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The unrestricted Hartree-Fock molecular-orbital self-consistent-field (MO-SCF) method is developed
and applied to the problem of transition-metal ion clusters. This method removes many of the shortcomings
of earlier treatments and provides, in principle, a framework for obtaining fairly accurate and meaningful
results. Model calculations are reported for the KNiF; system, in which all matrix elements of the Hamil-
tonian are accurately computed (by the choice of a special one-center basis set) for all the electrons of the
molecular cluster. Considerable variational freedom is allowed in all representations; as a consequence,
significant covalent mixing is found for representations containing the metal 3s and 3p orbitals. This
molecular-orbital approach thus differs greatly from the previous approach of using molecular orbitals
formed as linear combination of atomic orbitals (MO-LCAO); in particular, it is emphasized that the
simple (and inadequate) single-variational-parameter LCAO treatment of earlier calculations is replaced
by full HF-SCF calculations in a multielectron framework including all electrons (and not just the bonding
and antibonding electrons as in earlier treatments). Complete SCF calculations are carried out for both
the (NiFs)4~ and the (Ni,F)3* clusters (representing the metal-ion and the ligand-ion point of view, re-
spectively) including the effects of an external crystalline field. Although these first (crude) calculations
suffer from limited basis size, reasonable agreement with experiment is found for such quantities as the
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optical-splitting parameter 10Dg, the transferred hyperfine interaction, and the neutron magnetic form

factor.

I. INTRODUCTION

HE transition-metal salts have aroused great
interest because of the wealth of unexplained
experimental information obtained in recent years by
optical, nuclear-magnetic-resonance, neutron-diffrac-
tion, and other techniques. A major stimulus has been
the realization that a theoretical understanding of
these observations might be important to the develop-
ment of a theory of superexchange needed to explain
the antiferromagnetism of these systems. Since analysis
of the experimental data emphasized the importance of
the role played by the magnetically inert anions, or
ligand atoms, theoretical emphasis has concentrated
heavily on attempts at understanding the behavior and
properties of a cluster of atoms, the cluster considered
as being representative of the crystal. This cluster was
taken as a single metal ion and its nearest-neighbor
1 Part of this work represents a thesis submitted by D.E.E. to
the Physics Department, MIT, in partial fulfillment of the require-
ments for the Ph.D. degree, June 1966. Part of this work was
supported by the National Science Foundation.
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ligands—the so-called ligand-field-theory approximation
as opposed to the earlier, more naive single-ion, or
crystal-field-theory approach. In this framework,
Anderson! has stressed the importance of this cluster
approach to the calculation of the exchange coupling
between the magnetic open-shell metal ions (which are
next-nearest neighbors to one another), i.e., the “super-
exchange” interaction.

Semiempirical molecular-orbital theories have already
been applied to a large number of transition-metal
complexes and the results confirm general trends
observed in the electronic spectra and ionization
potentials.2 Unfortunately, the results of detailed
theoretical calculations using the molecular-orbital
(MO) approach have, as yet, not lived up to expecta-
tion. A system of special interest has been the anti-
ferromagnetic compound KNiF;. The early calculations
of Sugano and Shulman?® on the (NiFg)* cluster in
KNiF; set a new standard for the ab initio one-electron
treatment of metal complexes; however, some important
questions remained to be answered. Among these were

(1) How does one extend the one- and two-electron

1P, W. Anderson, Solid State Phys. 14, 99 (1963).

2 H. Basch, A. Viste, and H. B. Gray, J. Chem. Phys. 44, 10
(1966) .

$S. Sugano and R. G. Shulman, Phys. Rev. 130, 517 (1963).
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MO models to a many-electron framework in a rigorous
and consistent manner?*

(2) Does the difference of one-electron energies give
an adequate approximation to cluster excitation
energies, or do rearrangement and other “many-body”’
effects play an important role?

(3) To what extent are results affected by approxi-
mations to matrix elements and limited variational
freedom?

(4) How strongly do ligand electrons interact with
each other, and what is the effect of allowing s-p
hybridization to take place?

(5) Is a spherical-well approximation to the crys-
talline potential adequate?

(6) What is the spin density in this S=1 system,
and how do the spin-split orbitals differ?

Some of these questions were attacked by Nieuwpoort
in a study of the metal carbonyls,® in which spin-
restricted Hartree-Fock molecular-orbital self-con-
sistent-field MO-SCF variational calculations were
carried out on the S=0 ground states of the isolated
complexes. This work showed that considerable re-
arrangement takes place during the approach to self-
consistency starting from the free-atom charge densities.
Ligand—s-p and ligand-ligand mixing were found to be
important, as well as covalent mixing with, and dis-
tortions of, the metal orbitals. A net transfer of charge
to the metal was observed. While these calculations
represented a considerable advance over previous
efforts, they were still limited by the use of a “frozen-
core” approximation to the inner-shell orbitals, the
use of some approximations to multicenter molecular
integrals, and the restriction to doubly occupied
orbitals. In addition, no excited states were calculated,
so that one could only estimate excitation energies
from the one-electron levels.

In this paper we apply the unrestricted Hartree-Fock,
single-determinant, MO-SCF method to (NiFs)*~ and
(NigF)3+ clusters in KNiF; as a natural extension of
previous work. As a device for calculating all matrix
elements accurately we introduce a one-center basis
with some novel properties. Metal-core orbitals have
been included in self-consistent calculations on the
34,5, and 3Ty, states of the octahedral complex in the
crystal field computed for KNiF; The triatomic
cluster is used to study the F transferred hyperfine
interaction. With the limited basis sets and the single-
determinant approximation employed in this work, we
cannot hope to resolve fully the questions discussed
above. However, the calculated physical properties are
reasonable and the results give some indication of the
relative importance of various effects; for example,
spin-polarization effects are found to be very large
compared to the external crystalline field.

4R. E. Watson and A. J. Freeman, Phys. Rev. 134, A1526
(1964) ; E. Simanek and Z. Sroubek, Phys. Status Solidi 4, 251

(1964).
§ W. C. Nieuwpoort, Philips Res. Repts. Suppl. No. 6 (1965).
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Recently, the Heitler-London approach, as well as its
extension to what has been called the “independent-
bonding” scheme, has been used for these calculations.®
In this alternative approach, the interaction between
metal-ligand pairs is discussed in the language of con-
figuration interaction. In our view, this treatment is
made somewhat doubtful by the close proximity and
resulting interaction of ligands with each other. For
this reason we prefer to pursue the molecular-orbital
approach, which includes all such interactions, with the
ultimate aim of performing realistic ab initio con-
figuration-interaction calculations. (We discuss the
Heitler-London approach along with our own results
in Sec. VII.)

In Sec. II we briefly review the Hartree-Fock equa-
tions for open-shell systems, and the approximations
inherent to the cluster model. The basis functions and
computing techniques used in these calculations are
presented in Sec. III. A series of calculations which
display the effect of various approximations is reported
in Sec. IV, and the calculated crystal-field splitting and
hyperfine parameters are given in Sec. V. Neutron
magnetic scattering factors are reported in Sec. VI,
and the role of covalency is illustrated.

