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The unrestricted Hartree-Fock molecular-orbital self-consistent-field (MO-SCF) method is developed
and applied to the problem of transition-metal ion clusters. This method removes many of the shortcomings
of earlier treatments and provides, in principle, a framework for obtaining fairly accurate and meaningful
results. Model calculations are reported for the KNiF3 system, in which all matrix elements of the Hamil-
tonian are accurately computed (by the choice of a special one-center basis set) for all the electrons of the
molecular cluster. Considerable variational freedom is allowed in all representations; as a consequence,
significant covalent mixing is found for representations containing the metal 3s and Bp orbitals. This
molecular-orbital approach thus divers greatly from the previous approach of using molecular orbitals
formed as linear combination of atomic orbitals (MO-LCAO); in particular, it is emphasized that the
simple (and inadequate) single-variational-parameter LCAO treatment of earlier calculations is replaced
by full HF-SCF calculations in a multielectron framework including all electrons (and not just the bonding
and antibonding electrons as in earlier treatments). Complete SCF calculations are carried out for both
the (¹Fe)4 and the (NisF)'+ clusters (representing the metal-ion and the ligand-ion point of view, re-

spectively) including the eifects of an external crystalline field. Although these first (crude) calculations
suer from limited basis size, reasonable agreement with experiment is found for such quantities as the
optical-splitting parameter 10', the transferred hyperfine interaction, and the neutron magnetic form
factor.

I. INTRODUCTION

t 1HE transition-metal salts have aroused great.interest because of the wealth of unexplained
experimental information obtained in recent years by
optical, nuclear-magnetic-resonance, neutron-diffrac-
tion, and other techniques. A major stimulus has been
the realization that a theoretical understanding of
these observations might be important to the develop-
ment of a theory of superexchange needed to explain
the antiferromagnetism of these systems. Since analysis
Of the experimental data emphasized the importance of
the role played by the magnetically inert anions, or
ligand atoms, theoretical emphasis has concentrated
heavily on attempts at understanding the behavior and
properties of a cluster of atoms, the cluster considered
as being representative of the crystal. This cluster was
taken as a single metal ion and its nearest-neighbor
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ligands —the so-called ligand-6eld-theory approximation
as opposed to the earlier, more naive single-ion, or
crystal-Geld-theory approach. In this framework,
Anderson' has stressed the importance of this cluster
approach to the calculation of the exchange coupling
between the magnetic open-shell metal ions (which are
next-nearest neighbors to one another), i.e., the "super-
exchange" interaction.

Semiempirical molecular-orbital theories have already
been applied to a large number of transition-metal
complexes and the results conhrm general trends
observed in the electronic spectra and ionization
potentials. ' Unfortunately, the results of detailed
theoretical calculations using the molecular-orbital

(MO) approach have, as yet, not lived up to expecta-
tion. A system of special interest has been the anti-
ferromagnetic compound KXiF3. The early calculations
of Sugano and Shulman' on the (NiFe)e cluster in
K.NiF3 set a new standard for the ab ieitio one-electron
treatment of metal complexes; however, some important
questions remained to be answered. Among these were

(1} How does one extend the one- and two-electron

' P. W. Anderson, Solid State Phys. 14, 99 (1963).
~ H. Basch, A. Viste, and H. B. Gray, J. Chem. Phys. 44, 10

(1966).
s S. Sugano and R. G. Shulman, Phys. Rev. 130, 517 (1963).
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MO models to a many-electron framework in a rigorous
and consistent mannerP4

(2) Does the difference of one-electron energies give
an adequate approximation to cluster excitation
energies, or do rearrangement and other "many-body"
e6ects play an important roles

(3) To what extent are results affected by approxi-
mations to matrix elements and limited variational
freedoms

(4) How strongly do ligand. electrons interact with
each other, and what is the effect of allowing s-p
hybridization to take placebo

(5) Is a spherical-well approximation to the crys-
talline potential adequate'

(6) What is the spin density in this S=1 system,
and how do the spin-split orbitals diQ'erP

Some of these questions were attacked by Nieuwpoort
in a study of the metal carbonyls, 5 in which spin-
restricted Hartree-Fock molecular-orbital self-con-
sistent-field MO-SCF variational calculations were
carried out on the S=O ground states of the isolated
complexes. This work showed that considerable re-
arrangement takes place during the approach to self-
consistency starting from the free-atom charge densities.
Ligand —s-p and ligand-ligand mixing were found to be
important, as well as covalent mixing with, and dis-
tortions of, the metal orbitals. A net transfer of charge
to the metal was observed. While these calculations
represented a considerable advance over previous
efforts, they were still limited by the use of a "frozen-
core" approximation to the inner-shell orbitals, the
use of some approximations to multicenter molecular
integrals, and the restriction to doubly occupied
orbitals. In addition, no excited states were calculated,
so that one could only estimate excitation energies
from the one-electron levels.

In this paper we apply the unrestricted Hartree-Fock,
single-determinant, MO-SCF method to (NiFs) and
(Ni~F) + clusters in KNiFs as a natural extension of
previous work. As a device for calculating all matrix
elements accurately we introduce a one-center basis
with some novel properties. Metal-core orbitals have
been included in self-consistent calculations on the
'A2, and 'T2, states of the octahedral complex in the
crystal field computed for KNiF3. The triatomic
cluster is used to study the F" transferred hyperfine
interaction. With the limited basis sets and the single-
determinant approximation employed in this work, we
cannot hope to resolve fully the questions discussed
above. However, the calculated physical properties are
reasonable and the results give some indication of the
relative importance of various eGects; for example,
spin-polarization eGects are found to be very large
compared to the external crystalline 6eld.

4 R. E. Watson and A. J. Freeman, Phys. Rev. 134, A1526
(1964); E. Simanek and Z. Sroubek, Phys. Status Solidi 4, 251
{1964).' W. C. Nieuwpoort, Philips Res. Repts. Suppl. No. 6 (1963).

In the Hartree-Pock theory of many-electron systems
(extensively described in standard reference worksr)
an approximate E-electron wave function may be
given by the single determinant

(2 &)

where 0', is the antisymmetrizing operator. Generally,
the one-electron spin orbitals P, are chosen as an
orthonormal set of functions and written in the assumed
separable form as

4"=p'(r) x'(~) (2.2)

where the p; are functions of space coordinates only,
and the g; used here are restricted to be spin eigen-
functions with eigenvalues of s, equal to ~~. The
"best" spin orbitals are determined by minimizing the
total energy of the system subject to variation of the y;.

In the LCAO (linear combination of atomic orbitals)
approach' the spatial functions p; are approximated
by a linear combination of basis functions, which for
convenience are also chosen as an orthonormal set:

w'(r) =Zc'& (r)

j=i, 2, , M (2.3)
' E.g., J.Hubbard, D. E, Rimmer, and F, R. A. Hopgood, Proc.

Phys. Soc. (London) 88, 13 (1966).
r J. C. Sister, Qttarttgm Theory of Atomic Strgctare (McGraw-

Hill Book Co., New York, 1960), Vol. 1; R. K. Nesbet, Rev. Mod.
Phys. 33, 28 (1961).' C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1931).

Recently, the Heitler-London approach, as well as its
extension to what has been called the "independent-
bonding" scheme, has been used for these calculations. 6

In this alternative approach, the interaction between
metal-ligand pairs is discussed in the language of con-
figuration interaction. In our view, this treatment is
made somewhat doubtful by the close proximity and
resulting interaction of ligands with each other. For
this reason we prefer to pursue the molecular-orbital
approach, which includes all such interactions, with the
ultimate aim of performing realistic ab zeitio con-
figuration-interaction calculations. (We discuss the
Heitler-London approach along with our own results
in Sec. VII.)

In Sec. II we brieQy review the Hartree-Fock equa-
tions for open-shell systems, and the approximations
inherent to the cluster model. The basis functions and
computing techniques used in these calculations are
presented in Sec. III. A series of calculations which
display the effect of various approximations is reported
in Sec. IV, and the calculated crystal-field splitting and
hyperfine parameters are given in Sec. V. Neutron
magnetic scattering factors are reported in Sec. VI,
and the role of covalency is illustrated.

II. APPLICATION OF THE HARTREE-F0CK
METHOD TO AN IONIC CRYSTAL
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or in matrix notation

(2 4)

p;. = g C;» *C.» (2.6)

and similarly for y&.

The Hartree-Fock equations for the spin orbitals f,
may be obtained by minimizing the total energy and
are found to be

so that the columns of C form a discrete representation
of the orbitals. One may immediately partition the
matrix C into submatrices for either spin:

c=ct+ c~,

where C~ contains e spatial orbitals, each associated
with a spin function y with s, =+-„' C~ contains m
orbitals with s, =—~~, and e+m=X. It is convenient
to use the coeKcient density matrices defined by

chosen and occupation numbers' specified, a self-
consistent solution for the matrices C may be obtained
by successive approximations to the matrices y~, y~ by
using the C matrices obtained in the previous iteration. "
The total electronic energy of the system can be
expressed as

g»o» (~t+~)) H+1( t+, $) (gt+g))

—-', (y~ K~+ g'K') . (2.12)

Since for crystalline systems the number of electrons
JLt, and hence the dimension of the matrices in Eq.
(2.9), is extremely large, we apply a well-known
partitioning technique. " Instead of simultaneously
diagonalizing the entire F matrix (of dimension M XM),
we may work with a subset of equations (2.9) . One may
divide the C and a matrices as follows:

(e I 0
(F)(c„ l c ) =(c. '

, c -) I

k0
''

,
".=)

'

where

&.«(1)0"(1) =~'0'(1) (2 7)
with the corresponding equations

(2.13a)

Zg 1—E'»
/g «= g 2—Q —' + dv, g f„*(2) f»(2)

g kg k ~»

FC =C e„,

FCM~ = CM—mM-my (2.13b)

(2 g)

F~Ct =C~e~, (2.9)

and the integration is over both space and spin co-
ordinates. The index g denotes the various nuclei of
the system. The familiar operator E» permutes co-
ordinates of electrons j. and 2. Substitution of Eq.
(2.3) into (2.7), multiplication by a basis function
a»~(1), and integration of (2.7) lead to a set of equa-
tions for the coeKcients C;; which may be written in
matrix form as

and since the matrix C is unitary, we may perform
unitary transformations within the submatrix C to
lower the total energy (provided that the number of
occupied orbitals in C is less than m) and to improve
the approximate eigenfunctions without violating the
orthogonality requirements. For perfect crystals the C
matrix is cyclic and an obvious partitioning is present;
however, we may choose any convenient partition
containing the orbitals of some molecular cluster. Now
we may consider a further partition of the C matrix
such as

where e~ is the diagonal matrix of the e;t, and

Fi ——H+3~+31 —Ki

and similarly for spin $ . Here

Zgi
P;; de,a;*(1) (

—-', v' —P=—'
~

a.;(1),r,j
~.*(2)«(2)

deqa, *(1) g p»~ a;(1),
A:, l ~12

(2.10)

(2.11a)

(F, F ) (C.„) t'C.„)
1(e-). (2 13c)

(F.. F„) Ec ) Ec,.)
with the corresponding equations (dropping the sub-
script te)

F .C +F.»c» ——C,e,

F».c.+F»»c» ——C.e.

