
%AVE FUNCTIONS FOR FIRST- RO%' ATOMIC Na

results for the series boron through fluorine. '~'
From the results reported here and in previous

papers4 ' we may tentatively conclude that the
SEHF functions give much more I eliable Fermi
contact terms for atoms with open s shells than for
those having open p shells; energy reductions are
very small in both cases. Additional calculations

will be needed to check the validity of these state-
ments.

ACKNOVfI. EDGMENT

It is my pleasure to thank Professor Frank E.
Harris for his hospitality while staying at Stanford
and for many helpful discussions.

Work supported in part by National Science Foundation
grant GP-5555.

~present address: Chemistry Pepartment, Tel Aviv

University, Tel Aviv, Israel.
P. -O. Lowdin, Phys. Rev. 97, 1509 (1955),
W. A. Goddard, Phys. Rev. 157, 73, 81, 93 (1967).
K. M. Sando and J. E. Harriman, J. Chem. Phys.

47, 180 (1967).
~U. Kaldor, J. Chem. Phys. 48, 835 (1968).

W, A. Goddard, J. Chem. Phys. 48, 1008 (1968).
U. Kaldor, J. Chem. Phys. 49, 6 (%968).
U. Kaldor, phys. Rev. ]76 ]9 (]968)

R. K. Nesbet, Proc. Roy, Soc. (Iondon) A230, 312
(1955).

E. Clementi, IBM J. Res. Develop. Suppl, 9, 3
(1965).
"G. Malli, C~. J. Phys. 44, 3121(19C6).

PHYSICAL REVIEW( VOLUME 176, NUMBER 1 5 DECEMBER 1968

Properties of the Lithium Sequence

A. Dalgarno
Hansard College Obsemato~ and Smithsonian Astrophysical Observatory, Can@ridge, Massachgsetts

and
E. M. Parkinson

Graduate Sckoo/, Princeto University, I'rinceton, Nese Jersey
gteceived 31 May 1968)

It $p a/own that in a pertgpbation desqrjption based upped a zero-order single-particle
Hamiltonian, the diagonal and off-diagonal matrix elements of a single-partj. cle operator
for an N-particle system are essentially just linear combinations of matrix elements for
two-particle systems. A similar statement applies to a restricted class of two-particle
operators. The theory is applied to the calculation of the leading terms in the relativistic
and mass-polarization corrections for the lithium sequence and to the calculation of the
2s -2p and 3s —3p dipole transition probabilities of the lithium sequence. Comparison of
the transition probabilities with experimental data and with the results of refined vax iational
calculations shows that high =curacy can be obtained.

1. INTRODUCTION

Suppose that @'o&(r„r„.. . , r&) -=@"'(~)is an approximate representation of the eigenfunction 4(r„r, . . . , rQ oi an g-e]ectron atomic system, r; being the position vector of the it& electron measured
from the nucleus. Suppose further that 4 0 is the elgenfunctlon ot a s&&gie-part&cue Ham&itoman Io(+)~
where

a.hr)=.Z {--v, -- +v,.),

S beingthe nuclear charge. The expression 4"'(g) satisfies the eigenvalue equation

a,(~)e&»(~) =z«&(x)e "&(~)

and can be constructed from the orthonormal set of single-particle states Q„that are solutions of
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The first-order correction, 4'" (N), to C'0& (N) is the solution of the first-order perturbed equation

N
1

N
[a,(N) - E'"(N)]C'"(N)+( Z -Z V)4'"(N)=E'"(N)e'"(N).i( jlr. -r. l i=1

2

Chisholm and Dalgarno' have pointed out that the N-particle solution C'" (N) of (4) can be written in terms
of the two-particle solutions C~" (2) of

[Ho(2)-E ' (2)]4&'"(2)+[ [r, r j
' —V(r, )-V(r,)]e' '(2) =E'" (2)e' '(2).