II. APPLICATION OF THE HARTREE-FOCK
METHOD TO AN IONIC CRYSTAL

In the Hartree-Fock theory of many-electron systems
(extensively described in standard reference works’)
an approximate N-electron wave function may be
given by the single determinant

V(1,2 00, N) = (V)72 (1)¢a(2) - - ¥ (NV),
(2.1)

where @ is the antisymmetrizing operator. Generally,
the one-electron spin orbitals ¢; are chosen as an
orthonormal set of functions and written in the assumed
separable form as

Yi=oi(0)xi(s), (2.2)

where the ¢; are functions of space coordinates only,
and the x; used here are restricted to be spin eigen-
functions with eigenvalues of s, equal to ==3. The
“best” spin orbitals are determined by minimizing the
total energy of the system subject to variation of the ¢;.
In the LCAO (linear combination of atomic orbitals)
approach® the spatial functions ¢; are approximated
by a linear combination of basis functions, which for
convenience are also chosen as an orthonormal set:

0i(r) =2 Cjia;(1) i=1,2,+++, N
7
j=1’27"'yM (2.3)

6 E.g., J. Hubbard, D. E. Rimmer, and F. R. A. Hopgood, Proc.
Phys. Soc. (London) 88, 13 (1966).

7J. C. Slater, Quantum Theory of Atomic Structure (McGraw-
Hill Book Co., New York, 1960), Vol. 1; R. K. Nesbet, Rev. Mod.
Phys. 33, 28 (1961).

8 C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).
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or in matrix notation

©=aC, (2.4)

so that the columns of C form a discrete representation
of the orbitals. One may immediately partition the
matrix C into submatrices for either spin:

c=cC'4-ct, (2.5)
where C! contains # spatial orbitals, each associated
with a spin function x with s,=-1; C' contains m
orbitals with s,=—3%, and #+m=N. It is convenient
to use the coefficient density matrices defined by

piit = 20 Cal*Ci! (2.6)
%
and similarly for g'.
The Hartree-Fock equations for the spin orbitals ¢;
may be obtained by minimizing the total energy and
are found to be

hess(1)Y:(1) =eaps(1), (2.7)
where
oce ,__P
hae=—3vi— Y 20 ¢ f du 3o p*(2) =2 g (2),
g Ty k 712
(2.8)

and the integration is over both space and spin co-
ordinates. The index g denotes the various nuclei of
the system. The familiar operator Py, permutes co-
ordinates of electrons 1 and 2. Substitution of Eq.
(2.3) into (2.7), multiplication by a basis function
a;*(1), and integration of (2.7) lead to a set of equa-
tions for the coefficients C;; which may be written in
matrix form as

Fict=Clet, (2.9)
where ¢' is the diagonal matrix of the ¢, and
Fy =H+J,+J; —K;4 (2.10)
and similarly for spin | . Here
Z
Ho= [@nor) (-- 22 a0, (i)
g T
*(2 2
Jit= /d‘ulai*(l) ( Z outt M) a;(1),
k1 712
(2.11b)
*(2 1
Kt = /dvlaf*(l) ( S ot M) a;(2).
k,l T12
(2.11¢)

The Egs. (2.9) must be solved for the unknown
matrices C by an iterative procedure, since the F
matrices depend upon C. Once the basis set {a} is
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chosen and occupation numbers® specified, a self-
consistent solution for the matrices C may be obtained
by successive approximations to the matrices of, o' by
using the C matrices obtained in the previous iteration.!
The total electronic energy of the system can be
expressed as

Eret=(g'+o') H+3 (o' +o') (J1+I})
—%(QTKT—}—Q‘K‘).

Since for crystalline systems the number of electrons
N, and hence the dimension of the matrices in Eq.
(2.9), is extremely large, we apply a well-known
partitioning technique. Instead of simultaneously
diagonalizing the entire F matrix (of dimension M XM ),
we may work with a subset of equations (2.9). One may
divide the C and e matrices as follows:

(2.12)

€n 5 0
(F) (Cm E CM~M) =(Cm E CM—m) 5 ’
0 ‘; EM—m,
(2.13a)
with the corresponding equations
FCrn=Ctm,
FCM_M= CM_.,,,,,SM._,,,L, (213b)

and since the matrix C is unitary, we may perform
unitary transformations within the submatrix C, to
lower the total energy (provided that the number of
occupied orbitals in C,, is less than m) and to improve
the approximate eigenfunctions without violating the
orthogonality requirements. For perfect crystals the C
matrix is cyclic and an obvious partitioning is present;
however, we may choose any convenient partition
containing the orbitals of some molecular cluster. Now
we may consider a further partition of the C, matrix
such as

Faa i Fab Cam Cam
i = <£m)

Fy Cim Cim

(2.13¢)
Fbu

with the corresponding equations (dropping the sub-
script m)
FoaCotFurCo= Cas, (213(1)

FraCatFiCy=Coe. (2.13¢)

Substitution of Eq. (2.13e) in (2.13d) gives the
formal solution

Fu'Co=Cge, (2.14)

91t is convenient to redefine the density matrices as ps=
ZimpCir*Cir in terms of the occupation numbers 7, where the
the sum now runs over all k. In this way one may control the num-
ber of electrons of either spin and, where symmetry partitioning
is employed, the number of electrons in each representation.
Furthermore, various configuration averages can be taken,
making use of fractional 7.

1 R. K. Nesbet, Rev. Mod. Phys. 35, 552 (1963); J. A. Pople
and R. K. Nesbet, J. Chem. Phys. 22, 571 (1954).

1 P.-0O. Lowdin, J. Mol. Spectry. 14, 112 (1964).
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where
Fao' =FaatFaCo(Coe— Fs Cp) "'Foa

provided that the inverse of (Cye—Fx»Cs) exists.

In the case of a crystal like KNiF; one can make a
calculation on a (NiFg)*~ cluster from that crystal by
making the partitioning of the matrix C so that C,
describes all orbitals (occupied and virtual) in the
cluster and Cp—» describes all orbitals in the rest of
the crystal. In addition, we choose C, to contain only
those basis functions a; localized at the cluster. The
second term of Foo' in Eq. (2.15) then describes the
overlap-mixing effects between the cluster and the rest
of the crystal. It is easy to show!? that this term is of
order 72, where + is the mixing parameter between basis
functions on neighboring ions. In highly ionic crystals
(such as KNiF3;) and with the use of a localized basis,
the overlaps, and hence v, will be small. We therefore
will neglect all effects of the second term of Eq. (2.15),
which is equivalent to the assumption Cp=0. With
these approximations Eq. (2.14) becomes

(Faa”'—22") Ca' =0.