(2.13d)

(2.13e)

Substitution of Eq. (2.13e) in (2.13d) gives the
formal solution

(2.11b) Faa Ca Ca&p (2.14)

X,;~ = dvga, ~(1) Q p», P ~
a;(2).

ay*(2) «(1)~

»z ru i
(2.11c)

The Eqs. (2.9) must be solved for the unknown
matrices C by an iterative procedure, since the F

matrices depend upon C. Once the basis set faI is

It is convenient to redefine the density matrices as p;;=
Z~ng, C;I,*C;q in terms of the occupation numbers nI„where the
the sum now runs over all k. In this way one may control the num-
ber of electrons of either spin and, where symmetry partitioning
is employed, the number of electrons in each representation.
Furthermore, various configuration averages can be taken,
making use of fractional nl, .' R. K. Nesbet, Rev. Mod. Phys. 35, 552 (1963);J. A. Pople
and R. K. Nesbet, J. Chem. Phys. 22, 571 (1954).

» P.-O. I.owdin, J. Mo}. Spectry. 14, 112 (1964).
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where
F~ =F~+F~Cb(Cbe FM Cb) Fb~ (2.15)

(F ll I)C I 0 (2.14')

Here all matrices have the dimension mmmm, where
m is the number of basis functions a, localized at the
cluster.

The matrix F„"now may be split into the Hartree-
Fock matrix for the isolated cluster and terms giving
interactions of the cluster with the rest of the crystal:

provided that the inverse of (Cbe—F,bCb) exists.
In the case of a crystal like KNiF3 one can make a

calculation on a (NiFs)4 cluster from that crystal by
making the partitioning of the matrix C so that C
describes all orbitals (occupied snd virtual) in the
cluster and C~ describes all orbitals in the rest of
the crystal. In addition, we choose C, to contain only
those basis functions u, localized at the cluster. The
second term of F, ' in Eq. (2.15) then describes the
overlap-mixing effects between the cluster and the rest
of the crystal. It is easy to show" that this term is of
order y', where y is the mixing parameter between basis
functions on neighboring ions. In highly ionic crystals
(such as KNiFs) and with the use of a localized basis,
the overlaps, and hence 7, will be small. We therefore
will neglect all effects of the second term of Eq. (2.15),
which is equivalent to the assumption C&

——0. With
these approximations Eq. (2.14) becomes

the treatment of an isolated cluster in the molecular
field of the crystalline environment. In previous
molecular-orbital calculations'4 on KNiF3, the crystal
field has been approximated by a uniform potential
well. In the calculations to be reported, various approxi-
mations have been used for the matrix elements (2.17) .
These include:

(1) Poitbt ions on crystal sites; Eq. (2.17) then
simplifies to

(2.18)

(2) Distributed ious on crystal sites; in this case

V j('a'
~ Qt (+ ff, /rr )

—V (rt ) J ~ a;), (2.19)

where V (rr ) is a correction term to (2.18) due to the
overlap of cluster- and neighboring ion-electron
densities.

III. BASIS SETS FOR THE CLUSTER MODEL

The successive partitioning scheme begins essentially
with the computation of free-ion approximate eigen-
functions. The compact form and the relatively easy
computation of accurate matrix elements make the
choice of an analytic basis set advantageous. Of various
analytic basis sets in use, the exponential Slater basis
has proved most accurate and reliable. These basis
functions are of the form

Faa = Fa +Vcrrst (2.16) a pr rn lc~rp —
m(g) g e(~) (3 1)

with

where the sum 0. is over all nuclei outside of the cluster
and p, runs over all electrons not belonging to the cluster.
The approximation given by Eq. (2.16) corresponds to

"One can write the second term oi Eq. (2.15) as F,tCbC, '. We
suppose that the basis functions a; and the eigenfunctions @; are
localized about lattice sites; then the C matrix may be placed in
the following form:

))
2 ~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

where p symbolizes mixing coefBcients of the order of the overlap
between adjacent atomic functions. Thus C& consists of terms of
order y and higher. In the same way we see that F~ contains
terms of the same order, so that the product F,f,Cq is of order y'.
In principle, one has the basis for an inerative procedure in which
@ddit&onal rovers are successively brought into the C, matrix.

where X is a normalization constant, I'p is the asso-
ciated Legendre function, and 5 is the (real) trigono-
metric function sinmy or cosmic. For our purposes it
will be convenient to choose all basis functions real.
Tables of accurate wavefunctions in this basis for
numerous atoms and ions have been published"; these
tables can often provide good starting wave functions
for more extensive calculations. Another advantage of
the Slater basis appears when we consider multicenter
molecular or crystalline systems. A mllticeeter Stater
basis set can be formed, consisting of sets of the func-
tions given in Eq. (3.1) centered at each nuclear site.
This multicenter basis set can represent an orbital
properly in the vicinity of every nucleus, and the overlap
and mixing of different atomic sets can form an accurate
representation of the internuclear region. In addition,
one may easily analyze the resulting molecular wave
functions in terms of distortions of the component
atoms '4

By now a considerable number of small molecules
have been treated, making use of multicenter Slater
basis sets. These include diatomic molecules, and larger

's E. Clementi, IBM J. Res. Develop SuppL 9, 2 (1965).
'4 In fact, covalency can only be rigorously de6ned in the case

of limited variational procedures restricted to free-atom functions
as a basis. This and the problem of unambiguously defining ionicity
in a molecule can be resolved by a sensible convention, such as the
Mulliken overlap population analysis.
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systems such as H20, CH4, C&H6, H6, NH3, and PH4. The
results clearly indicate that the "optimized minimal
Slater basis" is an excellent approximation to the
Hartree-Fock eigenfunction. In this basis one chooses
a small number of functions at each center and sys-
tematically varies all screening constants and linear
coefficients to obtain minimum energy. The small
number of functions chosen is dictated by the complex
and time-consuming evaluation of multicenter matrix
elements. As methods for computing these integrals
improve, we may include larger basis sets and treat
more complex systems to higher accuracy.

The main criterion by which a molecular wave
function is judged is usually a comparison with experi-
rnental binding energy and charge moments. The
calculation of excited states and transitions between
states is usually not su%.ciently developed to allow
meaningful comparisons. Another possible criterion is
the comparison between molecular wave functions
obtained from very di&erent basis sets. The ability to
compare wave functions directly instead of the expecta-
tion value of some operator would be very useful; to
date few such comparisons have been made.

We have already mentioned that at present the
computation of matrix elements for the multicenter
Slater basis is complex and tedious. "In order to study
reasonably large molecular systems, we are forced to
compromise between accuracy of the Slater set and the
amount of computer time available for calculation. To
this end we propose a specialized one-center mixed
basis" which is particularly suited to centro-symmetric
systems. This basis set may be developed by referring
to one of the basic techniques applied in evaluating
multicenter matrix elements.

Consider the basic two-electron repulsion integral
encountered in the multicenter Slater basis set. The
most general (and most complex) of these is the four-
center integral:

&Aa i
CD&= d&14E&2+nl, ll,ml, al ( rA1)

X&n2, l2 (rB1)m2, e2 ( 1/F12) +n8, 48,m$, ~3 ( rC2)

Xa.4, 44,m4,.4(rm) (3.2).
In this notation rgy means the coordinate vector of
electron 1 measured from an origin at nucleus A. A
general method for evaluating this and other multi-
center integrals is to expand the integrand about some
common origin in spherical harmonics. The angular

'~ This has been one of the central numerical problems of molec-
ular theory; indications of the present status of the problem
appear, for example, in Ref. 42 and F.E.Harris and H. H. Michels,
J. Chem. Phys. 45, 116 (1966)."A number of one-center bases have been employed in molec-
ular calculations, including exponential and Gaussian functions as
well as a few numerical applications; for example, B. D. Joshi, J.
Chem. Phys. 4'7, 2793 (1967). Manageable bases of this type have
two defects: inability to represent the wave-function cusp at
distant nuclei and slow convergence in localizing charge about
these nuclei.

and radial integrals may then be computed separately,
thus reducing the order of quadrature required. The
price of this simplification is that a series must usually
be summed to evaluate the integral, and in the four-
center case a doubly infinite series results. The two basic
expansions required for this method are the potential
expansion

&12
'= Q 8g (&Zl, &z2) I'g'(A; 1, 2),

J'~0
(3.3)

where 8~(r~l, r~2) =r& /r& +', and I'~0(A; 1, 2) is a
Legendre function whose argument is the angle between
r& and r2, and the orbital expansion

a„l„.(rB1) =1V 4 Q (2K+1)

Xn 1; l(42, ul, &~B)~l"(61)& '(@~1) (3 4)

In both cases we have taken the final coordinate center
to be at site A, with the local coordinate systems
aligned on the AB axis. The final step of the procedure
is to rotate all functions into a common coordinate
system and to truncate sums according to vector
coupling rules derived from the angular integral. In
practice all remaining infinite sums are truncated at
some finite angular momentum, say i=20, to obtain
some desired accuracy in the integral. The angular
integrals to be evaluated within these sums are products
of three spherical harmonics, and can be computed in
terms of well-known vector coupling coeKcients and
rotation matrix elements. The double-radial integrand
consists of products of radial Slater functions (if the
origin coincides with a nucleus), orbital expansion
functions g„l 1, and th., e potential function 8~(r~l, r~2) .

We may now remark on some of the properties of the
orbital radial expansion functions g„l, 1, (42, r~, R) .
These functions possess a pronounced peak or node in
the vicinity of the radius of the generating Slater
orbital a 1 (rB). The individual functions 21 are some-
what more extended toward the expansion origin,
and the convergence rate of the series depends strongly
on the parameter nR~B (n is the exponential screening
constant) .In a severely truncated series, say max ()1) =4,
the expansion (3.4) generates a rather diffuse function
about center A.

