
1 rI vs1cA. L REv1Ew VOLUME 176, NUMBER 10 DECEMBER 1968

Spherical Model as the Limit of Infinite Spin Dimensionality
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The Berlin-Kac spherical model (or "spherical approximation to the ising model" }

~SM =—J ~ p;pi& with Z u '=E

is found to be equivalent to the ~ c limit of the Hamiltonian

K(")=—J Z S.(") S;(")
( i7')

where S&(") are isotropically interacting v-dimensional classical spins.

N
g()SM 1j (1a)

where the energy of two parallel spins on sites4 i and j is
—Jv;;p, ;p; and the "spins" p,; are continuous variables
subject only to the constraint

g tsss = f('f.
j=l

Consider now the Hamiltonian'

N
g(&(v) — rj' Q v .S (v) .S .(v) (2a)

where S,("&=—Lot(j ), os(j ), ~ ~ ., o„(j)] are v-dim. en-
sional vectors of magnitude v'~'. Thus the single con-
straint of the spherical model is replaced by a set of N
constraints

I. INTRODUCTION

l' lHE Berlin-Kac spherical model' has received con-..siderable attention, particularly because it is
exactly soluble, ' and because its solution has led to
various ideas concerning the "mathematical mecha-
nism" of phase transitions. ' The spherical model (SM)
Hamiltonian is

Although it is perhaps not generally appreciated, it
seems clear that K&"' reduces to the S= 2 Ising, classical
planar, and classical Heisenberg models for v=1, 2,
and 3, respectively.

Here we argue that in the limit v~~, the free
energy of K&") approaches that of the spherical model.
This result is of particular current interest (besides
the geometrical interpretation it attaches to the
spherical model) because of recent evidence~ that
various "critical properties" of 3'.&"& are monotonic
functions of v. Hence the critical properties of the
fairly realistic but hopelessly insoluble Heisenberg
model (three-dimensional spins) would appear to be
bounded on one side by those of the Ising model (one-
dimensional spins) and on the other by those of the
spherical model (infinite-dimensional spins) .Moreover,
the spherical model has in the past been interpreted as a
soluble approximation to the Ising model, whereas in
fact the spherical model would appear to be a much
better approximation to the more "realistic" Heisen-
berg model.

II. EQUIVALENCE OF FREE ENERGIES

The normalized partition function corresponding to
K~") 1s

V

Za-'(j) =v,
n=l

j=1 2 ~ ~ ~ Ã (2b)
where

Qiv("& (E)=Ztv("& (E)/ZN("& (0),

*Operated with support from the U.S. Air Force.
t Present address.' For an interesting account of the background of the spherical

model, first proposed by M. Kac in 1947, see M. Kac, Phys.
Today 17, 40 (1964).

The exact solution for n.n. interactions is provided by T. H.
Berlin and M. Kac, Phys. Rev. 86, 821 (1952), hereafter referred
to as BK.' See, e.g., M. I&ac and C. J. Thompson, Proc. Nat. Acad. Sci.
SS, 676 {1966).

4The customarily considered "n.n. model" chooses v;;=1 if
sites i and j are nearest neighbors and e;;=0 otherwise.' H. E. Stanley, Phys. Rev. Letters 20, 589 (1968).

Ztv("l (E) = do.i(1)dos (1)

n=l n=l

X ~ ~ da„(1)dot(2) dos(2) ~ ~ da„(X)

V V

x II p(.—Z .(j))i "p~~ Z.;;Z,()..(j))
I76 718
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and E=—Jj21'tT. The I&r constraints are then represented
as

The requirement that P(E, {t;})be stationary leads
to the set of conditions

N N g im

II&( —Z .'(j))= II
j=1 n=1 j=] 27K1 —i&x&

i= 1, 2, ",X (12)K=-'((~/~t ) Ll ~({tt})3) .

E= 'X '-Q-D (E t)$-'n 1

and we obtain

Proceeding in the customary fashion, ~ we obtain the

Xexp{Kt L. Z ~ '(&') j} (S)

( E )&v co co

Z&v&~& (K) =
I I

~ ~ ~ d&r, (1) ~ ~ d&r„($)
&2~ij

Ck&. ~ dt~ exp(& E g t;)

xlIe p{—EZLt;&*;—';) (i) (j)} (6)
n=1 tJ

We next interchange the order of the do.„(j) and dt,
integrations following the method used by BK' in
connection with their Eq. (C3). The do„(j) integra-
tions then factorize, with the result

)&u(E, t,) = t, &&a-

t&,=E 'g -t&,;expl iq (r;—r;)).