This statement is contained implicitly in much recent work on correlation. It appears to have been noted
first by Bacher and Goudsmit. ' Chisholm and Dalgarno' have also written out the explicit form of the
solution of (4). In L-S coupling,

4& &(rSLIN)=a Q Z (r,S,L„r,sg, tfISL)[C& &(I,S,L, I& 2), C-'"(I.Sg. l2)],
r,S,L, r,SP,

where [C ' "(I;S,L, IN- 2), 4& "(I;Sg, I 2)]

(6)

is a vector- coupled product of normalized antisymmetric (N- 2)-particle eigenfunctions 4 & & (I',S,L, ~ N 2) and-
normalized antisymmetric two-particle eigenfunctions O & (I',S,L, I 2), the factor (I",S,L„I",S,L, ]I I'SL) is a two-
particle fractional parentage coefficient, and A. is the antisymmetrizing operator. All the two-particle
fractional parentage coefficient& necessary to construct first-order wave functions corresponding to the
zero-order configuration 1s~2sf&2Pq have been tabulated. '

It follows from (6) that diagonal and off-diagonal matrix elements of any single-particle operator for
an N-particle system can be calculated to second order from a knowledge of the first-order two-particle
wave functions 4 "(2) and that to first order the matrix elements for an N-particle system are essentially
just linear combinations of the matrix elements for the two-particle systems. A similar statement holds
for a restricted class of two-particle operators.

In order to avoid algebraic complexity, we present the detailed development for the three-partic]. e
systems described in zero order by the configurations Is'ns '8 and 1s~p2g'

2. THEORY

Define the single-particle operator
N

Q, (N)= P q(i),
l =1

and the two-particle operator

Q, (N) = Q q (ij).

To first order,

(e.(N)IQ (N)I+(N)& =(iIQ '"(N)lf)+(iIQ '"(N)lf&,

where &iIQ ' '(N)lf& =(4' ' '(N)IQ (N)l4' '"(N)&

and &ilQ '" lf) =&4' '"(N)IQ (N)~c. ' & &(N))+&c '»(N)~Q (N)[c, «&(N)&f Q

For the 1s'ns 'S configuration, '

4'" (ls'ns 'S)

= 3 '~'[4 "' (1s''S) C "& (ns'S)] —6 '~'[4«&(1sns 'S) C «&(ls 'S)] 2-&&2[C «&(Isns 3S) C, o (1 2S)] (12)

and C ' "(1s'ns 'S)

[@"'(»''S), O "&(ns'S)] —6-' '[4'"&(1sns'S), 4~»(1s2S)] 2-ig2[@o&(lsns3S) @(p&(1 2 )]} ( )

For the 1s'mp 'P' configuration, 4
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(1)(0)(ls2mp 2p )

=3 '/2[4'(0)(1s2'S), C&0)(mp'P'}]-6 '/'[@'"(1smp'P'), C'"(1s2S)]-2-' '[4'"(1smp'P') C«»(ls 'S)] (14)

C &»(Is2mp 'P')

1/2 [@(1)(ls21S) @(0)(mp2P )] 6-1/2 [@(1)(IsmplPo } @(0)(ls2S)]

1/2[ii)& )(lsmp P'},4)(0)(ls 2S)]]

It follows by direct substitution that

( Is 2ns 2S
I Q, ' '(3)

I
ls 2ns 'S)

= r' [( 1s' 'S
I
Ql' "(2) I

1s' 'S& + -', ( Isns 'S
I Q 1

' "(2) I
1sns 'S) + 2 ( 1sns 'S

I Q 1
' "(2) I 1sns 'S)]

and that (1s'ns 'S
I Q, "'(3)

I
ls2ns 'S)

= [ (1s' 'Sl Q, ' "(2) I 1s ' 'S) + —,( Isns 'S
I Q, ' "(2) I lsns 'S& + —,( 1sns 'S

I Q, ' "(2) I 1sns 'S) ]
The zero-order contribution (16) can, of course, be written more simply as a sum of Q,

'"(1). ~e ex-
press it in the form (16) to elucidate the structure of the first-order contribution (17), which reduces
the three-particle expectation value to a sum of two-particle expectation values.