This observation leads us to consider centro-sym-
rnetric systems, for which we might choose a multicenter
Slater basis set. The usual procedure would be to form
multicenter symmetry orbitals by taking linear com-
binations of basis functions. One might attempt to
calculate symmetry-orbital matrix elements directly by
developing expansions analogous to Eq. (3.4). How-
ever, this approach is not very fruitful, for by choosing
the center of symmetry as the unique expansion origin
one often encounters unfavorable convergence rates in
the integral series. One alternative is to compute the
unsymmetrized multicenter integrals separately, se-
lecting the expansion origin for optimum convergence
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IV. CLUSTER CALCULATIONS AND
CRYSTAL-FIELD SPLITTING

The computation of the crystal-field splitting param-
eter, 10Dq, has been a major goal of all previous cluster
calculations. Within the Hartree-Fock scheme, 6,, or
10Dq, may be defined as the energy difference between
two independently calculated S-electron states. For
KNIF3, this is taken to be'~

+tot (32'—f ) ~ot(sg ) (4.1)

corresponding to a vibronic electric-dipole transition. '
While one might hope that (as has been done often in
the past) the transition could be described simply in
terms of the one-electron promotion energy e&„—e,„
such, however, is not the case, for upon examination of
the eigenvalues for either the ground state (Aso) or
excited state (Tso) one finds a considerable discrepancy.

"We use the crystal-Geld notation '~+'F~, where F is an irreduc-
ible representation of the symmetry group of the cluster and p, if
mentioned, indicates a specific basis component of F.

"A more rigorous calculation of the broad bands actually
observed in octahedral complexes is not yet possible; for an ex-
cellent review of the situation see C. J.Ballhausen, Introduction to
Ligund Field 7'heory (Mcoraw-lf Boo/ Qo., Ne& York, 1962) .

in each case. This is an annoying feature, since it
becomes difFicult to produce an efficient computing
scheme, and considerable manipulation is required to
symmetrize the raw integrals.

A second alternative is to abandon the multicenter
Slater basis set, while attempting to retain some of its
essential features. In expanding a single Slater function
or a symmetry combination of functions about the
central site, one always obtains the same radial func-
tions rt„t„, &. These functions are multiplied by axed
coeKcients and specific combinations of spherical
harmonics. An equally valid procedure is to consider
the functions

b.i; i,„.(r~) =tl.t; ).(cr, u, &)&~"(6.) $;(go~) (3 5)

as t'rtdepertdertt basis functions for the molecular system.
It is clear that for a sufIjciently large basis this set is at
least as good as the multicenter Slater set, for it forms
the natural expansion of the Slater functions. It can be
superior since the linear coefficient of each b function
is a free parameter. It may be hoped that this varia-
tional freedom will permit truncation of the basis in
orbital momentum X to lower values than that required
to reproduce a given Slater function.

The mixed basis which we propose is thus ICI =
Itt, bI for centro-symmetric clusters, in which IttI is a
Slater basis set at the central site, and IbI is a basis of
expansion functions for each ligand shell. One advantage
of this basis choice is that contact can be maintained
with a specific atomic basis from which the IbI set is
derived. Details of an scient computation scheme for
treating this basis are given in Appendix A and all of
our results are given in this basis.

TAsLE I. Basis set for Ni+ and NiF6 calculations.

e functions

8=3.79371 (metal-ligand distance).

kg. 1$
2$

3$
3$

t1„. 2P
3p
3P

5 functions'

c1g. 1$(0, 0)
2s(0, 0)
2P, (0, 0)

e, : 1s(2, 0)
2s(2, 0)
2p, (2, 0)

tg, 2p (4, —. 4)
2P (4 -4)

n =27.8
12.5
4.0
7.5

11.7
3.6
6.2

a =8.658
2.493
2.344

8.658
2.493
2.344

2.2

4.5

eg'. 3d
3d

t2g.' 3d

ti„1s(1,0).
2s(1, 0)
2p, (1, 0)

2p (1, 0)
2p (1, 0)

ttr 2p (2,.—2)

2p (2, —2)
t2~.. 2p (3, 2)

3p (3, 2)

CX =2 ~ 3
5.0
2.3
5.0

n =8.658
2.493
2.344

6.0
1.0
2.3
5.0
2.2

4.5

~ The eta functions are denoted as nl ('A, p), where n and l are the atomic
quantum numbers (1s, 2s, ~ ~ ~ ), X and p are the angular quantum numbers
of Eq. (3.5), and a is the screening parameter. p may have several values
for degenerate representations, in which case one representative value
is given.

In fact, sufficient rearrangement takes place among uO

orbitals of the system after the excitation to have a net
appreciable effect on the value of 6,. The result is not
surprising, and is merely an indication of the magnitude
of "core-distortion" effects. In particular, the metal 3s
and 3p orbitals are suKciently extended that con-
siderable overlap and covalent mixing with ligand
orbitals is expected. One finds that s-p hybridization,
the mixing of ligand s and 2p orbitals, plays a significant
role in determining the cluster wave function. "

In this section we present a series of approximate
cluster calculations for the cubic perovskite KNiF3. A
cubic cell of this crystal has the Ni ion in the body-
centered position, the F ions at the center of the faces,
and the K ions at the corners; the cell edge is taken"
to be 4.014 A (7.585 a.u.). We may consider that this
system constitutes a severe test of the methods de-
veloped in this paper, particularly because of the
presence of unpaired spins. One may begin by taking
the crystal to be a collection of Ni'+, F, and K+ ions,
with two holes in the e, (Ni'+ 3tE) shell of the magnetic
ion.

Three series of calculations were made. Two of these
(A and 3 below) were done with coordinate origin at

'9 Similar conclusions were reached in a "frozen core" LCAO-
MO calculation of very limited variational freedom: D. E. Ellis,
MIT M.S. thesis, 1964 (unpublished); D. E. Ellis, A. J. Freeman:
and R. E. Watson, Proceedings of the International Conference on
Magnetism, Ãottingham, Engtand, IN4 (The Institute of Physics
and the Physical Society, Berkshire, 1965), p. 335.

't A. Okazaki and Y. Suemune, J. Phys. Soc. Japan 16, 671
(1961),
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TABLF. II. SCF calculations for Ni2+, with and without crystal field of KNiF3. Accuracy in E,i, 0.001:with crystal Geld, 5 =0.0059
a.u. =1295 cm '. These results may be compared with the more extensive Ni'+ calculation by R. E. Watson and A. J. Freeman (Ref.
57). which gave a total energy —1506 a.u.

~oleo

Ni2+ t6e2

No crystal field—1499.7906
spin 0. P

Ni2+-t6e2

With crystal field;
no Madelung correction—1499.7991

Ni2+ tse3

No crystal field—1499.7902

Ni'+-t'e'
With crystal field;

no Madelung correct&on—1499.7932

e(i'll, )
e(2alg)
e(3alg)

e(ieger)

e(ieger)
e(1ti,„)
~(2tl„).(it,p)

(elt, gag)

—307.197
—37.557
—5.162
—i.506
—i.506

—34. 183
—4.248
—1 .453
—1.453

—307.197
—37.491
—4.970

—34. 129
—3.994
—1.368
—1.368

—307.203
—37.564
—5.167
—1.511
—1.511

—34, 189
—4.253
—1,459
—1,459

—307.202
—37.497
—4.974

—34.135
—3.998
—1.372

1 ~ 372

—307.197
—37.557
—5.162
—1.506
—1.453

—34.183
—4.248
—i.506
—1.453

—307.196
—37,491
—4, 970

—i.368
—34.129
—3.994

—1.368

—307.199
—37.559
—5.164
—1.508
—1.454

—34.185
—4.250
—1.508
—1.456

—307.198
—37.493
—4.971

—1.369
—34.131
—3.996

—1.370

a Ni'+ site—the first with a partition including only
the magnetic ion, and the second obtained by extending
the partition to include the ligand shell of six F sites.

In order to have a meaningful comparison of results,
the same one-center basis set was used for each series;
it is given in Table I. The Slater functions (u functions)
were obtained by truncating Clementi's basis" for
Ni'+; the eta functions (b functions) were obtained by
a similar truncation of the F Slater basis set. This
mixed basis is chosen so that for each representation of
(NiFs)~ having m occupied orbitals there are at least
m+1 basis functions; thus we also obtain the "first
excited (virtual) orbital" of each symmetry species.

In the third set of calculations (C below) the F ion
was taken as origin for the cluster, and a basis set
appropriate to this configuration was chosen.

A. Single-Magnetic-Ion Calculations

Spin-unrestricted single-determinant wave functions
for the ground state (Pe', 'As, ) and first excited state
(Pe', sTs, ) of the 26-electron Ni'+ partition were
obtained with and without the crystal-field matrix
elements. Spin-restricted pseudo-closed-shell calcula-
tions" were performed to obtain starting density
matrices, and inspection of the open-shell results shows
that considerable rearrangement takes place in the
outer orbitals of each symmetry when the spin-restric-
tion is dropped. Self-consistent iterations were carried
to an accuracy of at least 0.00I a.u. in total energy in
each case. No attempt was made to orthogonalize the
Ni'+ orbitals to near neighbors although overlap con-
tributions to the crystal field were included. A very
small crystal-held splitting of 1300 cm ' is found. "
Limitations of space do not permit us to tabulate the

"Obtained by choosing fractional occupation numbers ek
among the e, and t2, orbitals to produce a spin and orbital singlet."Itwould be desirable to orthogonalize the basis at least to the
first Iigand shell orbitals, and this could produce a considerable
change in A. This was got done, in order to keep the basis as small
as possible,

eigenvectors obtained; the orbitals do not differ greatly
from free-ion Ni'+ functions. Total energy and one-
electron energies for occupied orbitals of either spin are
given in Table II. The Madelung correction necessary
for placing Ni'+ calculations in the crystal field on an
absolute energy scale can be computed very easily. "

B. (NiFs) 4 Cluster Calculations

The second series of calculations were made for 74
electrons of the (NiFs)4 cluster, with the F is elec-
trons treated as ligand point charges. Coulomb inter-
actions and overlaps with the free-ion 1s orbitals were
computed; deviations of the Coulomb potential from
the point-charge result were very small, and in view of
the rather small basis used it was decided not to
orthogonalize to these orbitals. This approximation has
an eGect only in the immediate vicinity of ligand nuclei;
however, it does mean that the wave function and spin
density will be poorly represented at these sites. This
inability of the basis to form charge densities tightly
bound to the ligand nuclei is no rea1. obstacle, for when
we are interested in fine details of ligand orbitals, we
may simply move the partitioning origin to a ligand site
and make a new calculation in that frame —an assertion
verified by the (Ni&F) '+ calculation reported later.