For a {d$-dimensional "hypercubical" (linear chain,
square, simple cubic, ~ ~ ) lattice with nonzero inter-
actions only between spins on nearest-neighbor (n.n. )
sites, 'Eq. (13) becomes

2E= (I t,—2 g cos ] '),
m 1

where the brackets indicate the "average"

( + N a+ica
Z&v&"&(K) =

I . ~ ~ ~

(2mi

a+ico

cx i' dt~ ~ dtN
&g&f -&&)-=' " / d~~" ~@&i~-&& &»&

0 0

where

I(K, {f,})=

Xe~(.K+f;)P(E, {t;})], (7)

do. (1)" &Eo.„(E) 4E= (L»,—g cos&0 ]-'),
m~1

(18)

The analogous expression determining the spherical
model stationary point z, is Lcf. BK, Eq. (C23)]

thus t, =2@,.
Next expand F(E, {t,}) about the stationary points

The evaluation of the integral in Eq. (8) is straight-
forward, and we Gnd

( K &P f &r&I &v/s +'
Z &&(K)=

I

&,27rip E,Kj
a+i&xt

with
)(exp{"»F(E, {t;})), (10)

P(E, {t;})=E g ft—-', in'({t;}).

s To apply the BK "trick" to Eq. (6), we set

N r
1 =expfXZ b, (~ Za„'(j))g-

j~l n~l

which is true for any values of the numbers b; because of the
constraints (5). Fe choose f&; u[j=1, 2,=",Ãg, where a is a
sufficiently large ositive real number that the quadratic form
Z;;f(t;+a)tt;; s;; o„(i)o„(j)is positive—de6nite. Finally, Eq. (7)
is obtained by the change of integration variable t; —+t;+u.

I(E, {t;})= ( IK)""L&({t;})3-'", (9)

where t&&({f;})is the determinant of the quadratic form

g;& (t;7'&;; t&;&) o„(i)o„(j)—. On substituting Eq. (9)
into Eq. (7), we finally obtain

~ That the stationary values of all the variables i; are identical
is explained by E. Helfand and J. S. I anger, Phys. Rev. 160, 437
(196'I). These authors treated critical correlations (for T~T,)
in the Ising model and were thereby led to consider Eq. (10) for
the case v=1. They remarked that the integrand of Kq. (10) for
the Ising model is stationary at {t.} (as indeed it is for alt values
of v), but in their Kq. (2.14) they imply that the spherical-model
partition function is given, "except for some simple normalization
terms, " by the value of the integrand evaluated at t, . We note
that there appears to be no way of obtaining suitable "normali-
zation terms" such that the right-hand side of their Kq. (2.14)
equals the left-hand side. One might imagine that they are
referring to a normalization term such as Z&v&"&(0) as given by
Kq. (23} of the present paper; however for the Ising model,
Z&v&'& (0) =1. fIncidentally, it is in fact Eq. (23) when evaluated
not for v =1 but rather in the limit v-+ ~ which provides precisely
the required normalization for our ~~ result, Eq. (27).g
Helfand and Langer were, to the best of our knowledge, the Grst
to apply saddle-point methods to integrals such as Eq. (10). Such
integrals arose (in their work as well as in ours) from the idea of
expressing the Ising model partition function not as a sum but
rather as an integral, an idea 6rst exploited (we believe) by
E. W. Montroll and T. H. Berlin, Commun. Pure Appl. Math.
4, 23 (1951).
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We then factor trF(K, {t,})out of the integrand, calling
the remaining integral

( K )&V a+too a+i~

E2s sj aim-a-im dt~ ~ dt~

( yp
X exp —t g ~

(t„—t.)(t t,)—+ ~ ~ ~ . (20)
2. ,„=q (Bt Bt„~,

Thus, from Eq. (10),
lnZ&v&"&(K) = s&rE ln(sr/K)+t F(K, {t, })'+1nR. (21)

From Eq. (3), the limiting free energy lt & & is related
to Z&v&"& (E) by

—pl(«&=—lim (t N) ' lnLZ&v&"&(K)/Ztv&"&(0) g, (22)
v, N~rx&

where p=(kT) ' and

Zti&"& (0) = P(psr) "t'/pI'(-', p) g&v, (23)

as is easily seen by the above methods. On using
Stirling's asymptotic expansion of the I' function in

Eq. (23) and then substituting Eqs. (21) and (23)
into Eq. (22), we have

py&-&= ——;——;»2E+(1/X) F(K, {t,})
+ lim (tN) —'in'. (24)

u,N~rxs

The last term on the right-hand side of Eq. (24) can be
shown to be zero. Now, F(K, {t,})=EKt, rsing({t—,})
from Eq. (11),and

ink({t,})=1n2++in
~

st,8;s—st;s
~

=E ln2+Efg(s. ), (25)

where t,=2s, and

zero, for example, its leading term in 1/T would have
to be of order (1/T)" or smaller.