(2.15)

(2.14)

Here all matrices have the dimension mXm, where
m is the number of basis functions ¢; localized at the
cluster.

The matrix F,,’” now may be split into the Hartree-
Fock matrix for the isolated cluster and terms giving
interactions of the cluster with the rest of the crystal:

= Faa” = Faelusber+ Vcryst, (2 16)
with

Za
(Vcryst) i <ai ] - E Z

1— Py,

712

+ [ dn S v

where the sum « is over all nuclei outside of the cluster
and u runs over all electrons not belonging to the cluster.
The approximation given by Eq. (2.16) corresponds to

V(2 | a,.>, (2.17)

12 One can write the second term of Eq. (2.15) as FuCyCot. We
suppose that the basis functions ¢; and the eigenfunctions ¢; are
localized about lattice sites; then the C matrix may be placed in
the following form:

~1 ~y N'Yz

~y o~ i~y

N"YZ ~y ~1

. ~yll~y  ees

where vy symbolizes mixing coefficients of the order of the overlap
between adjacent atomic functions. Thus C, consists of terms of
order v and higher. In the same way we see that Fe contains
terms of the same order, so that the product FeCs is of order 2.
In principle, one has the basis for an inerative procedure in which
additional rows are successively brought into the C, matrix.
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the treatment of an isolated cluster in the molecular
field of the crystalline environment. In previous
molecular-orbital calculations®* on KNiF3, the crystal
field has been approximated by a uniform potential
well. In the calculations to be reported, various approxi-
mations have been used for the matrix elements (2.17).
These include:

(1) Point ioms on crystal sites; Eq. (2.17) then
simplifies to

Vii={a:| — 2 (Zett,a/T1a) | aj)- (2.18)

(2) Distributed ions on crystal sites; in this case

Vij= (ai [ - Z[(Zeff,a/rla) - Va(rla)] | ai>’ (219)

where V,(71,) 1s a correction term to (2.18) due to the
overlap of cluster- and neighboring ion-electron
densities.

III. BASIS SETS FOR THE CLUSTER MODEL

The successive partitioning scheme begins essentially
with the computation of free-ion approximate eigen-
functions. The compact form and the relatively easy
computation of accurate matrix elements make the
choice of an analytic basis set advantageous. Of various
analytic basis sets in use, the exponential Slater basis
has proved most accurate and reliable. These basis
functions are of the form

anlma'———zvnlmrn_le’arplm(o) Sm’(ﬁo) ) (3'1)

where NV is a normalization constant, Py” is the asso-
ciated Legendre function, and S, is the (real) trigono-
metric function sinmg or cosme. For our purposes it
will be convenient to choose all basis functions real.
Tables of accurate wavefunctions in this basis for
numerous atoms and ions have been published'; these
tables can often provide good starting wave functions
for more extensive calculations. Another advantage of
the Slater basis appears when we consider multicenter
molecular or crystalline systems. A multicenter Slater
basis set can be formed, consisting of sets of the func-
tions given in Eq. (3.1) centered at eack nuclear site.
This multicenter basis set can represent an orbital
properly in the vicinity of every nucleus, and the overlap
and mixing of different atomic sets can form an accurate
representation of the internuclear region. In addition,
one may easily analyze the resulting molecular wave
functions in terms of distortions of the component
atoms.

By now a considerable number of small molecules
have been treated, making use of multicenter Slater
basis sets. These include diatomic molecules, and larger

13 E. Clementi, IBM J. Res. Develop Suppl. 9, 2 (1965).

14 In fact, covalency can only be rigorously defined in the case
of limited variational procedures restricted to free-atom functions
as a basis. This and the problem of unambiguously defining ionicity

in a molecule can be resolved by a sensible conyention, such as the
Mulliken overlap population analysis.
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systems such as H,O, CH,, C.Hg, Hg, NH;, and PH,. The
results clearly indicate that the “optimized minimal
Slater basis” is an excellent approximation to the
Hartree-Fock eigenfunction. In this basis one chooses
a small number of functions at each center and sys-
tematically varies all screening constants and linear
coefficients to obtain minimum energy. The small
number of functions chosen is dictated by the complex
and time-consuming evaluation of multicenter matrix
elements. As methods for computing these integrals
improve, we may include larger basis sets and treat
more complex systems to higher accuracy.

The main criterion by which a molecular wave
function is judged is usually a comparison with experi-
mental binding energy and charge moments. The
calculation of excited states and transitions between
states is usually not sufficiently developed to allow
meaningful comparisons. Another possible criterion is
the comparison between molecular wave functions
obtained from very different basis sets. The ability to
compare wave functions directly instead of the expecta-
tion value of some operator would be very useful; to
date few such comparisons have been made.

We have already mentioned that at present the
computation of matrix elements for the multicenter
Slater basis is complex and tedious.”® In order to study
reasonably large molecular systems, we are forced to
compromise between accuracy of the Slater set and the
amount of computer time available for calculation. To
this end we propose a specialized one-center mixed
basis'® which is particularly suited to centro-symmetric
systems. This basis set may be developed by referring
to one of the basic techniques applied in evaluating
multicenter matrix elements.

Consider the basic two-electron repulsion integral
encountered in the multicenter Slater basis set. The
most general (and most complex) of these is the four-
center integral:

<AB l C.D>= // dv1d7)20n1,11,m1,a1*(1'A1)

X @n2,12(TB1) m2,02(1/712) Uns,13,m3,08% (Toz)

(3.2)

X @nt, 14,m4,04(ID2) -

In this notation rs; means the coordinate vector of
electron 1 measured from an origin at nucleus 4. A
general method for evaluating this and other multi-
center integrals is to expand the integrand about some
common origin in spherical harmonics. The angular

15 This has been one of the central numerical problems of molec-
ular theory; indications of the present status of the problem
appear, for example, in Ref. 42 and F. E. Harris and H. H. Michels,
J. Chem. Phys. 45, 116 (1966).

16 A number of one-center bases have been employed in molec-
ular calculations, including exponential and Gaussian functions as
well as a few numerical applications; for example, B. D. Joshi, J.
Chem. Phys. 47, 2793 (1967). Manageable bases of this type have
two defects: inability to represent the wave-function cusp at
distant nuclei and slow convergence in localizing charge about
these nuclei.
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and radial integrals may then be computed separately,
thus reducing the order of quadrature required. The
price of this simplification is that a series must usually
be summed to evaluate the integral, and in the four-
center case a doubly infinite series results. The two basic
expansions required for this method are the potential
expansion
re =D 0;(ras, 742) PS(4; 1, 2), (3.3)
=0
where 87(7a1, 742) =77 /rs7+, and P;%(4;1,2) is a
Legendre function whose argument is the angle between
r; and 1, and the orbital expansion

anlmv(rBl) =anm Z (2)\+ 1)
A=m

Xnim; 2(@, 741, Rap) Pa™(041) Su? (pa1).  (3.4)

In both cases we have taken the final coordinate center
to be at site 4, with the local coordinate systems
aligned on the 4B axis. The final step of the procedure
is to rotate all functions into a common coordinate
system and to truncate sums according to vector
coupling rules derived from the angular integral. In
practice all remaining infinite sums are truncated at
some finite angular momentum, say /=20, to obtain
some desired accuracy in the integral. The angular
integrals to be evaluated within these sums are products
of three spherical harmonics, and can be computed in
terms of well-known vector coupling coefficients and
rotation matrix elements. The double-radial integrand
consists of products of radial Slater functions (if the
origin coincides with a nucleus), orbital expansion
functions 9.m; », and the potential function 87 (741, 742) .