The results of the (metal+ligand shell) (NiFs)'
calculations are presented in Table III; as before, the
overlapping crystal field is computed, but no attempt
is made to orthogonalize to the near neighbors (K+).
It is often helpful to identify the cluster-symmetry
orbitals with the free-ion orbitals from which they
arise in the LCAO picture; a schematic representation
of the one-electron energy levels is given in Fig. 1.
Some of the one-electron orbitals obtained for the
ground state (use') As, of (NiFs)~ are plotted in Figs.
2—6; the tightly bound Ni'+ core orbitals are omitted
for clarity, and the ts„, ti, (nonbonding ligand pa)

"See the review article of M. P. Tosi, Solid State Phys. 15, 1
(1964).
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TAsrr III. SCF calculations for (NiFe), with and without KNrF& crystal Ge1d. Without crystal iield,
6=0.0479 a.u. =10500 cm . With crystal Geld, b, =0.0492 a.u. =10800 cm '. Accuracy in J.;&~, 0.001.

(NiFe) 4=t'e'
No crystal field—2006.4418

spin a P

(¹Fe)'-Pe'
With crystal Geld;

no Madelung correction—2006. 1928

(NiF, )4--~5a
No crystal field—2006.3939

(NiF6) ' -t'e'
With crystal field;

no Madelung correction—2006. 1436

e(1exe)
e(2ege)

e(3ege)
& (4~&&)

e(5u&, )
e(1ege)
~(2ege}
e(3eg0)
e(lege)
e(2ege)
e(3ege}
e(ice)
e(1tr )
e(2'„)
e(3t&„)
e(4'„)
e(5tg„)

(1t t)
e(2te t')

e(1tee(, u).(2t,t, ~)
e(1te„)

—305.247
—35.627
—3.292
—0.276

1.052
—i.023

0.296
0.819

—1.023
0.296
0.819
0.697

—32.252
—2.368
—0.182

0.814
1.384
0.392
0.792
0.392
0.792
0.832

—305.246
—35.568

3 ~ 132
—0.272

1.064
—1.018

0.67i

—1.018
0.671

~ ~ ~

0.700
—32.203
—2.154
—0.178

0.820
1.393
0.455
0.801
0.455
0.801
0.834

—305.239
—35.620
—3.287
—0.275

1.054
—1.018

0.302
0.825

—1.018
0.302
0.825
0.705

—32.245
—2.362
—0.180

0.830
1.392
0.397
0.791
0.397
0.791
0.844

—305.238
—35.561

3.127
—O. 271

1.065
—1.014

0.676

—1.014
0.676

~ ~ ~

0.707
—32.196
—2.148
—0.176

0.837
1.400
0.460
0.801
0.460
0.801
0.846

—305.274
—35.657
—3.328
—0.280

1.049
—1.027

0.268
0.812

—1.021
0.302
0.822
0.697

—32.297
—2.398
—0.186

0.812
1.378
0.313
0.782
0.361
0.787
0.832

—305.273
—35.597
—3.160
—0.274

1.056
—i.021

0.657
~ ~ ~

—1.019
0.361
0.839
0.701

32.231
—2.186
—0.182

0.818
1.387
0.727

~ ~ ~

0.428
0.796
0.832

—305.270
—35.654
—3.325
—0.278

1.051
—i.022

0 ' 272
0.817

—1.016
0.305
0.828
0.704

—32.276
—2.394
—0.184

0.828
1.385
0.315
0.781
0.364
0.786
0.844

—305.270
—35.594
—3.158
—O. 273

1.058
—1.016

0.662
~ ~ ~

—1.014
0.364
0.844
0.708

—32.228
—2.183
—0.180

0.834
1.394
0.727

~ ~

0.431
0.795
0.845

e, .
e, .$ ~

3d 2p~

2s, 3d, 2p~;

2s, 2po, 3d (unoccupied).

Thus the occupied "metal 3d" molecular orbitals lie
lower than the "fluorine 2p" orbitals in apparent con-

orbitals are not shown. The partially occupied e,
orbitals are plotted separately for either spin. Since
the spin dependence of other representations is not very
noticeable in a plot, only the majority-spin n orbitals
are given.

In order to discuss the one-electron energy levels, we
refer first to the Ni'+ results (Table II) where it is seen
that energy differences between the spin-split 3d (e„ tee)

orbitals are quite sizable. For example, in the t'e' con-
figuration Bj t net Efe„n)=—0.05 a.u. and SLts„P)—
CLs„n)=0.09 a.u. These energies are larger than the
optical splitting AL 0.04 a.u.$ and appear to be a
dominant factor in determining orbital occupancy both
in the Ni'+ ion and the octahedral complex.

The pronounced spin splitting in e, and t2, orbitals of
(NiFe) ~ makes a direct comparison with results of the
traditional ligand fieM theory somewhat difBcult.
Upon examination of Table III and Figs. 4, 5, and 6,
one sees that the character of the ground-state orbitals,
in order of energy, is

tradiction with the traditional theory (but in agreement
with the relative position of the free-ion levels) . We are
reluctant to assign any great importance to this inver-
sion, first because of the very limited basis set used
here, and second because it does not affect the outcome
for physical observables. The latter observation fol-
lows from the fact that the Nmooolpied 3e„p orbital
does show predominantly 3d antibonding character as
is expected in the traditional theory. The significance of
the unoccupied e„P orbital to all observable quantities
is discussed in detail in Ref. (4), and it is pointed out
that one may perform arbitrary unitary transforma-
tions on the occupied orbitals without affecting proper-
ties of the ¹lectron determinantal wave function.

Ke refer to Table III to compare e, and t2, orbital
energies of either spin for the tee' 'As, state of (NiFs)4
calculated in the crystal field. As can be seen, the e,
open shell is much more strongly split than in the
Ni'+ ion, while the splitting in the nominally closed t2,
shell is about the same. The effect on the t2, shell is
merely to polarize the 3d orbitals, while the e, shell

undergoes an inversion of orbital levels as well.
A rough calculation shows that about 0.8 electron

has been transferred onto the Ni ion, leaving a net
charge of +1.2. In choosing orbital occupancy for the
excited state, we are guided by the first unoccupied or
virtual levels from the SCF results. The first virtual
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N'
Ni +F

5t1u

5oi

and its role in the cluster model is presented as Appen-
dix B.

C. (Ni&F)'+ Calculations

38

3d

28

3t,

leg

2p

2S

1s fa)g

FIG. 1. MO energy levels for (NiFs)4 cluster.

levels for P spin are

8: 1.42 3eg 4 53 23»g 12 20 68»g~

3.29 3~2g 4.68 212„

3.52 4e~ 5.02 6t»„

so promotion into 3e, seems an obvious choice. From
Table III it would appear that the 5a», or St»„orbitals
are least stable and could be easily chosen as donors for
the excitation. However, this ordering may be due to
the limited basis, so that we choose to promote a
minority-spin electron from t2, g into the 3e, & hole to
form the 3T20 state required by crystal-6eld theory.
The self-consistent excited state was calculated with
this choice of occupation numbers.

It is apparent that the external crystal field has had
very little eSect on the cluster wave function; the
cubic-field splitting 2"( ~ ~ ~ tses) —P"( ~ ~ tse') =6 is
found to be 10 500 cm ' for the isolated (NiFs)4
cluster and 10 800 cm ' in the crystal environment.
The experimentally determined 6 is 7250 cm '."It is
interesting to note that although the crystal Geld is
fairly large in the vicinity of the ligands, it undergoes
considerable variation with both positive and negative
regions, so that the largest matrix elements are 0.01 a.u.
for ligand orbitals and an order of magnitude smaller
for metal orbitals (excluding the Madelung term) .

A detailed discussion of the crystal-field problem
24 K. Knox, R. G. Shubnan, and S. Sugano, Phys. Rev. 13O, 512

(1963).

In order to treat properties of the ligands, such as
transferred hyperfine effects (to be discussed in the
next section), we have carried out calculations in which
the cluster has an F ion at its cen ter. The simplest
such cluster, composed of the triatomic system
Ni'+ —F=Ni'+, was chosen for this work. Although this
triatomic system is but a crude approximation, it still
allows us to discuss some of our results from the ligand
"point of view" and to further test the cluster approxi-
mation.

For these crude cluster calculations the (Ni&F) s+

cluster with symmetry D~ (linear triatomic molecule
Ni'+ —F=Ni'+) was chosen, with the Ni'+ 1s, 2s, and 2P
electrons treated as point charges. Thus the cluster
wave function was taken to represent the 42 electrons
drawn from the Ni'+ 3p, 3s, 3d, and F is, 2s, and 2p
shells. The basis set used is given in Table IV. The
ferromagnetic configuration (also appropriate for the
NMR experiments in the paramagnetic regime) was
adopted, with four holes, all of P spin, assigned to the
symmetry species a»„c», e2„e2„. The results of this
calculation are presented in Table V and, while the
metal orbitals are probably poor due to our point-
charge approximation for the core, the wave function
may be expected to be fairly accurate around the
Quorine nucleus.

V. F»9 TRANSFERRED HYPERFINE INTERACTION

In this section we shall be concerned with calculating
the transferred hyperane interaction at a single F"

Ni F6
At g REPRESENTATiON

1

3 4
r

Fio. 2. NiF& a&, representation. (a) 3a&~,. (b) 4aig; (c) 5ai&.
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t

/
l

C

Ni F6
T t u REPRESEN TAT ION

R

Ni F6
Eg REPRESENTATION
SPIN 0

I l-
! l

I ~.

l

l

i

t

l

I

I/
(

2 3 4

Fro. 3. ¹ qFtq~ repre estnati on(a) 2k~~, (b) 3t~~, (c) 4'„, (d) Stq„ Fxo. 3. NiFs e, representation, spin o.. (a) le~; (b) 2s~; (c)3er.

nucleus. Following a brief review of the theory, defini-
tions are given for the parameters A „A„and 3
within the molecular-orbital approach. Results calcu-
lated for the ¹Fsand Ni~F clusters are discussed (in
some detail in the latter case in order to emphasize the
various contributions to the hyperfine interaction) .
It is found that the interaction calculated in NiF6 is an
order of magnitude too small compared with experi-

ment, an eGect due primarily to the very limited one-
center basis used. Results for the triatomic case (NisF)
give a much 1arger interaction, and A, in particular is
found to be an order of magnitude larger than experi-
ment. The error is attributed to the limited basis and
the neglect of covalent effects of other ligands upon
the metal ions.