(b) For the } 1)-dimensional linear-chain lattice we
can solve exactly for the free energy P&"& for arbitrary
v without needing to consider an E-fold integration. We
Qn6

—4'"'=(1/)»L( K)' ""1'(l )I.ts-t(2 K)3 (28)

where I„(x) are the modified Bessel functions of the
first kind. Thus, on taking the limit v—+Do, we obtain

PP&"—& = ——,'+-', (1+16K')"'
——; ln-', { 1+(1+16K')'"j) (29)

which is the same result as obtained by BK, Kq.
(C18). The fact that PM is explicitly and rigorously
given by lim P&"& for a { 1]-dimensional lattice of

v=1

0=2

f~(s,)=—(inLs.—g cosa& j), (26)

exactly as in BK, Eq. (C12) . We finally obtain

—PP& &= ——', ——', ln4K+2Ks, srfd(s, ),—
which is precisely BK, Eq. (C11).

III. DISCUSSION

(27)

The above argument (that the free energy of a
system of isotropically-interacting v-dimensional

classical spins approaches, in the limit v—+ ~, the free

energy calculated by Berlin and Kac for the spherical
model) is supported by various other evidence, among
which we mention the following:

(a) For all lattices the first 10 terms of the high-

temperature expansions of the susceptibility and free

energy of K&") agree, on taking the limit s —+~, with
those calculated for the spherical model. ' Thus, if the
last term on the right-hand side of Eq. (24) were not

R. N. Lewis, in Asymptotic Solutions of D~gerential Equations
and Their App/ications, edited by C. H. Wilcox (John Wiley R
Sons, Inc. , New York, 1964), p. 53 (also obtainable on request
from the Courant Institute of Mathematical Sciences, iVew York
University as NYU Research Report No. EM-197) (unpublished) ).

I'ro. i. Model of a linear chain of 1V v-dimensional classical
spins interacting isotropically with one another via the Hamiltonian
3C('). Each oval with j at the top and n at the bottom represents
the Nth Cartesian component o„(j) (it=1, 2, ~ ~ ~,o) of the jth
spin S;&") (j=1,2, ~ ~ ~,N). The ovals interact with their (hori-
zontal)'nearest neighbors via the exchange parameter J (shown
by heavy solid lines); they also "interact" with their (vertical)
mates via the cortstrosrtts S(o—Z„po„'(t)) (as indicated by the
thin-lined rectangles). If we now assume that there is also an
interaction between the scalar spina o„(E) and oo+i(1) (as
indicated by the heavy dashed lines), then we obtain, in the
limit v—+ac, an ¹pherical model whose thermodynamic func-
tions (according to Ref. 11) are identical with those of the or-
dinary BK spherical model.

9 The relevant asymptotic expansion for modified Bessel
functions of the first kind when both the argument and the order
approach infinity is developed in G. N. Watson, Theory of Bessel
Fttttcttols (Cambridge University Press, London, 1958), Chap. 8.
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course proves nothing about $27- and L3]-dimensional
lattices. "

(c) We can present an intuitive explanation of our
result based upon a recent theorem that the thermo-
dynamic functions of all "m-spherical" models are
equal to those of the BK spherical model. " Here
"m-spherical model" refers to a model in which the
full set of lattice sites is partitioned into nz distinct
subsets (or "sublattices") R Ln=1, 2, ~ ~, rN] with
Xy, K2, ~ -, K sites belonging to each sublattice.
With each lattice site is associated a scalar spin p,;,
and with each sublattice R is associated the con-
straint