We may now remark on some of the properties of the
orbital radial expansion functions %num; \(@, 74, R).
These functions possess a pronounced peak or node in
the vicinity of the radius of the generating Slater
orbital @, (rs). The individual functions 5 are some-
what more extended toward the expansion origin,
and the convergence rate of the series depends strongly
on the parameter aR4p (a is the exponential screening
constant). In a severely truncated series, say max(\) =4,
the expansion (3.4) generates a rather diffuse function
about center 4.

This observation leads us to consider centro-sym-
metric systems, for which we might choose a multicenter
Slater basis set. The usual procedure would be to form
multicenter symmetry orbitals by taking linear com-
binations of basis functions. One might attempt to
calculate symmetry-orbital matrix elements directly by
developing expansions analogous to Eq. (3.4). How-
ever, this approach is not very fruitful, for by choosing
the center of symmetry as the unique expansion origin
one often encounters unfavorable convergence rates in
the integral series. One alternative is to compute the
unsymmetrized multicenter integrals separately, se-
lecting the expansion origin for optimum convergence
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in each case. This is an annoying feature, since it
becomes difficult to produce an efficient computing
scheme, and considerable manipulation is required to
symmetrize the raw integrals.

A second alternative is to abandon the multicenter
Slater basis set, while attempting to retain some of its
essential features. In expanding a single Slater function
or a symmetry combination of functions about the
central site, one always obtains the same radial func-
tions 7nm; ». These functions are multiplied by fixed
coefficients and specific combinations of spherical
harmonics. An equally valid procedure is to consider
the functions

bnlm; )\;m(rA) =MNnlm; )\(a; 74, R) PR"(BA) Sud(‘pA) (3'5)

as independent basis functions for the molecular system.
It is clear that for a sufficiently large basis this set is at
least as good as the multicenter Slater set, for it forms
the natural expansion of the Slater functions. It can be
superior since the linear coefficient of each & function
is a free parameter. It may be hoped that this varia-
tional freedom will permit truncation of the basis in
orbital momentum X to lower values than that required
to reproduce a given Slater function.

The mixed basis which we propose is thus {®}=
{a, b} for centro-symmetric clusters, in which {a} is a
Slater basis set at the central site, and {b} is a basis of
expansion functions for each ligand shell. One advantage
of this basis choice is that contact can be maintained
with a specific atomic basis from which the {d} set is
derived. Details of an efficient computation scheme for
treating this basis are given in Appendix A and all of
our results are given in this basis.

IV. CLUSTER CALCULATIONS AND
CRYSTAL-FIELD SPLITTING

The computation of the crystal-field splitting param-
eter, 10Dg, has been a major goal of all previous cluster
calculations. Within the Hartree-Fock scheme, A, or
10Dg, may be defined as the energy difference between
two independently calculated N-electron states. For
KNIF3, this is taken to be

A=E®(*Ty¢) — E4(*As), (4.1)
corresponding to a vibronic electric-dipole transition.!®
While one might hope that (as has been done often in
the past) the transition could be described simply in
terms of the one-electron promotion energy e;,,—¢,,
such, however, is not the case, for upon examination of
the eigenvalues for either the ground state (A4g,) or
excited state (Ty,) one finds a considerable discrepancy.

17 We use the crystal-field notation 25*1T",, where I is an irreduc-
ible representation of the symmetry group of the cluster and v, if
mentioned, indicates a specific basis component of I'.

18 A more rigorous calculation of the broad bands actually
observed in octahedral complexes is not yet possible; for an ex-
cellent review of the situation see C. J. Ballhausen, I'ntroduction to
Ligand Field Theory (McGraw-Hill Book Co., New York, 1962).
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TaBLE I. Basis set for Ni?* and NiFs calculations.
R=3.79371 (metal-ligand distance).
@ functions
@y s a=27.8
2s 12.5 es: 3d a=2.3
3s 4.0 3d 5.0
3s 7.5 by 3d 2.3
bt 2P 11.7 3d 5.0
3p 3.6
3p 6.2
b functions®
@y 1s5(0, 0) a=8.658 ta: 1s(1,0) a=8.658
25(0, 0) 2.493 25(1, 0) 2.493
24,(0, 0) 2.344 24,(1, 0) 2.344
e:  1s(2,0) 8.658 24-(1, 0) 6.0
25(2, 0) 2.493 2p.(1, 0) 1.0
25,(2, 0) 2.344 fyt 2pe(2, —2) 2.3
Lot 2p(4, —4) 2.2 2$.(2, —2) 5.0
2p. (4, —4) 4.5 fut 2923, 2) 2.2
3p.(3,2) 4.5

& The eta functions are denoted as #l(\, 1), where # and ! are the atomic
quantum numbers (1s, 2s, « -+ ), A and g are the angular quantum numbers
of Eq. (3.5), and « is the screening parameter. x4 may have several values
for degenerate representations, in which case one representative value
is given.

In fact, sufficient rearrangement takes place among all
orbitals of the system after the excitation to have a net
appreciable effect on the value of A. The result is not
surprising, and is merely an indication of the magnitude
of “core-distortion” effects. In particular, the metal 3s
and 3p orbitals are sufficiently extended that con-
siderable overlap and covalent mixing with ligand
orbitals is expected. One finds that s-p hybridization,
the mixing of ligand s and 2p orbitals, plays a significant
role in determining the cluster wave function.?

In this section we present a series of approximate
cluster calculations for the cubic perovskite KNiF;. A
cubic cell of this crystal has the Ni ion in the body-
centered position, the F ions at the center of the faces,
and the K ions at the corners; the cell edge is taken?
to be 4.014 A (7.585 a.u.). We may consider that this
system constitutes a severe test of the methods de-
veloped in this paper, particularly because of the
presence of unpaired spins. One may begin by taking
the crystal to be a collection of Ni*+, F—, and K* ions,
with two holes in the ¢, (Ni2* 3d) shell of the magnetic
ion.

Three series of calculations were made. Two of these
(A and B below) were done with coordinate origin at

19 Similar conclusions were reached in a “frozen core” LCAO-
MO calculation of very limited variational freedom: D. E. Ellis,
MIT M.S. thesis, 1964 (unpublished); D. E. Ellis, A. J. Freeman:
and R. E. Watson, Proceedings of the International Conference on
Magnetism, Nottingham, England, 1964 (The Institute of Physics
and the Physical Society, Berkshire, 1965), p. 335.