The interaction energy of a single electron with the

r$(r)
cos 8=0

Q= vr4

N i F~

T2g REPRESENTATION

Ni F6
Eg REPRESENTATION
SPIN P

/

/

I, LL

4 5

FIG. 4. NiF& P~ representation. (a) 1$~; (b) 2ts~.
FIG. 6. NiF6 eg representation, spin. P.
(a) le~; (b) 2e„(c) 3e, (unoccupied).
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a functions

aug: 1$
2$

2$

a1o: 2'
2Per

&lg: 2'
2P

b functions

TABLE IV. Basis set Ni-F-Ni calculation.

a= 8.425
11.384
2.562

1.511
3.834

1.511
3.834

plicitly in terms of the direction cosines cose„cos8,
and cose„of Hp on the molecular axes:

gA I'3x'—r' 3y' —r'
W = —yNSINrls

~

COS'8.+ COS'8„
ap r5 r5

3s'—r' Sx 6xy+ cos'8,——8(r) + cos8 cos8„
r5 r5

6as 6ys+ cos8 cos8.+ cos8„ cos8. i. (5.5)r' ' r'

e1g: 3p.(1, 1)
3d (1, 1)
3d (1, 1)

a&, . 3s(0, 0)
3p.(0, 0)
3d, (0, 0)
3d, (0, 0)

ai, . 3s(1, 0)
3p (1, 0)
3d (1, 0)
3d (1, 0)

n =4.0
3.6
2.3
5.0

4.0
3.6
2.3
5.0

3.6
2.3
5.0

ei: 3p (2, 1)
3d (2, 1)
3d (2, 1)

ei, . 3di(2, 2)
3ds(2, 2)

ei . 3di(3, 2)

3'(3, 2)

a=3.6
2.3
5.0

2.3
5.0

2.3

5.0

For comparison with experimental parameters we may
use the relation cos'8 +cos'8„+cos'8.=1, and rewrite

Eq. (5.5) as

g.P x'—y'
W = —y~M~m, (3 cos'8 —1)

ap r5

2."—y', 8~ 6xy+ (3 cos'8.—1)——8(r)+ cos8 cos8„
r5 3 r5

6' 6ys+ cos8 cos8.+ cos8„cos8. i
. (5.6)

rs
'

rs

In the usual parametric form, one writes

nuclear moment is given by" W=S A I, (5.7)

2 1 s 3r(s.r) gir
gePYN IsIN ' + + —s8(r) ),g, r' r' r' 3

which we may write as

where S is taken to be the spin of a single metal ion
interacting with the nucleus. It has been shown that
the tensor A is diagonal for cubic systems ss and Eq.

W — yN HN ' He ff (5.2)
TABLE V. SCP calculation for ¹i'+-F=Ni'+ system vrithout

crystal 6eld. Accuracy in E,~, 0.001.

in terms of the effective magnetic field produced by
the electron. Since we are primarily interested in the
spin-spin interaction, we will drop the orbital term
1/r' and write

+B1BC

orbital P spina spin

Ferromagnetic con6guration—319.7683
energy

Heff
a 3 f3

3r(s r)
r5

8x——a8(r)), (5.3)

H, = g (i ) H.rr ( i). (5.4)

A. Calculations and Results for the Ni2F Cluster

Consider the triatomic cluster, Fig. 7, in which
S and I are quantized along some external magnetic
Geld Hp. We may write out the energy expression ex-

where P =eS/2rrsc = —0.9273)&10 " erg/G; a() ——

0.5292&10 cm and r is now given in atomic units.
The terms in H.ff are the anisotropic and isotropic
(contact) fields, respectively. To compute the average
Geld due to E electrons within the single-determinant
orthogonal-orbital model, one Ands

1a1g

2a1g

3a1g

4a1g

Sa1g

ia1~
2a1„
3a].te
4a1„
leIg

2eIg

3e1g

ie11s

2e1 te

1e2g-e

1e2g-8

ie2ts-6

1e2 -8

—25.769
—1.390
—1.243

0.149
1.434

—4.865
—3.326
—i.640
—0.465
—0.401

0.336
0.864

—0.740
0.001
0.563
0.581
0.060
0.084

—25.766
—1.303
—1.177

0.187

—4.830
—3.269
—1.661

—0.368
0.407
0.881

—0.681
0.013

0.596

0.100

ss A. Abraganr, Principles of Nnclear Magnetisrn (Clarendon
Press, Oxford, 1961),p. 172. "W. Marshall and R. Stuart, Phys. Rev. 123, 2048 (1961).
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(5.7) can be written as

W=A, S I+ (A,+An) QS„I„(3cos'|I„,—1)

+A QS„I,(3 cos'8„—1) . (5.8)
~ 2+
I

0

HO, S,I

A,=, Q &i I
—(8n-/3)mA(r) I i),

ap i~1

A.+An —— ', Q &i I m, L(s'—y')/r'g
I i),

gsgvN fi

ap'S

A = '
Q (i I m, t(x' y'—)/r'$ I i) (.5.9)

gsP7N ~

ap S
Here S is the magnitude of the total electron spin of
the system. We note that the additional terms con-
tributing to Eq. (5.6) make no contribution to the
energy due to their angular dependence. However,
these terms may be important for systems with lower-
than-cubic symmetry.

The orbitals used in these calculations are products
of space and spin functions

I i) =c,(r)x, (~), (5.10)

with m, =~~. With the limited bases employed in our
crude one-center expansion, the orbitals are also
separable into radial and angular functions, the latter
being real spherical harmonics:

C,(r) =N;R, (r)Pp(8) S '(q). (5.11)

The spin part of the matrix elements LEq. (5.9)g is
trivially obtained, and the angular integrals are easily
evaluated by making use of the vector coupling coefB-
cients for spherical harmonics. " The result may be
written as

A,=, Q I"—(8n./3) m,
I
C, (0) I'g

ap'S

A.+An=, Q m. (A~-+a~~-) &i II 1/r' ll i)~
gAvA' ~

ap'S

2 m. (a~i-) &i II 1/»' ll i)
ap'S

The angular coefFicients are given by

(5.12)

dn
I
Pi-S„ Is Pro d0

I
PpS

a = dnlz;s„ I'r, s, f «I&"&-'I'

(5.13)
~7 See, for example, M. E. Rose, E/ementary Theory of Angular

Momentlm (John Wiley lk Sons, Inc. , New York, 1957).

By comparing Eq. (5.8) with Eqs. (5.2), (5.4), and
(5.6), we have the correspondence Fra. 7. (NiF)e+ molecular geometry

and a short list is given in Table VI. The formulas
given reduce to those found by Marshall and, Stuart"
for MnFs using the "antibonding LCAO" independent
bonding model. Our molecular-orbital —self-consistent-
Qeld (MO-SCF) treatment directly includes metal
overlap onto the ligand, which had been previously
omitted, as well as 1s-2s orthogonality (cross) terms
in the contact interaction. ""

The classical dipole term Az may be extracted by
assuming a spin density on each Ni'+ ion which does not
overlap the fluorine site. In this (3d)s problem the
nearly spin-paired orbitals make small contributions to
the dipole Geld, , which can be taken into A„so we
merely consider the (cot)' unpaired orbitals. To eval-
uate A~ one must compute matrix elements of the
interaction W I Eq. (5.6)) with orbitals

I
3ss—rs) and

I

x'—y') centered on a nickel ion. The resulting two-
center integrals are evaluated using spherical-harmonic
expansions of Ps S„~/r' with the result that for a
single ion

&&3d II ~ II 3d)&

2as'S &R' R'

where (3d II r'll M) is the reduced (radial) matrix
element.

We now refer to the calculations on (Ni~F)'+, in
which the Ni'+ core (1s)'(2s)'(2P)s has been treated
as a point charge. Unlike the experimental situation,
the remaining 42 electrons are assembled in an S,=2
state corresponding to a half-Glled t,, shell on each of
the (3d)' metal ions. The symmetry orbitals and the
number of occupied levels of either spin are listed in
Table VII. Contributions to the isotropic contact field
are limited to the ai, orbitals; individual contributions
to the spin density g; 2(m.), I 4;(0) I' are shown in
Table VIII. It appears that spin density arising from
orbital pairs is largely self-canceling, and that the
dominant term is the unpaired sa&,t density. However,
slight changes in this function will produce drastic
variations in the contact spin density due to its F(1s, 2s)
components. For this reason, one may not expect
accurate results with a very limited basis set such as
the one used here.

Another type of error is due to the cluster model
itself; in the KNiF3 crystal each Ni ion bonds with six
neighboring ligands, and the present triatomic model

~8 A. J. Freeman and R. E. %'atson, Phys. Rev. Letters 6, 343
(1961).
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TAsLE VE. Angular coefEcients for hyper6ne interaction. TABLE VIII. (NisF)'+ contact spin density Z 2(os,); ( C'4(0) p.

Orbital Spin density

0
2/5—1/5
2/7—8/35—16/35
4/15—4/35—38/105—10/21

0
0

(—1) 6/5
0

(—1)'6/7
0
0

(—1) 4/5
0
0

iagg

2a1g

3a]g
4a1g

5a1g

+0.192 a.u.
+1.424
—1.480
+0.024
+1.316

total aug +1.476

F(1s)+"~

F(2s) +Ni(3s) + ~ ~

Ni(3s) +F(2s) +-"
Ni(3po)+Ni(3do)+ "
Ni(3do) +Ni(3po)

+F(2s) +F(»)+.~ ~

corresponding to a contact Geld

Ho 774 kG

The experimental value" of 3, is 33.9&(10 4 cm '.
We now consider the anisotropic hyperhne inter-

action. The required radial integrals are given in
Table IX for each representation F and either spin. The
tabulated integrals are sums over the matrix elements
of 1/r' for the occupied orbitals of each species:

TABr,E VII. Symmetry orbitals for the (NisF) 4+ cluster.