A similar analysis of the off-diagonal matrix element (4'.(3) IQ,(3) l)1 (3)& yields the zero-order
contribution

(15)

(16)

(17)

(»)&s 2SIQ, &0)(3)
I
»'mp'P') = 2 (»ns 'SIQ, '"(2)

I 1smp'P')+-,' (Isns 2SIQ, &0'(2)
I Ismp 2p'&

and the first-order contribution

(»+s'SIQ. ")(3) I»'mp'P'&=2 (1sns 'SIQ, '" (2) I lsmp 'P')+ —(Isns'S IQ "'(2)
I lsmp 2P'&

(18)

(19)

the structure being identical to that of the diagonal matrix element.
The two-particle matrix elements (i IQ, &')(2) lf) are conveniently calculated by the use of an inter-

change theorem, which avoids the necessity of determining the first-order two-particle wave functions
4("(2). Thus (17) and (19) show that the diagonal and off-diagonal matrix elements of a single-
particle operator for an N-particle system can be calculated to first order from the solutions of
single-particle equations.

The same interchange theorem allows the calculation of the matrix elements of a single-particle
operator for an N-particle system to be carried out to second order from a knowledge of the first-
order two-particle wave functions 4 '(2), but there is no simple relationship between the second-
order two-particle matrix elements.

For a two-particle operator (8), the structure is usually more complicated. If &(&"(r„r,l I'SL),
is the spatial part of @&"(r„r2I I'SL), satisfying the first-order two-particle equation

P4( )- '"( ll'SL)]
x& "(r„r,lrSL)+[ Ir, -r. l

' v(r, ) -v(-r, )] g&-"(r„,
l
I'SL)

=E '"(2 ILL)X'"(r„r.l»L), (2O)

where g(0)(r„r2Ils''S) =(t)1 (2,)(I) (22)

&(&0) (rl, r2 I ls2s "2S)=2 1/ [(t) (rl)(t) (z2) +(t) (z )(t) (2. )]

then (1s ns IQ, '" (3) Ils'ris&

= (1s' 'S
I Q, ' "(2) I

1s' 'S) + —,
' (1sns 'S

I Q, ' "(2) I »ns 'S) + —,
'

( 1sns 'S
I Q2

") (2) I
Isns 'S&

+ 2(X &" (rl, r. I »"S)@2,(r) I q(13) I x &"(r„r,I »"S)4 (r)&

+ (g&0) (r„r,l lsns 'S)@1 (r) lq(13) I
y") (r„r2I lsns 'S)$1 (r ))

+ (y3&(0r)„rll2sns 2S)(t) (r2) lq(13) I
g(" (r„r2I1sns 2S)p (r2)&

-E2 [(X'0' (r» r, l ls''S)p (r2) lq(13) I
y(" (r„r2I1sns 'S)(t) (r2))

+ (y&0) (rl, r2I 1sns 'S)@ (r) lq(13) I
y&" (r„r2IIs2'S)(t) (r ))].

(21)

(22)

(23)
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The additional cross terms that arise because of the exclusion principle are comparable in compie»ty «
those occurring in the evaluation of the second-order two-particle eigenvalues. However, if q( fj) =

q( j i) is of odd parity in each of its variables r. and r. , the additional terms are identically zero, and
2

(1s'ns 'S
f Q, "' (3) f

1s ns 'S)

= (»»S fq &' & (2) f
»2&S) + —,

' (lsns 'Sf@,'"(2) f isns "S) +2 (Isns'SIQ "'(2)I»ns'S) ~ (24)

The first-order diagonal matrix element of a two-particle operator for the three-particle system is then
a linear combination of the diagonal matrix elements for the two-particle system, just as for the single-
particle operators as shown in (17). The odd-parity condition is satisfied by operators such as r. r. ,
cos(yf ~) and Vf V..