The theorem then states that providing the number of
sites belonging to each sublattice tends to ininity
(i.e., K —+eo for rr=i, 2, ~ ~, m), we recover the
thermodynamic functions of the ordinary BK spherical
model (or 1-spherical model). Now the sublattices
need not be contiguous, as illustrated for the case of
the linear-chain lattice in Fig. 1. Here the thin-lined
rectangles enclose each "sublattice" 8, where +=1,
2, ~ ~ ~, 1V (i.e., m—=1V here) and. each sublattice is
composed of & scalar "spins" o (n) (I=1, 2, ~ ~ ~ &).
If we assume that each heavy solid line as well as the
heavy dashed line represents a n.n. interaction, then
the theorem will apply in the limit as p—+ ~. Now our
model Hamiltonian Kt:"~ is obtained by breaking all
the dashed lines which, for n.n. exchange interactions,
represents an energy change of order 1/X, so that one
might expect that the theorem would continue to hold.

In conclusion, we should like to supplement the
remarks made in Sec. I concerning why our result may
prove to be of some utility.

(a) A knowledge of the properties of the model
Hamiltonian 3C("& in the limit v—+ ~ provides one with
an "anchor point, " since K('") is not soluble for other
values of & (except for the linear chain lattice —and.

for L2j-dimensional lattices, provided that v= 1).
For example, various approximation techniques (such
as extrapolation from high-temperature expansions,
Green's-function decoupling schemes, etc.) can be
"tested" on the spherical model, for which the exact
values of the various critical properties are known.
It is also feasible to calculate numerically 100 terms
in the various expansions for the spherical model, and
the fact that the correct values for the various critical
properties are indicated" tends to discredit the fre-
quently made charges that the regularity observed in

"A more detailed treatment of the linear chain is presented
in H. E. Stanley, Proceedings of the International Conference on
Statistical Mechanics (to be published in J. Phys. Soc. Japan)."G. V. Bettoney and R. M. Mazo (unpublished). I wish to
thank Professor M. E. Fisher for calling this work to my attention
and Professor Robert M. Mazo for sending me an unpublished
report.

"H. E. Stanley (unpublished) and Ref. 10.

The above argument that

lim{P&" (T) }=P"(T) (A1)

is valid only for T&T„ therefore the same argument
cannot be used to prove that, e.g.,

limen&"&} =nsM (A2)

'3Hitherto the most convincing counterargument to these
"charges" was that the 10-15 available terms for the [2$-dimen-
sional Ising model appeared to extrapolate to the exact critical
values. Thus the availability of 100 terms for both [2]- and
[3g-dimensional lattices for v= ~ would seem to considerably
strengthen the argument based upon v=1 only. Moreover, the
form of the various thermodynamic functions at the critical
temperature has alw'ays been open to question, since there is no
Grm evidence supporting the commonly-assumed "power-law"
divergences (for example, it has not been rigorously proved, even
for the [3g-dimensional Ising model, that the susceptibility
diverges with a simple power law, let alone that the "critical
exponent" yo& is 5/4). For v= ~ one can see that the suscep-
tibility for [3$-dimensional lattices does diverge with a power
law, and that y&"&=2. Furthermore, the estimated values of y&')

for other values of v are very nearly given by the smoothly-varing
function y&"& = 1+tanh[ —,', (& +3)$.

'4 Indeed, since for p&1 the spontaneous magnetization is zero
for all temperatures T)0, the phase transitions for two-dimen-
sional lattices indicated by high-temperature expansions would
have to be to a low-temperature phase [see, e.g., H. E. Stanley
and T. A. Kaplan, Phys. Rev. Letters 17, 913 (1966)$ with no
in6nite-range order M, yet with sufhcient long-range order that
x diverges to in6nity.

n E. Helfand (to be published).

the 6rst 10 or so terms of the expansions available~ for
general v is misleading or spurious. "

(b) An asymptotic expansion of the free energy for
large v might provide a good approximation to the
Heisenberg model (v=3), and could provide some
insight into various (as yet unsolved) problems for
systems of two- and three-dimensional spins —such
as the question of whether there exists any sort of
"phase transition'"4 for } 2$-dimensional lattices when
v is small Lapart from the conventional (MAO) transi-
tion for»= 17.A treatment of some of the effects found
when v is large but not infinite has been carried out very
recently by Helfand. "
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APPENDIX: INABILITY TO RULE OUT
DISCONTINUOUS BEHAVIOR OF

CRITICAL INDICES
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for the sequence of specific heat exponents n&"'. The
reason is of course that the "critical indices" (such
as a&"&) are defined as the T +T,—limit of certain func-
tionals f/&"&(T)$, and we cannot rule out the possi-
bility that

lim{ limftg&"&(T)/IN limfLP (T)). (A3)