( 20 A, Okazaki and Y. Suemune, J. Phys. Soc. Japan 16, 671
1961). ) ) )
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TasLE II. SCF calculations for Ni?*, with and without crystal field of KNiF;. Accuracy in Eyje, 0.001: with crystal field, A =0.0059
a.u.=1295 cm™. These results may be compared with the more extensive Ni2+ calculation by R. E. Watson and A. J. Freeman (Ref.

37), which gave a total energy — 1506 a.u.

Ni?-('_tGeZ Ni2+_t583

Nizt-18¢2 With crystal field; Niz+-f5¢3 With crystal field:

No crystal field no Madelung correction No crystal field no Madelung correction
Eeleo —1499.7906 —1499.7991 —1499.7902 —1499.7932

spin B a B @ B8 a B8
e(lay,) —307.197 —307.197 —307.203 —307.202 —307.197 —307.196 —307.199 —307.198
e(2a1,) ~37.557 —37.491 —37.564 —37.497 —37.557 —37.491 —37.559 —37.493
e(3a1y) —5.162 —4.970 —5.167 —4.974 —5.162 —4.970 —5.164 —4.971

e(legh) —1.506 —1.511 —1.506 —1.508
e(lege) —1.506 —1.511 —1.453 —1.368 —1.454 —1.369
e(1t1.) —34.183 —34.129 —34.189 —34.135 —34.183 —34.129 —34.185 —34.131
€(244) —4.248 —3.994 —4.253 —3.998 —4.248 —3.994 —4.250 —3.996

e(1t8) —1.453 —1.368 —1.459 —1.372 —1.506 —1.508
e(184¢,7) —1.453 —1.368 —1.459 —1.372 —1.453 —1.368 —1.456 —1.370

a Ni** site—the first with a partition including only
the magnetic ion, and the second obtained by extending
the partition to include the ligand shell of six F— sites.
In order to have a meaningful comparison of results,
the same one-center basis set was used for each series;
it is given in Table I. The Slater functions (e functions)
were obtained by truncating Clementi’s basis® for
Ni?*; the eta functions (b functions) were obtained by
a similar truncation of the F— Slater basis set. This
mixed basis is chosen so that for each representation of
(NiFg)* having m occupied orbitals there are at least
m—+1 basis functions; thus we also obtain the “first
excited (virtual) orbital” of each symmetry species.
In the third set of calculations (C below) the F~ ion
was taken as origin for the cluster, and a basis set
appropriate to this configuration was chosen.

A. Single-Magnetic-Ion Calculations

Spin-unrestricted single-determinant wave functions
for the ground state (#%?, 34,,) and first excited state
(€, 3Ty) of the 26-electron Ni*t partition were
obtained with and without the crystal-field matrix
elements. Spin-restricted pseudo-closed-shell calcula-
tions were performed to obtain starting density
matrices, and inspection of the open-shell results shows
that considerable rearrangement takes place in the
outer orbitals of each symmetry when the spin-restric-
tion is dropped. Self-consistent iterations were carried
to an accuracy of at least 0.001 a.u. in total energy in
each case. No attempt was made to orthogonalize the
Ni?t orbitals to near neighbors although overlap con-
tributions to the crystal field were included. A very
small crystal-field splitting of 1300 cm™ is found.?
Limitations of space do not permit us to tabulate the

2 Obtained by choosing fractional occupation numbers #;
among the ¢, and &, orbitals to produce a spin and orbital singlet.

221t would be desirable to orthogonalize the basis at least to the
first ligand shell orbitals, and this could produce a considerable
change in A. This was not done, in order to keep the basis as small
as possible,

eigenvectors obtained; the orbitals do not differ greatly
from free-ion Ni** functions. Total energy and one-
electron energies for occupied orbitals of either spin are
given in Table II. The Madelung correction necessary
for placing Ni** calculations in the crystal field on an
absolute energy scale can be computed very easily.??

B. (NiF)* Cluster Calculations

The second series of calculations were made for 74
electrons of the (NiFg)*4 cluster, with the F~ 1s elec-
trons treated as ligand point charges. Coulomb inter-
actions and overlaps with the free-ion 1s orbitals were
computed; deviations of the Coulomb potential from
the point-charge result were very small, and in view of
the rather small basis used it was decided not to
orthogonalize to these orbitals. This approximation has
an effect only in the immediate vicinity of ligand nuclei;
however, it does mean that the wave function and spin
density will be poorly represented at these sites. This
inability of the basis to form charge densities tightly
bound to the ligand nuclei is no real obstacle, for when
we are interested in fine details of ligand orbitals, we
may simply move the partitioning origin to a ligand site
and make a new calculation in that frame—an assertion
verified by the (NipF) 3t calculation reported later.

The results of the (metal+ligand shell) (NiFg)%
calculations are presented in Table III; as before, the
overlapping crystal field is computed, but no attempt
is made to orthogonalize to the near neighbors (K+).
It is often helpful to identify the cluster-symmetry
orbitals with the free-ion orbitals from which they
arise in the LCAO picture; a schematic representation
of the one-electron energy levels is given in Fig. 1.
Some of the one-electron orbitals obtained for the
ground state (#%?) Ay, of (NiFs)¢~ are plotted in Figs.
2-6; the tightly bound Ni** core orbitals are omitted
for clarity, and the fu, #, (nonbonding ligand pr)

( 2 See the review article of M. P. Tosi, Solid State Phys. 16, 1
1964).
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Tasre ITT. SCF calculations for (NiFg)4, with and without KNiF; crystal field. Without crystal field,
A=0.0479 a.u.=10 500 cm™. With crystal field, A=0.0492 a.u.=10 800 cm™. Accuracy in Eqjec, 0.001.
(NiFe) 412 (NiFe)4 -

(NiFg)4-ife? With crystal field; (NiFg)4-f¢? With crystal field;

No crystal field no Madelung correction No crystal field no Madelung correction
Eeolee —2006.4418 —2006.1928 —2006.3939 —2006.1436

spin & B a a B a B8
e(lay,) —305.247 —305.246 —305.239 —305.238 —305.274 —305.273 —305.270 —305.270
e(2a1,) —35.627 —35.568 —35.620 —35.561 —35.657 —35.597 —35.654 —35.594
e(3a1,) —3.292 —3.132 —3.287 —3.127 —3.328 —3.160 —3.325 —3.158
e(4ar,) —0.276 —0.272 —0.275 —0.271 —0.280 —0.274 —0.278 —0.273
e(5a1,) 1.052 1.064 1.054 1.065 1.049 1.056 1.051 1.058
e(legh) —1.023 —1.018 —1.018 —1.014 —1.027 —1.021 —1.022 —1.016
€(2eg6) 0.296 0.671 0.302 0.676 0.268 0.657 0.272 0.662