Unlike the matrix elements of single-particle operators, the structure of the zero-order matrix
element of the two-particle operators is identical to that of the first-order matrix elements. Thus

(1s'ns 'S
f Q, '" (3) f

Is'ns 'S)

= ( ls' 'S
f Q

' "(2) f 1s ' 'S)+ ~ (Isns 'S
f Q, '"(2) f

1sns 'S) + 2 (1sns 'S
f Q, '"(2) f Isns 'S) . (25)

3. APPLICATIONS

In order to demonstrate the utility of the theory, we consider some properties of the lithium sequence
for the case in which V(r. ) is taken to be zero.

2

Relativistic Corrections

The relativistic corrections to the 1s'2s 'S eigenvalues of the lithium isoelectronic sequence are to
O(n') and in units of n' rydberg, o. being the fine-structure constant. '

3

E, '= —,(gl + V. I&I&), 8,''=mZ( fit&+ 5(r .)Ig), 8,'''=2m(gl 2 6(r. —r. lg),
2=1 i=1 2=1

3
and E,'=( II&Z&fV.~ V. +n (n V.)V.]l&fI),

2

where n= (r.—r.)/I r. —r. l.
2 j 2 j'

From the helium calculations for the 1s' '$, 7 1s2s '$, and 1s2s $ states, we obtain immediately from
(16) and (17) that to first order in Z-',

17 Z'+ 99401 2-19880 1 3+1 075 Z'
64 729 729 43 74 4

g g 17 4 9940 19980 76 225 Z~
and g' 8

Z —
729

ln2-
729

ln3 2187 8

To the order of Z'o. ', it follows from (25) that E,"' = —
324 Z', E,' = 0.

These resu]ts have been obtained previously' by a direct application of an interchange theorem to the
three-particle system. The procedure used here is much less laborious.

Isotope Shift

Greater interest attaches to the first-order matrix element of a two-particle operator, since its
evaluation cannot be greatly simplified by the use of any interchange theorems. We consider the
matrix element (&I& f Zz~j Vf ~ Vj f g), which describes the specific mass or mass-polarization effect.
For the 1s'2s 'S state, the zero-order contribution vanishes. Using"

(Is''Sf(V, ~ V) '' '
f
1s' 'S) = 0. 133 293Z Ry

and estimating from the data of Pekeris" that

(Is2s 'Sf(V, ~V, ) "& fls2s 'S) =0.012 201Z Ry

and (1s2s S f(V ~ V) "f1s2s 'S) =0. 010 126Z Ry,
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we obtain from (24)

(Is22s SI F~ V. ~ 9)~'~ Iis~2s28) =0. 154 586Z Ry.
g~2' '

The mass-polarization effect has been evaluated for several members of the lithium sequence by
Prasad and Stewart, "using the 45-parameter variational representation of %eiss. '3 Analyzing their
results as a poorer series in Z ', ere obtain

(is'2s'SI( E V. &.)'" I1s'2s'8) =0. 153Z Ry

in harmony with our prediction.

Transition ProbabiTities

The probability of the electric-dipole transition 1s'ms '8 —1smnp2P' can be determined from the
matrix element of the operator

3
Q,(3) = Q r . cos 8 ..

The two-particle matrix elements (Is2s '~ 'S IQ,(2) I 1s2p '~'P') have been calculated exactly to first
order in Z '. They are given by '4~"

(is2s 'SIQ, {2)I is2p &P') =-(3/Z)-(3. 0479/Z')+0(Z-'),

and (Is2s'SIQ, (2)Iis2p'P') =-(3/Z)-(2. 2VV2/Z')+0(Z ').