Although the terms in the various high-temperature
expansions would have to depart from their apparently
smooth variation with s at some order if the critical
indices were to behave discontinuously as a function of
v, the fact that there is absolutely no indication of this
through order 1/T" does not prove anything one way
or the other.
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The magnetic structures of Er20& and Yb203 have been determined by analysis of neutron diffraction data
on powders and single crystals. Noncollinear antiferromagnetic structures were found, with the moment
direction related to the local symmetry axis. For Ersoq, the moment on the Cs site is (5.36+0.08)pa and at
the Ca; site the moment is (6.06&0.23)ps. For Ybsor, the corresponding moments are (1.86+0.06)pe
and (1.05&0.06)pe. The Weel points are 3.4'K for Erst and 2.3'K for YbqOq. Calculations oi the dipole-
dipole energies for the observed structures indicate that the dipole forces are not sufhcient to explain the
structures. The dependence of the long-range magnetic order on the reduced temperature is the same in
both. systems. Good agreement with this temperature dependence was obtained by assuming a biquadratic
exchange interaction and making a simple molecular-field approximation.

I. INTRODUCTION

& &HE rare-earth oxides form an interesting class of. - magnetic materials because of their weak magnetic
interactions. For example, the Neel points of Kr203
and Yb203 are 3.4 and 2.3'K, respectively. These
temperatures are low enough that the magnetic dipole
interaction must be considered a possible cause of the
magnetic order. One of the objectives of this investiga-
tion was to evaluate the importance of the dipole
interaction by deducing the magnetic structure from
neutron diffraction data, calculating the dipolar inter-
action energy of this structure, and comparing the
result with the observed Neel temperature. Another
implication of a low Neel point is that the magnetic
interaction, whatever its origin, is a small perturbation
compared to the crystal-field interaction. The low-

temperature magnetic properties, therefore, should be
strongly inQuenced by the crystal field. If the magnetic
interaction is very weak compared to the energy of the
first excited crystal-field level, the ordered moment
should be a property of the crystal-field ground state.
A somewhat stronger magnetic interaction will mix the
crystal-field states, as discussed by Bleaney, ' leading
to a new ground state with a moment that is a function
of the strength of the magnetic interaction.

The intermediate case, in which the ground-state
wave function is dependent on the strength of the
magnetic interaction, can lead to unusual magnetic
behavior as a function of temperature and applied
field. For example, if the dominant coupling mechanism

1' Research sponsored by the U.S. Atomic Energy Commission
under contract with the Union Carbide Corporation.*Present address: Atomic Energy Board, Pretoria Tvl. ,
Republic of South Africa.'B. Bleaney, Proc. Roy. Soc. (London) A276, 19 (1963).

is superexchange the interatomic exchange constants
are related to the rare-earth-oxygen overlap integrals.
But as the degree of magnetic order increases, these
overlap integrals may change because the rare-earth
ground state is changing. Thus the interatomic ex-
change parameters are not constant, but become func-
tions of temperature. Applied fields can also change the
degree of admixture of the crystal-field states. This
effect, in addition to the weak magnetic interaction,
means that the magnetic structures can be easily
inQuenced by applied fields. As an additional com-
plication, we will see that there is some evidence indicat-
ing that biquadratic exchange may be important.

Neutron diffraction studies have been made on single
crystals and powders of Er203 and Yb&03. The expected
complex nature of the temperature and Geld dependence
of the magnetic structures has been fully realized.

These materials all have the bixbyite' structure.
There are 32 rare-earth ions and 48 oxygens in a cubic
unit cell with lattice constant of about 10.5 A. The
space group is Ia3 —T&~. Twenty-four of the rare
earths are on sites with twofold rotational symmetry
(Cs), and eight are on sites with threefold rotary
inversion symmetry (Cs;). There is one adjustable
position parameter for the Cg sites, none for the C3;
sites, and three for the oxygen sites. The oxygen co-
ordination around the two rare-earth sites is shown in
Fig. 1. For the C2 site, the oxygens fall almost on the
corners of a cube with the rare earth at the center and
with two missing oxygens along a face diagonal. The
twofold axis is perpendicular to this face diagonal. One
of the symmetry elements of the space group is the
body-centered translation, so that there are two C2

' L. Pauling and M. D. Shappell, Z. Kiist. 75, 128 (1930).