€(3egd) 0.819 0.825 0.812 0.817
e(lege) —1.023 —1.018 —1.018 —1.014 —1.021 —1.019 —1.016 —1.014
€(2ege) 0.296 0.671 0.302 0.676 0.302 0.361 0.305 0.364
€(3ege) 0.819 0.825 0.822 0.839 0.828 0.844
e(14,) 0.697 0.700 0.705 0.707 0.697 0.701 0.704 0.708
e(1ty) —32.252 —32.203 —32.245 —32.196 —32.297 —32.231 —32.276 —32.228
€(2414) —2.368 —2.154 —2.362 —2.148 —2.398 —2.186 —2.394 —2.183
€(3h4) —0.182 —0.178 —0.180 —0.176 —0.186 —0.182 —0.184 —0.180
e(4t1.) 0.814 0.820 0.830 0.837 0.812 0.818 0.828 0.834
e(Stu) 1.384 1.393 1.392 1.400 1.378 1.387 1.385 1.394
e(1520%) 0.392 0.455 0.397 0.460 0.313 0.727 0.315 0.727

€(264%) 0.792 0.801 0.791 0.801 0.782 0.781
€(1t308,9) 0.392 0.455 0.397 0.460 0.361 0.428 0.364 0.431
e(2t0t, 1) 0.792 0.801 0.791 0.801 0.787 0.796 0.786 0.795
e(1t24) 0.832 0.834 0.844 0.846 0.832 0.832 0.844 0.845

orbitals are not shown. The partially occupied e,
orbitals are plotted separately for either spin. Since
the spin dependence of other representations is not very
noticeable in a plot, only the majority-spin « orbitals
are given.

In order to discuss the one-electron energy levels, we
refer first to the Ni?* results (Table II) where it is seen
that energy differences between the spin-split 3d (e, ts,)
orbitals are quite sizable. For example, in the #%? con-
figuration &[4y, o ]—8[e,, @]=0.05 a.u. and &[ sy, B]—
&2, @ ]=0.09 a.u. These energies are larger than the
optical splitting A[~0.04 a.u.] and appear to be a
dominant factor in determining orbital occupancy both
in the Ni** ion and the octahedral complex.

The pronounced spin splitting in ¢, and ¢, orbitals of
(NiFs)* makes a direct comparison with results of the
traditional ligand field theory somewhat difficult.
Upon examination of Table IIT and Figs. 4, 5, and 6,
one sees that the character of the ground-state orbitals,
in order of energy, is

tog: 3d, 2pr;
et: 25, 3d, 2po;
et 2s, 2pa, 3d (unoccupied).

Thus the occupied “metal 3d” molecular orbitals lie
lower than the “fluorine 2p” orbitals in apparent con-

tradiction with the traditional theory (but in agreement
with the relative position of the free-ion levels). We are
reluctant to assign any great importance to this inver-
sion, first because of the very limited basis set used
here, and second because it does not affect the outcome
for physical observables. The latter observation fol-
lows from the fact that the unoccupied 3e,, B orbital
does show predominantly 3d antibonding character as
is expected in the traditional theory. The significance of
the unoccupied ¢,, 8 orbital to all observable quantities
is discussed in detail in Ref. (4), and it is pointed out
that one may perform arbitrary unitary transforma-
tions on the occupied orbitals without affecting proper-
ties of the N-electron determinantal wave function.

We refer to Table III to compare ¢, and f, orbital
energies of either spin for the #%? 34, state of (NiFe)*~
calculated in the crystal field. As can be seen, the ¢,
open shell is much more strongly split than in the
Ni?t ion, while the splitting in the nominally closed #,
shell is about the same. The effect on the f, shell is
merely to polarize the 3d orbitals, while the e, shell
undergoes an inversion of orbital levels as well.

A rough calculation shows that about 0.8 electron
has been transferred onto the Ni ion, leaving a net
charge of +1.2. In choosing orbital occupancy for the
excited state, we are guided by the first unoccupied or
virtual levels from the SCF results. The first virtual
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levels for 8 spin are

8: 1423¢, 45324,  12.20 6ay,
3.293t,  4.68 2,
3.524¢,  5.02 6t

so promotion into 3¢, seems an obvious choice. From
Table III it would appear that the 5ay, or Sk, orbitals
are least stable and could be easily chosen as donors for
the excitation. However, this ordering may be due to
the limited basis, so that we choose to promote a
minority-spin electron from #y, ; into the 3e,_¢ hole to
form the 37, state required by crystal-field theory.
The self-consistent excited state was calculated with
this choice of occupation numbers.

It is apparent that the external crystal field has had
very little effect on the cluster wave function; the
cubic-field splitting Etot(«««1%3) — Etot( -+ +1%2) =A is
found to be 10500 cm™ for the isolated (NiFe)4
cluster and 10 800 cm™ in the crystal environment.
The experimentally determined A is 7250 cm—1.2 Tt is
interesting to note that although the crystal field is
fairly large in the vicinity of the ligands, it undergoes
considerable variation with both positive and negative
regions, so that the largest matrix elements are 0.01 a.u.
for ligand orbitals and an order of magnitude smaller
for metal orbitals (excluding the Madelung term).

A detailed discussion of the crystal-field problem

2¢ K. Knox, R. G. Shulman, and S. Sugano, Phys. Rev. 130, 512
(1963).
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and its role in the cluster model is presented as Appen-
dix B.
C. (NiyF)3*+ Calculations

In order to treat properties of the ligands, such as
transferred hyperfine effects (to be discussed in the
next section), we have carried out calculations in which
the cluster has an F~ ion at its center. The simplest
such cluster, composed of the triatomic system
Ni#*-F—-Ni*", was chosen for this work. Although this
triatomic system is but a crude approximation, it still
allows us to discuss some of our results from the ligand
“point of view”” and to further test the cluster approxi-
mation.

For these crude cluster calculations the (Ni,F)3+
cluster with symmetry D, (linear triatomic molecule
Ni#*F~—Ni*") was chosen, with the Ni?* 1s, 25, and 2p
electrons treated as point charges. Thus the cluster
wave function was taken to represent the 42 electrons
drawn from the Ni** 3p, 3s, 3d, and F~ 1s, 25, and 2p
shells. The basis set used is given in Table IV. The
ferromagnetic configuration (also appropriate for the
NMR experiments in the paramagnetic regime) was
adopted, with four holes, all of 8 spin, assigned to the
symmetry species @i, G, €y, €. The results of this
calculation are presented in Table V and, while the
metal orbitals are probably poor due to our point-
charge approximation for the core, the wave function
may be expected to be fairly accurate around the
fluorine nucleus.

