¥ (2)| 1smp *P°y+2 (1sns 35| Q, V(@) | Lsmp 3p°y, (19)

the structure being identical to that of the diagonal matrix element.

The two-particle matrix elements (¢ Q¢ (2)] /) are conveniently calculated by the use of an inter-
change theorem, ®which avoids the necessity of determining the first-order two-particle wave functions
®¢1)(2). Thus (17) and (19) show that the diagonal and off-diagonal matrix elements of a single- -
particle operator for an N-particle system can be calculated to first order from the solutions of
single-particle equations.

The same interchange theorem allows the calculation of the matrix elements of a single-particle
operator for an N-particle system to be carried out to second order from a knowledge of the first-
order two-particle wave functions ®1’(2), but there is no simple relationship between the second-
order two-particle matrix elements.

For a two-particle operator (8), the structure is usually more complicated. If x‘¥ (¥, ¥,| I'SL),
is the spatial part of &' ? (¥, ¥,|I'SL), satisfying the first-order two-particle equation

[Ho@)-E @ @ITSL)] x V(F, T, TSL) + [ [F,-F,| 1= Vr,)~Vr,)] xO(F,, ,|TSL)

=E ‘V@2|TSL)X'O(F,%,|TSL), (20)

where x(°’(f'1,F2|18213)=¢ls(1’1)¢13(7’z) (21)
and x©@(%,F,|1s2s V'35)=2-1/ [¢13 (7’1)¢2S (7z)i¢>1s )y )], (22)

then (1s2s|Q,‘Y (3)]1s2is)
=(1s215]Q, " (2)| 15228y +3 (1sns 'S|Q, ) (2)|1sns 1Sy +3 (1sns35|Q, ™ (2)1sns 3S)
+2(X 0 @, T, ] 1529y (F)[¢(13) [ 2 (8, F 5| 152 29)0 (F))
(XD, Tl 1sms 1)y (F)[q(U3) [x P (£, T | 1sms 28)ey  (F))
+8(x P (F, T, 1sns%8)ey (F)[q(13)[ XV (T, Tyl 1sns *S)¢, (F))
—V2[ (9 (§, T,1s*19)9,  (F)]q(13)[xV (F,, T, 1sns *S)ey  (F))

+ (X (T, Tyl 1sns 18)¢y () [q€13) [ x ) (T, T,] 152 S)ey,  (F)) ] (23)
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The additional cross terms that arise because of the exclusion principle are comparable in complexity to
those occurring in the evaluation of the second-order two-particle eigenvalues. However, if ¢(ij) =
q(j 1) is of odd parity in each of its variables 'fz. and F]. , the additional terms are identically zero, and

(1s%s 28| Q, V) (3)| 1s%s 2S)
=(1s218]Q,*’ (2)|1s218) + 5 (1sns 'S|Q, V) (2) | 1sns 'S) +3 (1sns35|Q, 1) (2)| 1sns 3S). (24)
The first-order diagonal matrix element of a two-particle operator for the three-particle system is then
a linear combination of the diagonal matrix elements for the two-particle system, just as for the single-
particle operators as shown in (17). The odd-parity condition is satisfied by operators such as FZ. T,
cos(#; +#;), and V;* V.. j

Unlike'the matrix elements of single-particle operators, the structure of the zero-order matrix
element of the two-particle operators is identical to that of the first-order matrix elements. Thus

(1s%s 25| Q,* (3)| 1s%s 2S)
=(1s218]Q,® (2)| 1s21S)+3 (1sns 'S|Q,¢? (2)|1sns 'S) + 3 (1sns 35]Q, ) (2)] 1sns S) . (25)
3. APPLICATIONS

In order to demonstrate the utility of the theory, we consider some properties of the lithium sequence
for the case in which V(FZ.) is taken to be zero.

Relativistic Corrections

The relativistic corrections to the 1s22s 2S eigenvalues of the lithium isoelectronic sequence are to
O(a?) and in units of @2 rydberg, « being the fine-structure constant. ¢

3, 3 3
E/=-3@ 2 . 9y, B'=1z@l 20 6(F )Yy, E''' =21l 1 5(F,-F.1y),
i=1" i=1 * i=1

3
and E,'=(| 2 _L:[vajn*l- CEAAATTS

i=j IT. -7,
=j i .

where N= (ri~ rj)/_l T,- rjl .

From the helium calculations for the 1s21S,7 1s2s1S, and 1s2s3S°® states, we obtain immediately from
(16) and (17) that to first order in Z—1

, 173 . (9940 . 19880 . .. 140075\ Z°
Ey=-64 % +( 729 M2 a9 3T T a0y ) Z

o 17 9940 19980 76225\ z%

and  E,"" =g ZQ‘('zzg n2-"og- I3+ 5187 ) % -

To the order of Z*a?, it follows from (25) that E,""’ = - :%23, ES =0,

These results have been obtained previously® by a direct application of an interchange theorem to the
three-particle system. The procedure used here is much less laborious.