Symmetry Participating ion orbitals rs t' ss $ I M

e],g

ei

e2g

F (ls, 2s) Ni(3s, 3po, 3do)
F(2po)Ni(3s, 3po; Mo)
F (2pvr) Ni(3po. , 3do.)

¹(3ps., 3ds.)
Ni(Mb)
Ni(3db)

5 4 0 0
4 3 1 0
6 6 1 1
4 4 2 1
2 1 2 2
2 1 3 2

'1' A. J. Freeman and R. E. Watson, in 3lagnetisnz, edited by G.
Rado and H. Suhl (Academic Press Inc. , New York, 1965), Vol.
EEA) p. 167.

3 As we have noted previously, the single-determinant wave
function is not an eigenstate of S'. While one may calculate
properties which depend upon the spin density, the results must
be viewed with some caution. The deviation of (S') from the
eigenvalue S(S+1) (measured essentially by Zs( —Z S s'l,
where S p are the overlap integrals between orbitals of opposite
spin in all shells) is usually quite small, (1'P0, for these clusters.
However, one would prefer to treat the spin problem within the
HF scheme using either a variational constraint or spin-projected
determinants; cf. F. E. Harris, J. Chem. Phys. 40, 2769 (1967)."R. G. Shulman and S. Sugano, Phys. Rev. 130, 506 (1963).

will tend to overemphasize the bonding. The fact that
the spin-polarized wave function is not an eigenstate
of S2 may also be a source of error; however, the
deviation is small and experience with free-ion calcula-
tions2 would indicate that the error introduced is also
small. ss The value of A, found from Eq. (5.12& is

A, =517&(10 4cm '

A =H yAIS/S (5.16)

are both zero. The two self-canceling components of
H" caused by spin unpairing in eto are &0.042(g,P/2ass)
in magnitude and the components of the e~„representa-
tion are negligible.

The nonzero components of

Ho= (g P/2aos) g(A,~+sB,~) ((1/rs&rt —(1/rs&rt)
r

(5.17&

are given (in units g,P/2as ) in Table X, with the results

H =+19.33 kG,

A,+An=H ysrf'4/S=12. 91)&10 4 cm '.

From Eq. (5.14) and the calculated value" of
(r4&a4

——3.0034, we obtain values of the dipole field HD

and the parameter A~ as

BD=—4.82 kG,

A~ ———3.22)(10-4 cm-~

The dipole Geld from the rest of the crystal has been

TABLE IX. Radial integrals (1/r')r in (oo)
units and R =3.79271ao.

Symmetry Spin 1 Spin J,

alu

e1g-6

e1g-0

elt4 &

e1 -8

egg-6

emg-8

e2ts &

e2u
F (1/r'lmo

R '

5.705
9.141
9.141
0.061
0.061
0.023
0.023
0.020
0.020
6.405
0.01832

6.538
9.246
9.246
0.061
0.061

0.023
~ ~ ~

0.020
6.405~

C. Froese, Proc, Ca~b. Phg, 5oc. 53, 206 (1957).

Because of cylindrical symmetry the effective Geld

H = (a.P/2~os) Zs&~-((1/rs&r' —(1/r'&r') (5 15&
r

and the hyperGne parameter
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where
p'=p*(&ig)+p'(e. )+p'(1i ),

p'(r) = Z 2(~.); I 4;(r) I'=(~,)

(5.18)

is the contribution of all orbitals of symmetry F. From
p' we may easily calculate A, as defined by Eq. (5.12) .

In the usual LCAO picture a variety of corrections"'I
are applied to obtain p', because of the nonorthogonality
of orbitals used to describe the cluster. In our calcula-
tions, all of these eGects are included automatically
and one merely adds up the spin densities of all orbitals.
The spin density p' and fractional density f, computed
in this way for (NiFs)~ was found to be an order of
magnitude smaller than the experimentally obtained
value. "As already emphasized, this result was to be
expected since our limited basis does not have sufBcient
angular freedom to build up a large ligand density at
the F sites, although the radial behavior is quite good.
It is worth noting that while the dominant contribution
to f, comes from the unpaired 3e, rr orbital, the sgm of
contributions from the spin-split orbitals of the u~,
(s-like), t (rp-like), and e, (d-like) representations is
of nearly equal magnitude.

VI. BONDING EFFECTS AND' NEUTRON
DIFFRACTION

The eGects of covalency on the measured neutron
magnetic scattering from magnetic salts have recently
been considered by Hubbard and Marshallss (HM).
Using a simple one-electron antibonding LCAO wave

+ABLE X. Contributions to H by symmetry representation.

Representation

e2g-6

e2ss &

total

—0.3332
0.0420

—0.0105
—0.0072
—0.3089

"J.Hubbard and W. Marshall, Proc. Phys. Soc.86, 561 (1965).

omitted, and so the calculated value of A. is

A =+16.13X10 4cm ',

to be compared with the experimental value" 8.8X10
cm '. Thus, unlike the results obtained for A„ there is
order-of-magnitude agreement with experiment for A .

B. Results for the NiF6 Cluster

We describe briefly the results obtained for the NiF6
cluster both for completeness and in order to point out
the crude ligand spin densities obtained with these
limited one-center basis functions.

The spin density at an F site was computed from
the ground-state cluster wave function, which was first
orthogonalized to the F 1s orbitals, as

function and covalency parameters determined empiri-
cally, these authors have shown that covalent bonding
affects both the absolute intensities and form factors
in a significant way. Here we calculate the neutron-
magnetic form factors from the cluster MO's discussed
earlier. Our form-factor results confirm those obtained
more simply by HM and show quantitatively some of
the efI'ects discussed qualitatively by them.

The magnetic form factor describing the coherent
scattering of neutrons by the magnetization density
is given by

f(K) = de p(r) exp(iK r), (6.1)

f(~(E) = r'dr p,„(E)j&(Er) (6.4)

may be further divided into contributions from each
representation, since

Plm = ~Plm ~
i'

Z

We have computed the functions f~(E) for 1=0 and
4, which are the leading nonzero terms for a cubic
complex, for each spin in each representation of the
(NiFs)~ cluster. We find that the neutron scattering is
dominated by the open e, shell; the contributions from
other symmetries due to spin polarization are only
1 or 2% of the e, term. The corresponding calculations
have been made for the Ni'+ ion computed in the
KNiF3 crystal Geld in order to provide a comparison
between the single-ion and cluster spin densities.

The fe(E) contribution is the well-known spherical
(t=0) term in the form factor while the f4(E) con-
tributes experimentally substantial deviations
("bumps" ) from the smooth spherical form factor."
Figure 8 compares the f4(E) terms calculated for the
Ni'+ ion in the KNiF3 crystal Geld with the computed
(NiFs)~-complex spin density. While both show the
usual peaking at large angles, the covalent spin density

38 A. J. Freeman, Acta Cryst. 12, 261 (1959);R. J. Vleiss and
A. J. Freeman, J. Phys. Chem. Solids 10, 147 (1959),

where K is the scattering vector /with
~

K
~

=4n (sintl)/)i,
where 8 is the scattering angle and X the neutron wave-
length], and p(r) is the electron spin density sur-
rounding each one of an equivalent set of magnetic
ions in the crystal. Using the expansion

exp(iK r) =4rrgi'(2l+1) j&(Er)P&(0»), (6.2)
l

where j~,(Er) is the /th spherical Bessel function, Eq.
(6.1) is simply evaluated as

f(K) =QCi fi (E) I'i (Qx). (6.3)

The coefficients C~ are factors and angular integrals of
products of spherical harmonics easily evaluated in
terms of the vector coupling coe%cients. The radial
integrals
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0.1—

0,08—

0.06—

f„(K)
0.04—

0.02—

0.0

-oo2 I I I I I I I I I

0.0 0.1 0.2 0.5 0.4 0.5 0.6 0.7 0.8 0.9 [.0
sin 8/)t (A-')

FIG. 8. Cubic part of form factor f4 for (NiFsl' and Ni'+ Ion.

shows an unusual negative dip at low angles at which
some important rejections occur. The dip is a mani-
festation of bonding effects, here manifested on the
nonspherical (cubic) part of the magnetic form factor.

More striking is the effect of covalency on the

fs(E) form factor. Figure 9 compares the single-ion
and cluster fs(E) form factors, both shown normalized
to 1 at (sing)/X=0. The large differences observed at
low scattering angles reQect the obvious fact that the
spin density of the cluster has a significant contribution
which resides on the ligand sites.

An even more dramatic way of showing the eGect of
this ligand (covalent) spin density is to renormalize"
the free-ion f(K) curve in order to allow for the reduc-
tion in absolute intensity observed in neutron measure-
ments. Using the same scale factor (0.82) employed by
HM, we show such a comparison in Fig. 10. Here the
peak in the forward scattering direction" is clearly
seen, along with some additional structure at somewhat
larger angles. This additional structure does not appear
in the antiferromagnetic case'4 because there is an
exact cancellation of the spin density at the ligand site

I.o

0.8

0.6

fo(K)

0.4

FIG. 9. Spherical part of the
form factor fo for (NiFs)4 and
the Ni~+ ion in an external 6eld.

0.2

0.2 0.4 0.6 0.8
(sin) (k')

34 It should, however, be emphasized that we are describing our
results for an isolated NiF6 cluster for which there is no cancellation
of the spin density on the ligand sites, as is the case for antiferro-
magnetic ordering. The comparisons are made here to the anti-
ferromagnetic case because only for very small scattering angles
( where our f(K) curve has a sharp peak/ would the two differ
signi6cantly, and because experimental data are available only for
the antiferromagnetic case.

which does not occur in the ferromagnetic (or paramag-
netic) case, and it is this ligand density which is
responsible for the structure (barely visible) at
(sin8)/X 0.2 in Fig. 10.

Since the cluster calculations reported in this paper
suffer from a number of approximations (discussed
earlier), we shall not compare in detail our calculated
values with experimental data, such as Alperin's" on
Nio. (To our knowledge KNiFs has not been investi-
gated. ) We find that our computed f(K) lies below the
experimental data even when the latter is scaled by the
factor 0.82. It does, however, lie above the free-ion
curve (as is evident from Fig. 10) . Part of the improve-
ment over the free-ion value is due to the allowance for
spin polarization (first considered for Ni'+ by Watson
and Freeman" ), an allowance carried through, however,
for the calculated f(K) curves shown in Figs. 8—10.
While the inclusion of the scattering from the un-

quenched orbital moment of the Ni'+ ion, discussed by
Blume, '7 would also help the agreement with experi-

1.0

0.8

0.6

fo(K)

0.4

FIG. 10. Spherical part of the
form factor fo for (NiFO) and
Nim+ ion (scaled to 0.82).