Following the same procedures, ' me obtain

(is3s'SIQ, (2) I 1s3P'P') = -(3W/Z)-(3. 0654~/Z')+0(Z ')

»d (is3s &8
I q, (2) I 1s 3p 'P') = -(3lP/Z)-(2. 583976/Z')+ O(Z ').

It may be noted incidentally that in the Hartree- Pock approximation, "
(1s3s 'SIQ, (2) I1s3p 'P') = -(3M/Z)-(3. 0819M/Z')+0(Z '),

(1s3s '8
I Q, {2)I 1s3p'P') = -(3W/Z)-(2. 5896M/Z')+ 0(Z- ').

The Hartree-Fock expansions differ only slightly from the exact expansions (at least to first order in
Z ), in harmony with the suggestion that in the absence of zero-order degeneracies the Hartree-Fock
approximation is satisfactory for dipole transitions i.n which the active electron does not undergo a
change in its principal quantum number. '~

Before we proceed to the calculation of the lithium transition probabilities, it is instructive to
exami. ne the accuracy of the predicted helium transition probabilities. This is conveniently carried
out in terms of the oscillator strengths

f('-f)=2(& -~;)I& le, lf) I',

vrhere E. and Ef are the eigenenergies of the initial and final states and all quantities are measured in
atomic units. R the screening approximation)

f(is2s '8 -is2P 'P ) = (Z -Z, )18/(Z-1.016)',

f(is2s '8 -is2P 'P') = (& -E;)18/(Z-0 759)

f(is3s '8-1s3P 'P') = (& -&;)108/(Z- 1.022)'~

f{is3s 8-Is3p'P ) = (E -E,.)1«/(Z-0. 861)'.

A comparison with the accurate variational calculations of gneiss" is presented in Table I for the singlet
and triplet 2s —2p transitions. Even for neutral helium, the error is less than 10'po and for the ionized
systems lt ls negligible. The comparison confirms the accuracy of the complicated calculations carried
out by Vfeiss.



X. DAI. GARNO AXD E. M. IAHKINSON

TABLE I. Oscillator strengths for the (1s2s ~a3$-
182P ~~3+ ) transitions. The tl ansltlon energies were
taken from gneiss (Ref. 18).

TABLE II. Oscillator strengths for the (1s32' 3S-
1s3p~' 3&0) transitions. The transition energies were
taken from Wiese et a&. (Ref. 19).

Singlet Triplet
Weiss gneiss~ (c.f. Hef. 19) Eq (2') (c. f. Hef. 19)Eq (29)

10

%'eiss'8

0.376

0.213

0. 149

0.0930

0. 0785

0.0679

O. 0598

0.0534

0.411

0. 217

0. 150

0. 115

0. 0932

0. 0786

0.0679

0. 0598

0. 0534

0.539

0.308

0.213

0. 163

0. 131

0. 110

0.0948

0.0833

0.0742

0.492

0.298

0.209

0. 161

0. 130

0. 110

0.0945

0.0830

0.0740

Kq. (26) gneiss'8 Eq. (27) 0.692

0.374

0.896

0.509

0.884

0, 510

Wiese et at. "have reported accurate values of the singlet and triplet 3s - 3p transitions for helium
and ionized lithium; a comparison is presented in Table II. The accuracy of (28) and (29) is again high,
and it is clear that the two formulas will provide accurate values of the oscillator strengths for more
highly ionized systems, when data on the transition energies become available.

By use of computed values of the coefficients of the series expansions of the is2s "~ '8 and 1s2p '~ 'P
eigenenergies, "the two leading terms in the series expansion of the oscillator strength can be derived.
Thus from

E(ls2p'P')-E(ls2s'S) = 0.028 045Z-0. 042 54&

and E(ls2P 'P')-E(ls2s 'S) = 0.031 799Z-0.025 588

we obtain f(ls2s 'S-ls2p u ') = (0.505/Z) (1+0.515/Z)

and f(ls2s 'S-1s2P 'P') = (0.680/Z) (1+0.841/Z).