V. F¥* TRANSFERRED HYPERFINE INTERACTION

In this section we shall be concerned with calculating
the transferred hyperfine interaction at a single F1®

ré(r
~a
/'\
/ \ib
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| N
"IN Il ~
\‘\ I LT
AR / e
\\‘\/ ’
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NiFg
Atg REPRESENTATION
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| | | ll | | |
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F16. 2. NiF a1, representation. (a) 3aig; (b) 4a1g; (€) Sarg.
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Ni Fg
Tiu REPRESENTATION

F16. 3. NiF t, representation. (a) 24u; (b) 3hu; (¢) 44y (d) Stia.

nucleus. Following a brief review of the theory, defini-
tions are given for the parameters A,, 4,, and A,
within the molecular-orbital approach. Results calcu-
lated for the NiFs and Ni;F clusters are discussed (in
some detail in the latter case in order to emphasize the
various contributions to the hyperfine interaction).
It is found that the interaction calculated in NiFg is an
order of magnitude too small compared with experi-

re(r
cos@=0
P=m/4

NiFg
T2g REPRESENTATION

F16. 4. NiFs &, representation. (a) 1f,; (b) 2¢5,.
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F1c. 5. NiF; e, representation, spin a. (a) 1leg; (b)2¢,; (c)3eg.

ment, an effect due primarily to the very limited one-
center basis used. Results for the triatomic case (NiyF)
give a much larger interaction, and 4, in particular is
found to be an order of magnitude larger than experi-
ment. The error is attributed to the limited basis and
the neglect of covalent effects of other ligands upon
the metal ions.

The interaction energy of a single electron with the

I' '\r4>m NiFs

[ Eg REPRESENTATION
’ \‘ SPIN B /~\
o\ A

—/_
—~—
P

F1G. 6. NiF; ¢, representation, spin 8.
(a) leg; (b) 2e4; (c) 3eg(unoccupied).
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TasLE IV. Basis set Ni-F-Ni calculation.

a functions

@y 1s a= 8.425
2s 11.384
2s 2.562
Gt 29 1.511
2pe 3.834
€. 2px 1.511
2px 3.834
b functions
@ 35(0,0)  «=4.0 e 30:(2,1) a=3.6
3,(0, 0) 3.6 3ds(2, 1) 2.3
3d,(0, 0) 2.3 3d.(2, 1) 5.0
3d,(0, 0) 5.0
a1yt 3s(1,0) 4.0 eyt 3d5(2, 2) 2.3
3p.(1, 0) 3.6 3ds(2, 2) 5.0
3d.(1, 0) 2.3
3d,(1, 0) 5.0 ena: 3d5(3, 2) 2.3
et 3pe(1,1) 3.6 3dy(3, 2) 5.0
3d.(1, 1) 2.3
3d-(1,1) 5.0
nuclear moment is given by%
21 s 3r(s T)
W=y (= 5= 5+ 250 4 T,
g 7® 7
(5.1)
which we may write as
=—yn7ily-Hest (5.2)

in terms of the effective magnetic field produced by
the electron. Since we are primarily interested in the
spin-spin interaction, we will drop the orbital term
1/7% and write
gl (s 3r(s:r) 8&r

Hes= o (;5 5 T3 Sa(r)) ,  (5.3)
where B=ef/2mc=—0.9273X1072 erg/G; ao=
0.5292X1078 c¢m and r is now given in atomic units.
The terms in Hes are the anisotropic and isotropic
(contact) fields, respectively. To compute the average
field due to XV electrons within the single-determinant
orthogonal-orbital model, one finds

N
av = Z (7: l Heff ] 1,), (5.4)

A. Calculations and Results for the NioF Cluster

Consider the triatomic cluster, Fig. 7, in which
S and I are quantized along some external magnetic
field Ho. We may write out the energy expression ex-

2 A. Abragam, Principles of Nuclear Magnetism (Clarendon
Press, Oxford, 1961), p. 172.
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plicitly in terms of the direction cosines cosf,, cosfr,
and cosf, of Hy on the molecular axes:

2__ 42 2— 2

3
W= gig'y]vﬁ[ Nm,( T cos?0+
)

cos?0,

3z2

cos?0,— — 6(r)+ —_ cos&, cosf,

6 6
+ —rx; cosfx cosf,~+ —3? cosf, cos(?,) . (5.5)

For comparison with experimental parameters we may
use the relation cos?,~+ cos?,~+cos?h,=1, and rewrite
Eq. (5.5) as

2
W= &8 yniIyms (uz (3 cos?0.—1)
dos 78

,—1) — —8( )—l— — cos@,, cosf,

61z
+ - cosfr cosa,—}— cos@ cos?, ) (5.6)

In the usual parametric form, one writes

W=8-A-1, (5.7)

where S is taken to be the spin of a single metal ion
interacting with the nucleus. It has been shown that
the tensor A is diagonal for cubic systems,?® and Eq.

Taste V. SCF calculation for Nizt-F—-Ni** system without
crystal field. Accuracy in Eejeo, 0.001.

Ferromagnetic configuration

—319.7683
Eolec energy

orbital a spin B spin
1ay, —25.769 —25.766
2a10 —1.390 —1.303
3aiy —1.243 —1.177
dayy 0.149 0.187
Saiy 1.434 eee
lara —4.865 —4.830
214 —3.326 —3.269
3a1u —1.640 —1.661
4a1, —0.465 e
le, —0.401 —0.368
2e19 0.336 0.407
3eiy 0.864 0.881
leru —0.740 —0.681
2e1u 0.001 0.013
lez¢ 0.563 oo
ez, 0 0.581 0.596
lezu-e 0.060 e
1e2.-0 0.084 0.100

26 W. Marshall and R. Stuart, Phys.

Rev. 123, 2048 (1961).
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(5.7) can be written as
W=A4,8-1+ (A+A4p) > S.I,(3 cos¥d,,—1)

+A4.9.81,(3 cos,,—1). (5.8)

By comparing Eq. (5.8) with Eqgs. (5.2), (5.4), and
(5.6), we have the correspondence

A,= geﬂwﬁ

Zl< i| —(8r/3)md(x) | i),
At dp= @Z—N—ﬁ 3| =y /] i),
005 i=1

Lyl K. .
A= RS G mL =) /A1 (59)

Here S is the magnitude of the total electron spin of
the system. We note that the additional terms con-
tributing to Eq. (5.6) make no contribution to the
energy due to their angular dependence. However,
these terms may be important for systems with lower-
than-cubic symmetry.