Isotope Shift
Greater interest attaches to the first-order matrix element of a two-particle operator, since its

evaluation cannot be greatly simplified by the use of any interchange theorems. We consider the
matrix element {z,blE,' #=j Vie lezp), which describes the specific mass or mass-polarization effect.

For the 15225 2S state, the zero-order contribution vanishes. Using?!®
(1s21S|(V,+ %) 1) | 1s21S) = 0.133 293Z Ry

and estimating from the data of Pekeris!! that
(1525 1S|(%,» %) ¢V | 1525 'S) = 0. 012 201Z Ry

and (1s2s3S|(v,+ %) ¢ |1s2535) =0.010 126Z Ry,
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we obtain from (24)

(1s%2s%S| 20 V,+V,) (V| 15225 2S) = 0. 154 586Z Ry.
i#j J
The mass-polarization effect has been evaluated for several members of the lithium sequence by

Prasad and Stewart, 2 using the 45-parameter variational representation of Weiss. '3 Analyzing their
results as a power series in Z—!, we obtain

(1s22s2S|( 2 vz.-v].)m |1s22s2S) = 0. 153Z Ry
i=j

in harmony with our prediction.
Transition Probabilities

The probability of the electric-dipole transition 1s2ms 2S — 1s?np 2P° can be determined from the
matrix element of the operator

3
Qi3 = 7 7, cosd,.

i=j

The two-particle matrix elements (1s2s 1 35|Q,(2) | 1s2p 13P°) have been calculated exactly to first
order in Z 1, They are given by 14, 15

(1525 15]Q,(2)| 1s2p 1P°) =~ (3/2)~(3.0479/22) + 0(Z-3),
and (1s2s35|Q,(2)|1s2p3P°) =—(3/2)~(2.21712/2%) + O(Z~3).
Following the same procedures, ® we obtain
(15355 Q,(2)| 1s3p1P°) = —(3V6/Z)-(3.0654V6/2%) + O(Z~3)
and (1s3s35]Q,(2)|1s3p 3P°) = -(3V6/Z)-(2.5839V6/22) + 0(Z~3).
It may be noted incidentally that in the Hartree- Fock approximation, 16
(153525 Q,(2)|1s3p 1P°) = —(3V8/Z)~(3.0819v8/22) + O(Z~3),

(1535 35|Q,(2)| 153p2P°) = ~(3V6/Z)~(2.589678/22) + O(Z- ).

The Hartree-Fock expansions differ only slightly from the exact expansions (at least to first order in
Z-1), in harmony with the suggestion that in the absence of zero-order degeneracies the Hartree- Fock
approximation is satisfactory for dipole transitions in which the active electron does not undergo a
change in its principal quantum number, 4

Before we proceed to the calculation of the lithium transition probabilities, it is instructive to
examine the accuracy of the predicted helium transition probabilities. This is conveniently carried
out in terms of the oscillator strengths

f(i—f)=2(Ef—Ez-)| G@le.lry 1z,

where Ez. and Ef are the eigenenergies of the initial and final states and all quantities are measured in
atomic units. the screening approximation, 17

fl1s2s S ~1s2p *P°) = (E~E,)18/(Z-1.016)%, (26)
f(1s2s 35 ~1s2p 3P%) = (E f—Ei)IB/(Z-O.759)2, @7
f(1s3s 1~1s3p 'P)= (E~E,)108/(2-1.022)%, (28)
f(1s3s3S-1s3p°P°) = (E f—Ei)IOB/(Z—O.BSI)z . (29)

A comparison with the accurate variational calculations of Weiss!® is presented in Table I for the singlet
and triplet 2s - 2p transitions. Even for neutral helium, the error is less than 10% and for the ionized

systems, it is negligible. The comparison confirms the accuracy of the complicated calculations carried
out by Weiss.
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TABLE 1. Oscillator strengths for the (1s2s 35— TABLE II. Oscillator strengths for the (1s3s'’3S —
1s2p1,8p°) transitions. The transition energies were 1s3p!* 3pY) transitions. The transition energies were
taken from Weiss (Ref. 18). taken from Wiese et al. (Ref. 19).