To O(Z-'), these are equivalent to the expressions

y(ls2s 'S- 1 s2p 'P') = 0.505/(Z - 0.515)

f(ls2s 'S-1s2P 'P') = 0.680/(Z —0.841).

Thyrse simple formulas are asymptotically exact. Even for neutral helium the error does not exceed 11/~
Returning to the lithium sequence, we determine immediately from (18) and (19) that to first order in

g-1

( ls'2s 'S
~ q, (3) ~

Is'2P 'P') = - (3/Z) - (4.9398/Z') + O(Z-'),

(1s23s 2S
~ qq(3) ~

Is'2p'P') = -(3M/Z)-(5. 4087M/Z')+ O(Z-~).

The comparable expressions in the Hartree-Fock approximation are

(ls22s 2S
~ q, (3) ~

1s'2P 'P') = —(3/Z) —(5.o961/Z') + 0(Z '), '

(ls23s 2S~q, (3) ~
]s'3P 'P') =- (3M/Z)-(5. 4192M/Z')+0(Z '),

differing only slightly from the exact expansions. In the screening approximation, the oscillator
strengths are given by

f(1s'2s2S-1s22P 2P') = (E - E)1 8(/Z1. 647) &2

f(ls23s 'S ],s'3p'y ') = (E —E.)108/(Z-1.803)'.

A comparison of (30) with the results of refined 45-parameter variational calculations" is presented
in Table III. Table III also includes a comparison of the transition probabilities derived from gneiss"

(30)

(31)
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TABLE III. Oscillator strengths f and transition prob-
abilities A sec for the ls 2s 2S —1s 2p Po transitions.
The transition energies were taken from Weiss (Ref. 21).

TABLE IV. Transition probabilities of the 1s 3s S-
1s 3P 2P transition in 10 sec

Oscillator Transition probabilities
strengths (108 sec ')

Z Weiss Eq. (30) Weiss Eq. (30) Experiment

3 0. 753 0.668 0. 372 0. 330

Hartree-Fock2'

0.377

1.28

2. 22

Eq. {31)

0.393

1.28

2. 22

4 0. 505 0. 473 1.15

5 0.366 0.353 1.91

6 0. 286 0. 279 2. 65

7 0 234 0 230 338
8 0. 196 0. 196 4. 08

~ ~ ~ oo 170 ~ ~ ~

10 ~ ~ ' O. 151 ~ ~ ~

1.08

1.84

2. 59

3.34

4. 09

4. 85

5. 64

2. 97+ 0. 11

3.34~ 0. 12

3.94+ 0. 14

4. 48+ 0. 16

5. 55+ 0.].9

3.18

4. 13

5. 10

6.04

3.17

4. 135

5.11

6.11

( o) ith e~erimental measurements. " As is to be expected from the i ti ti"~'"""'"""'st""gths 'he acc acy «(30) s high. I the w„,t„„„,„„„„.,„,.
„

error is about 12%. The energy of the»'2s2$ —»22P ~P' tra itio

E(»'2P '&')-E(1&'» 'S) = 0.0&0 '12IZ-0. 119022+ O(Z ').

Thus, f(ls 2s S—Is'2p'P')= (1.2'f3/Z)(I+ 1.610/Z),

or equivalently to 0(Z-i)

f ( s s S—is 2P &'}=1.273/(Z 1 610)
(32)

ssion (32) overestimates by about 20% for neutral ].ithium but by less tha 3% fo Z= 5.
curate values of the oscillator strengths for the»'3s 'S —1 23p'&' t 't'

calculated by gneiss" in the Hartree- Pock approximation. The difference between the exact and the
Hartree-Fock expansions is small, and we can directly compare (31) with Weiss s results. The com-
parison is presented in Table IV in the form of transition probabilities. The accuracy of (31) is again
very high.
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