0.2

0.2 0.4 ,0.6 0.8
(sin ff)l x (A')

ment, the final neutron form factor is still too small at
scattering values &0.4A '.

More accurate cluster calculations would, of course,
be of interest for the Ni'+ systems. However, calcula-
tions for the Mn'+ complexes would be of perhaps
greater interest since these show a form factor which
lies well be/0m the free-ion values and show no reduction
in absolute intensity in the forward direction, as
emphasized by HM. Neither of these eGects is under-
stood presently using simplified I,CAO models. More
rigorous calculations are in progress and results will be
reported in the near future. "

VII. DISCUSSION OF RESULTS AND
CONCLUSION

The calculations on Ni'+ Ni'+F6, and Ni2'+F
clusters reported in this paper emphasize the importance

"H. A. Alperin, Phys. Rev. Letters 6, 55 (1961).
36R. E. Watson and A. J. Freeman, Phys. Rev. 120, 1125

(1960); 120, 1134 (1960).
3~ M. Blume, Phys. Rev. 124, 96 (1961)."D.E. Ellis and A. J. Freeman, Bull. Am. Phys. Soc. 13, 482

(1968),
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of treating all electrons of these molecular clusters in a
self-consistent manner. Ke accomplished this by
generating symmetry orbitals for the clusters which
may be any variationally determined mixture of
central-ion and ligand basis functions.

At this point we should emphasize once more that
our results, though they are self-consistent, still are a
very crude approximation to a solution of the Hartree-
Fock equations. This is mainly due to the limited
character of our basis set which, at this level of effort,
is probably inferior to a minimal Slater basis. It is very
well possible that the crude basis we are using affects
some of the results (for instance, the ordering of the
e„n orbitals). Although our calcula, tions are not more
than a very simple approach to more extensive HF
calculations on these systems, they already indicate a
number of features not found in earlier work. In
particular, the spin splitting due to the open e, shell is
found to play a predominant role.

Our results show that in addition to the mixing of
metal 3d and ligand orbitals usually considered in an
LCAO-MO treatment there is a significant mixing in
representations containing the metal 3s and 3p orbitals.
Thus the covalency found in the c&, and tj„representa-
tions of NiF6 seems as important as that of the e, and
t2, symmetries in any LCAO picture of the system. The
LCAO interpretation is further complicated by the
necessity of describing the strong s-p ligand hybridiza-
tion which is found; however, it serves as an invaluable
qualitative guide in the choice of basis functions and in
examining the self-consistent cluster orbitals. The fact
that the orbitals which we have plotted can be clearly
identified in terms of LCAO's of about the shape and
energy ordering to be expected is satisfying, considering
the very limited basis sets which were used.

It appears that the LCAO picture can be carried
only so far in describing the molecular orbitals of these
complexes since it has been known for a long time from
studies on small molecules that free-atom orbitals form
a rather poorly convergent basis set. For example, the
3s and 3p functions used here are not atomic metal
orbitals but merely basis functions for our calculation.
We know that a larger basis will give a more accurate
wave function and may reduce the Bs-3p—ligand mixing
along with the 3d-ligand mixing. However, we observe
that compared with the 3d mixing, the 3s-3P mixing is
still important and must be taken into account.

An alternative approach for the calculation of wave
functions for transition-metal complexes which has
received recent attention''" is the familiar Heitler-
London or so-called "configuration interaction" tech-
nique mentioned in the Introduction. The term "con-
figuration interaction" is used advisedly because of very
special assumptions made concerning the participating
determinantal states. In this approach the interaction
of metal and ligands in the cluster is considered as a
perturbation on various free-ion states with a number
of possible single-electron transfers taken into account.

Thus for NiF6 one might write the cluster wave function
as a sum of states, each of which is taken to be the
antisymmetrized product of free-ion states with
particular orbital assignments for each ion. ' The states
which are expected to be important for NiF6 would
then include, for example, Ni (3d ) XF(2s'2P'),
Ni(3d'4s') XF (2s'2P') Ni(3d') X F(2s' 2P'), etc. Lnote
that F(2s™2P) actually means the proper combination
of all six ligandsj. The proponents of this method
conclude that a correct description of the cluster must
include electron-transfer effects of this type which
involve excited states of the ions.

We may suggest that the MO-SCF single deter-
rninant method which is applied in the present work is
capable of reproducing many of the effects described
as one-electron transfers in the Heitler-London theory.
The reason is simply that one is not bound to the
restricted LCAO basis set and basis sets may be chosen
which have suflicient variational freedom to permit an
admixture of such functions as the metal 4s and 4P
orbitals in the occupied molecular orbitals. The model
calculations which we have made on KNiF~ are not
intended to be highly accurate MO solutions for the
cluster problem, but were chosen instead to demonstrate
the feasibility of the method and, to reveal general
features of the solution for a system of current interest.
A strict comparison of the Heitler-London and MO-SCF
results is not possible, because of the semiempirical
nature of the H-L calculations to date; however, our
results are sufficiently encouraging to conclude that
the MO-SCF method merits further study.

The calculation of the crystal-field splitting for the
Ni'+ and NiF6 clusters reported here shows the necessity
of taking into account the metal-ligand mixing of
orbitals. Although the splitting between the ground and
Grst excited states of NiF6 is found to be of the right
order of magnitude, one must be wary of attaching any
great significance to the result. We see that the energy
difference appears in the sixth significant figure of the
total-cluster energies, and results from the detailed
rearrangement of a large number of orbitals. The fond
hope that the excitation energy could be treated simply
as the promotion of a single electron from a t2, to an e,
orbital without further rearrangement seems to be
unjustified; this is the same conclusion reached in an
earlier LCAO-MO study. "The very small role which
the crystal field of ions external to NiF6 plays in
determining 6 may help to explain why the optical
spectra are not very different for the complex in solution
or in the crystal. We have already mentioned that the
small size of crystal-field matrix elements results from
the cancellation of regions in the vicinity of the ligands
where the potential is large but varies in sign. In this
connection one would like to extend these calculations
to a basis with greater angular freedom to see to what
extent this cancellation holds for more accurate wave
functions.

The use of a spin-unrestricted wave function leads to
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a reasonable splitting d; the pseudo-closed-shell wave
function is useless for this purpose, since errors inherent
to the pseudo-closed-shell estimation of Coulomb and
exchange potentials are an order of magnitude greater
than the splitting. The fact that a single-determinant
wave function can lead to a reasonable value of 6 for
NiFs (although it gives a poor F spin density for
Ni&F) is encouraging; however, we have no idea as yet
what eGect a spin projection of the wave function might
have on these parameters.

Three major problems remain for future work. The
first is to determine better single-determinant wave
functions, and this requires considerable work to
improve the type and number of basis functions used.
The second problem is to discover those limited-
configuration techniques which will allow a satisfactory
description of the spin and will include significant
correlation e6'ects. The third, and perhaps most inter-
esting, task is to carry out the complete self-consistent
crystal solution which will (in the one-electron picture)
lead eventually to the true Wannier orbitals of the
system. Further work on these problems is in progress.

APPENDIX A: COMPUTATIONAL TECHNIQUES
FOR THE MIXED ONE-CENTER BASIS SET

%e first describe a method for computing function
values for the function st„t ,.q(n, r, E).This function can
be written in terms of modi6ed Coulson-Barnett

!functions" according to

, (x—m)!
st„t,g(er, r, R) =n "+'

X+tN !

where
r& ——(t, r) &, r& ——(t, r) &,

and I„+~~2 and E„+~/2 are modified Bessel functions. "
A more complete discussion of t' functions can be found
in the literature. ~ The radial parts of some typical
u and b functions are shown in Fig. 11.

The computation of one-electron integrals containing
b-type functions is performed by straightforward
numerical integration, using Gauss-Legendre quad-
rature points for the region between 0 and R and
Gauss-Laguerre points for the region from R to ~.
The only trouble for the one-electron integrals may
arise from the operators —xsP (kinetic energy) and

gn1/rts (interaction with ligand nuclei). For the
kinetic energy one can derive that for n&l

—s V b„t„,g„.———',{fl(l+1) —rt (rt—1)jb„s,t„.,go,

+2otNbn t, tm;ger —ot botea, goof ~ (AS)

Special. formulas can be written for the case e=l. In
order to obtain a formula for the Ptt 1/rts operator one
can expand 1/rtt for each ligand in a spherical-harmonic
series about the central ion and then rotate all spherical
harmonics to a common coordinate system. This leads
to the expression

PrB '=/8'(r, R) g g'e L(l—m)!/(l+trt)!1
B l m, o

XC(l, srt, o) I't (8) S '(y), (A6)

(l+rtt&
X exp( —

l
«—er& [) g I . l («) t '

l,i+mj

X (nr) '(—1) '+" Q D; (Xrl l stts)! t,,(nr, nR) .

Here the codBcients D, are the well-known vector
coupling coefficients for spherical harmonics. ~ To
compute i functions one may use the recursion formula

t +s.= (l'+r') t', ,

—t2tr/(20+1))trt! ~+(st+1)!,~Q. (A2)

Starting values are given by

!p, (t r) = (tr) ' ' exp(r& —r&) In+1/2(r&) Eo+ys(r&)

(A3)

! . =Lt /(2rt+1) j(f' t—olo. +t), (A4)
I

'~M. P. Barnett and C. A. Coulson, Phil. Trans. Roy. Soc.
A243, 221 I', 1951).

F. J. Corbato and A. C. Switendick, Methods in Computa-
tional Physics, edited by B.Adler, S. I"ernbach, and M. Rotenberg
(Academic Pxess Inc., New York, 1963).Vol. 2, p. 155.

O. tR r

Fj:0.11. Radial functions for the one-center basis.
(a) r"e '; (b) gae.o,

' (c) io,st(edo) rtsio

~s G. N. Watson, Theory of Bessel Fssmetsoas (Cambridge
University Press, New York, 1923).