Singlet Triplet z (c.f?vle?::fs. 19 Fd- @9, b Rt 19 Ea- 29
Z  Weiss®  Eq. (26 Weiss  Eq. (27) 2 0.629 0.692 0.896 0.884
2 0.376 0.411  0.539  0.492 5 0.362  0.374  0.509  0.510
3 0.213 0.217 0.308 0.298
4 0.149 0.150 0.213 0.209
5 0.114 0.115 0.163 0.161
6 0.0930 0.0932 0.131 0.130
7 0.0785 0.0786 0.110 0.110
8 0.0679 0.0679 0.0948 0.0945
9 0.0598 0.0598 0.0833 0.0830
10 0.0534 0.0534 0.0742 0.0740

Wiese et al.!® have reported accurate values of the singlet and triplet 3s - 3p transitions for helium
and ionized lithium; a comparison is presented in Table II. The accuracy of (28) and (29) is again high,
and it is clear that the two formulas will provide accurate values of the oscillator strengths for more
highly ionized systems, when data on the transition energies become available.

By use of computed values of the coefficients of the series expansions of the 1s2s 1 3S and 1s2p ¥ 3P
eigenenergies, 2°the two leading terms in the series expansion of the oscillator strength can be derived.
Thus from

E(1s2p1P°)-E(1s2s 1S)=0.028 045Z -0.042 547
and E(1s2p 3P°)-E (1s2s 35)=0.037799Z-0.025 588
we obtain f(1s2s1S—1s2p1P°)=(0.505/Z) (1+0.515/Z)
and f(1s2s35-1s2p 3P°) = (0.680/Z) (1+0.841/Z).
To O(Z-1), these are equivalent to the expressions
F(1s2s 2S~1s2p 1P°) = 0.505/(Z - 0.515),
F(1s2s 3S—152p 3P°) = 0.680/(Z - 0.841).

These simple formulas are asymptotically exact. Even for neutral helium the error does notexceed 11%.
Returning to the lithium sequence, we determine immediately from (18) and (19) that to first order in
Z—l

(15225 25| Q,(3)| 1s22p2P°) = —(3/2)-(4.9398/2%) + O(2-3),

(15235 25|Q,(3)| 1s22p2P°) = —(3V6/Z)-(5.4087V8/Z%) + O(Z~?),
The comparable expressions in the Hartree-Fock approximation are

(15225 25| Q,(3)| 1s22p 2P%) =~ (3/Z)-(5.0961/2%) + 0(Z~?),

(15?35 25|Q,(3)| 1s23p 2P°) = - (3V6/Z)-(5.4192V6/Z%) + 0(z-3),

differing only slightly from the exact expansions. In the screening approximation, the oscillator
strengths are given by

f(1s225%S~15%2p *P°) = (Ef—Ei)IB/(Z—1.647)2, (30)

f(1s23s 35-1523p2p°) = (Ef—Ei)IOS/(Z—1.803)2. (31)

A comparison of (30) with the results of refined 45-parameter variational calculations?!is presented
in Table III. Table III also includes a comparison of the transition probabilities derived from Weiss?!
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TABLE III. Oscillator strengths f and transition prob-
abilities A sec”! for the 1s%2s 25— 1s%2p 2P° transitions.

The transition energies were taken from Weiss (Ref. 21).

Oscillator Transition probabilities
strengths (108 sec™Y)

Z Weiss?! Eq. (30) Weiss?! Eq. (30) Experiment??

3 0.753 0.668 0.372 0.330 cee
4 0.505 0.473 1.15 1.08 cee
5 0.366 0.353 1.91 1.84 “ee
6 0.286 0.279 2.65 2.59 2.97+0.11
7 0.234 0.230 3.38 3.34 3.34+0.12
8 0.196 0.196 4.08 4.09 3.94+0.14
9 cee 0.170 e 4.85 4.48+0.16
10 oo 0.151 oo 5.64 5.556+0.19

TABLE IV. Transition probabilities of the 1s23s %S —
1s23p 2PV transition in 107 sec™1,

z Hartree-Fock?! Eq. (31)
3 0.377 0.393
4 1.28 1.28

5 2.22 2.22

6 3.18 3.17

7 4.13 4.13,
8 5.10 5.11

9 6.04 6.11

and from (30) with experimental measurements.?? As is to be expected from the investigation of the
helium-sequence oscillator strengths, the accuracy of (30) is high. In the worst case, neutral lithium,
the error is about 12%. The energy of the 1s22525—1522p 2P° transition is given by*

E(1s22p2P°)-E (15225 25)=0.070721Z-0.119 022 + oz-1).

Thus, f(1s22s2S—1s22p2P°)=(1.273/Z)(1+1.610/Z),

or equivalently to O(Z —1),

f (1s?2525-1s22p2pP°) =1.273/(Z~1.610).

(32)

Expression (32) overestimates by about 20% for neutral lithium but by less than 3% for Z=5.

The most accurate values of the oscillator strengths for the 1s23s 25 - 1s%3p 2P° transition are those
calculated by Weiss?'in the Hartree-Fock approximation. The difference between the exact and the
Hartree-Fock expansions is small, and we can directly compare (31) with Weiss’ s results. The com-
parison is presented in Table IV in the form of transition probabilities. The accuracy of (31) is again

very high.
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