4' M. P. Barnett, Methods in Computational Physics, edited by
B.Adler, S. Fernbacb, and M. Rotenberg (Academic Press Inc.,
Neer York, 1963).Vol. 2, p. 95.
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where
5'(r, R) =r&'/r&'+'

I= de1C'; I'1 C' &1 A2@'I 4 @'l I'2 F12 A

the operator 1/r» is expanded in spherical harmonics
about the central ion and the integral then can be
written as a 6nite sum of products of radial and angular
integrals

I= QR(l)A(l). (AS)

The angular integrals A (l) are easily computed with the
help of orthogonality relations for spherical harmonics.
The radial integrals are

RO) = f drrr, (r,) f drrpr(rr)il'(r„rr), (Ao)
0 0

where p&(r&) is the radial part of rPC;*C; and ps(rs) is
the radial part of r2'Cg, *Cg. After partial integration,
Eq. (A9) may be expressed as

I' 1 1

R(l) = (2l+1)R ~ dt pi(utR) u'du
0 — 0

e =1 for m=0, s =2 for ms&0,

C(l, m, a) = QDs„'"(odss, pg, gad) .
B

The coefficients D are rotation coeKcients for spherical
harmonics" and ss~, P~, y~ are rotation angles corre-
sponding to the ligand B.For the two-electron integral

puted on an IBM 2094 computer with an accuracy of at
least 10 a.u. and with typical computation times
of 1-5 msec.

The computation of two-electron integrals is also
speeded up by the fact that we can take advantage of
cases where all degenerate components of a given
symmetry species are occupied in the molecular wave
function. The secular equations for each component are
identical and there is no necessity of carrying about
redundant information; therefore, when two-electron
integrals are computed, all degenerate components are
immediately summed into the Coulomb and exchange
potentials. As an example, consider the interaction of
function pair (i,j ) with the fully occupied triplet of
functions tse($, sl, i); the integrals which are actually
computed are

V'. ""'(t.) = (' I 1/& I 8+m+Ã&,
V'iE*"(ts,) =(s(

I 1/r» Ij&&+&~st I 1/r» I jst&

+(si-
I 1/.» Ig&. (A»)

In this way redundancy in the computation of radial
integrals is eliminated and the number of integrals
which must be manipulated is greatly reduced.

APPENDIX B:CRYSTAL-FIELD POTENTIAL AND
MATRIX ELEMENTS FOR A ONE-CENTER

BASIS SET

1. CouIomb FieIC

The crystal-6eld potential may be written as

(L M)!—
V(r) = g VrM3(r) J'r (ts)SsI (q)sess

LMZ

1 1 1

X p2 NtE I'dl dt t p1 NE t I'dl
0 0 0

Z=O,

X ps(uR/t) u'du t . (A10) (B1)

expanded about the central ion. For cubic crystals we
Using this integral transformation an ero.cient scheme

have the selection rules
for computing two-electron integrals may be obtained
as follows:

(1) Compute erst a two-dimensional grid of integra-
tion points using the Gauss-Legendre method.

(2) Compute the radial-function values of all basis
functions C; at all points.

(3) With these function values, compute inter-
mediate integrals of the type

r
1 I

p(utR) u'du and (1/t) p(uR/t) u'du
0 0

for all possible charge densities p.
(4) In order to compute a two-electron integral,

now 6rst compute the angular integrals A(l). If these
integrals are nonzero, construct the radial integrals
R(l) from the intermediate integrals and sum over l.
Using this approach, two-electron integrals were com-

"J.O. Hirschfelder, C. F. Curtiss, and B. B. Bird, Molecular
TheOry Of GaSeS and LiggidtS (JOhn Wiley 8Z SOnS, Ine. r NeW VOrkr
1954), p. 905.

1.=0, 4, 6, 8, ~ ~,
M=0, 4, 8, ~ ~, L

For a one-center basis set having maximum orbital
momentum I, the only nonzero matrix elements are
for L&2l, .We do not compute the L=0 (Madelung)
term directly, but compute deviations from the (con-
stant) Madelung potential. If the Madelung constant
is known, the matrix elements can be placed on an
absolute scale, and are computed in atomic units
(a.u.) .

The radial function VLz may be written

Vrssz(r) =QClssr(v) U„z,(r), (B2)

where the sum is over all ion shells exterior to the
cluster. Crssx(v) is a coefficient obtained by summing
rotation elements for all ions of a shell. If the, basis orbi-
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,04—

.02—

I

0, I ) direction
The charge density may be repre resented by a super-
position o af Sl ter orbitals. In that case,

AD,D,
U„z(r) =Z, tt( i)bz(r, E„)—Q 5@

" X!(X—X+1)
)&(21.+1) a,z nr, n

y fr) p
pt ion

Lmax = l0

-.02—

(0, I, 2)

I

2 r/d0

Fxo. 12. Point-ion potential for (¹e,iF, 4 in KNiF3.

tais are of the form C' i .(r) =&~ i(r)&i (u) ~ (v,
the matrix elements appear as

~(~)
&c'I V(r) I

~')=l(2 &&')~" Z -(2~~,)

(B3))&Di,{l m
I
l', wnz') 8) g (,~RADl, ~,„i,7

~ =(—1)or Z =0, the sign functions areFor Z=, e
1. The DL are vec orctor coupling coefficients,

a
' '

e have l+l' even for nonzeroand since J. is even, we ave
elements. The radial integral is

r'dry„i(r) E„.i (r) Vzmo(r) . (Ii4RADL~, „),„)=
0

e rais we divide the sumTo compute the radial integra
v over shells of ions into a "near-Geld" and a "far- e
part:

V, ,(r) = Z C, .(.) U„(r)

where

Z, f(ti) =net charge on ion;
~ ~

5;;=density coeS.cient for orbital pair i, j;
~ ~

D D;=normalization constants for orbitals i, j,s)

n, , =n n; n, =orbital screening constant;

e"=m,+m, (e;=principal quantum number);eu —'fIs

X=e"—1

ir, l, ——molecular zeta function (modified) .

verla of cluster basisTh first term accounts for the over p
ion and the last is a correctionfunctions with a point ion, an e

f overlap of cluster and ion gchar e densities.OI 0
fore onl deviations from e

1 d) is omitted in Eq. an
tllat. p,e is illoU, modified by replacing 0 r,

otentia in s
'

l
'

several directions about a I si e in
NiF including all ion shells from (e1, e, ) =2 s3=

20& and truncated at an angular
momentum I,=10.Extending the sum to higher a

malte the walls of the potential somewhat steeper as

corn onent of the point-ion potential
d b sis sets will only

t of th ot t' 1, o eobtainssample small-I. components o t e po
avery i eren pia'ff t 'cture of the crystal environmen .

(&m x Z„rL

+ I g Czsrz(i) ~,+,&I.

The far-GeM or outer-shells sum gm is iven in the non-
in oint-ion approximation. The near-fie or

cube edge, we may rewrite t e ar- e

r'f ~ms Zert(p) )
~z~&(") (z+i)lq]( dL+i z3rz d~i ~

Ev-p+i

Thus

.04—

.02—

(r) pypt ion

".02—

) direction

O, i, l)

=4 only

Vz,mz(r) =Cruz & ~ z,mx

radial otential U„L in theWe may now consider the ra i p
' '

e
caseor asp erici h aOy symmetric screening charge ensi

-.04--

I

t 2 rid

Fxo. 13. I.=4 component of point-ion p
-' n otential.
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onent even shows the
l t tial beyond the 'g

at the I.=4 componen
li and

01 d (011) di tio
thi 1 thsis set calculations,of our l'mited basis se

size of the actual external crysta — e
CPw

~ the size an impo lap
c rre tions to the p - tia w 4e oint-ion potentia w

'
4

the overlap correc
'

ction for t e
OUI, (t') wit

S h l
uan

wave function. in
s ex onentially wi

erlalfew shells of neighbors need e inc
suIQ.

OIDentuIIl L astwo-electron ensi yd sit for angular mom

pr. . . = a;~(B, 1)a;(B, 2), (811)pr(B; 1, 2) = a;

- articlele po is the summed two-paW

, 3, ~ ~ ~ hll. Ui E.d ity for electron s, , 3, ~ ~ ~ensi
ritten as(811), this can be writt

PI„B3 1 2 =E(21.+1)/PEP&'(B11 2)

X Q R„4(1)R„,(2)

=L(2L+1) 4n-4 P '(B 1, 2) «dr, (rsvp, re,)

2. Exchange FieId

t a roach to the crystal excha gan e field.".h-. n.g-ld 6rst the two-center excis to consi er rs

where

R„i(1)R„4(2)«dr, (ra), ra2) =

(812)

(A13
l

&13)= ff 3)»3)»333 (a* A, 1)

Xam(B, 1) (1/F2) ay*(A, 2) a4(a B 2). (88)

=a4 and wri 'e'te these functions asIn particular let a2= 4,

a;(B) =R„(,(r) F(„(0,p) (89)

orbital shell,

=E(21+1)/4~jP40(B; 1, 2).Q 1'(~ (B, 1) 1'~m'(B, 2) =

. Ifdan uaranin ermt ms of normalize g 1 d radial functions.
a4 are members o af fully occupied

fh dd' hwemaymakeuseo t e a

is the radial two-part'— article density.
1 h exchange sum o inNow cleary t e

written as

( A 8 (333, ) ) = ff d»3(»» ~A 1)(AyB2(m, o) 3 4 m,

Rad (r „r ) ia (A, 2),
4)r

(813)

chan e in era
' t raction of orbita p1 air a;(A),

natBa, (A) with a closed-shell ion a

11311 8
(810) y. ,zx»h

st2

of the (AB
~
AB)

J3 Dfi h
sums of integra s o

type over or i ab'tal closed shells on cen er Xay*(B, 2) a;(A, 2)

f d»d33»"(3(, 1)
4

d (, ) i;(A, 2). (814r„

ction

r/d0
0,5 I; 1.5

( o on to its point-ion. potetential.I zo. 14. I o. t,F ) overlap correction o i

' B.1, 2)/re depends only on the
es t ferred to centertes and can e trans errelative coordina es,

A directly. The rad'dial function a I,
in a double sp erica- al-harmonic series,about center A in a

of s erica l harmonics reducesan d the orthogonality p
or .E"'" to a sing e in n'p
ular and ra ia in e

hllof (lo d-han e with an en ire
d~ l h th'gs l sli htly more

'
c

e radial integr s are icenter case. T e ra
'

f roducts of rotationangular integra s become a sum o pro
The formulas arelin coeKcients.

t be iven here but are quiteh lengthy and will not be given er,
m uter.easy to program for a compu