The orbitals used in these calculations are products
of space and spin functions

| 4)=®:(r)xi(s), (5.10)

with m,==%. With the limited bases employed in our
crude one-center expansion, the orbitals are also
separable into radial and angular functions, the latter
being real spherical harmonics:

(1) =NRi(r) Pi"(0) Sw’ (@) - (5.11)

The spin part of the matrix elements [Eq. (5.9)] is
trivially obtained, and the angular integrals are easily
evaluated by making use of the vector coupling coeffi-
cients for spherical harmonics.” The result may be
written as

X
A= gerN

2 [—(8x/3)m. | ®:0) |],

i=1

ﬁ N
AtAp= gBYN 3

ms<Alma+%Blmd) <1: H 1/’3 ” ’L>,

@S ==
Bynhi . .
4,= 80 S (3B G| 1/ | ). (5.12)
a’S =
The angular coefficients are given by
Apo= /dsz | PinS,e |2 Pz"/deZ]le i
Bune= [ 49| PinS,s [ PSS / [ a1 Prs,r,
(5.13)

27 See, for example, M. E. Rose, Elementary Theory of Angular
Momentum (John Wiley & Sons, Inc., New York, 1957).

THEORY OF TRANSITION-METAL COMPLEXES

699
M Ho,S,I
A
1
]
T T T
Niz*t - F- Niz‘”t .
o z o
f P “.
»

y
F1c. 7. (NiF)3%* molecular geometry.

and a short list is given in Table VI. The formulas
given reduce to those found by Marshall and Stuart?
for MnF; using the “antibonding LCAO” independent
bonding model. Our molecular-orbital-self-consistent-
field (MO-SCF) treatment directly includes metal
overlap onto the ligand, which had been previously
omitted, as well as 1s-2s orthogonality (cross) terms
in the contact interaction.”:%

The classical dipole term Ap may be extracted by
assuming a spin density on each Ni** ion which does not
overlap the fluorine site. In this (3d)® problem the
nearly spin-paired orbitals make small contributions to
the dipole field, which can be taken into 4,, so we
merely consider the (e,')? unpaired orbitals. To eval-
uate Ap one must compute matrix elements of the
interaction W [Eq. (5.6)] with orbitals | 322—#2) and
| £2—42) centered on a nickel ion. The resulting two-
center integrals are evaluated using spherical-harmonic
expansions of Py™S,’/r® with the result that for a
single ion

[

tpm B (2 T8 21130)

23S T ) , (5.14)

where (3d||7t|] 3d) is the reduced (radial) matrix
element.

We now refer to the calculations on (Ni;F)3*, in
which the Ni** core (1s5)2(2s)2(2p)® has been treated
as a point charge. Unlike the experimental situation,
the remaining 42 electrons are assembled in an S,=2
state corresponding to a half-filled e, shell on each of
the (3d)% metal ions. The symmetry orbitals and the
number of occupied levels of either spin are listed in
Table VII. Contributions to the isotropic contact field
are limited to the ay, orbitals; individual contributions
to the spin density Y ;2(m,): | :(0) |* are shown in
Table VIII. It appears that spin density arising from
orbital pairs is largely self-canceling, and that the
dominant term is the unpaired Sa;,} density. However,
slight changes in this function will produce drastic
variations in the contact spin density due to its F(1s, 2s)
components. For this reason, one may not expect
accurate results with a very limited basis set such as
the one used here.

Another type of error is due to the cluster model
itself; in the KNiF; crystal each Ni ion bonds with six
neighboring ligands, and the present triatomic model

(1298611\ J. Freeman and R. E. Watson, Phys. Rev. Letters 6, 343
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TaBLE VI. Angular coefficients for hyperfine interaction.
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TasLE VIIL. (Ni,F)3* contact spin density 2 2(m,); | 2:(0) |2

L M Ame Bimg Orbital  Spin density

0 0 0 0 1oy, +0.192 a.u. F(1s)4----

1 0 2/5 0 2a1, +1.424 F(25) 4+Ni(3s) 4+

; (1) —%/; (—1())’6/5 3ay, —1.480 Ni(3s) +F(25) ++-

5 1 —8735 (—1)76/7 4ay, +0.024 Ni(3po) +Ni(3do) 4+
2 2 —16/35 0 Saiy +1.316 Ni(3de) +Ni(3p0)

3 0 4/15 0 +F(25) +F(1s) -+
3 1 —4/35 (—1)4/5 total +41.476

3 2 —38/105 0 oy T

3 3 —10/21 0

will tend to overemphasize the bonding. The fact that
the spin-polarized wave function is not an eigenstate
of S? may also be a source of error; however, the
deviation is small and experience with free-ion calcula-
tions® would indicate that the error introduced is also
small.® The value of 4, found from Eq. (5.12) is

4,=517X10~* cm™
corresponding to a contact field
He=T774kG.

The experimental value® of 4, is 33.9X10~* cm™.

We now consider the anisotropic hyperfine inter-
action. The required radial integrals are given in
Table IX for each representation I' and either spin. The
tabulated integrals are sums over the matrix elements
of 1/7% for the occupied orbitals of each species:

/ppt= 2 \ @l /71l 9).

1€l ,mg=1,

TaBLE VII. Symmetry orbitals for the (Ni,F)3* cluster.

Symmetry Participating ion orbitals #{ #] L M
1y F(1s,25)Ni(3s,3p0,3ds) 5 4 0 0
1 F(2po)Ni(35,3p0,3dc) 4 3 1 0
ey F(2pn)Ni(3pm, 3dr) 6 6 1 1
era Ni(3pr, 3dr) 4 4 2 1
e Ni(3ds) 2 1 2 2
€2 Ni(3ds) 2 1 3 2

29 A. J. Freeman and R. E. Watson, in Magnetism, edited by G.
Rado and H. Suhl (Academic Press Inc., New York, 1965), Vol.
IIA, p. 167.

30 As we have noted previously, the single-determinant wave
function is not an eigenstate of S2. While one may calculate
properties which depend upon the spin density, the results must
be viewed with some caution. The deviation of (S2) from the
eigenvalue S(S-+1) (measured essentially by g(—2ZsSas?),
where S,g are the overlap integrals between orbitals of opposite
spin in all shells) is usually quite small, <19, for these clusters.
However, one would prefer to treat the spin problem within the
HF scheme using either a variational constraint or spin-projected
determinants; cf. F. E. Harris, J. Chem. Phys. 46, 2769 (1967).

31 R. G. Shulman and S. Sugano, Phys. Rev. 130, 506 (1963).

Because of cylindrical symmetry the effective field
Hr = (g8/20d) 2 3 Buno({1/7 ) — (1/r*)t)  (5.15)
T

and the hyperfine parameter
A.=Hryyh/S (5.16)

are both zero. The two self-canceling components of
H~ caused by spin unpairing in ey, are #0.042(g.8/2a®)
in magnitude and the components of the e, representa-
tion are negligible.

The nonzero components of

"= (g8/2as) ; (Aimot5Bime) ({1/7)rt—(1/7%)1%)

(5.17)
are given (in units g,8/2a¢®) in Table X, with the results
Ho=+19.33kG,
At Ap=Hoyyhi/S=12.91X10~* cmm~L

From Eq. (5.14) and the calculated value® of
{r*)s4=3.0034, we obtain values of the dipole field HP
and the parameter 4p as

HP =—4.382kG,
Ap=—3.22X10"* cm™.
The dipole field from the rest of the crystal has been

Tasre IX. Radial integrals (1/73)r in (a¢) 2
units and R=3.79271a,.

Symmetry Spin T Spin |
a1y 5.705 6.538
e1g€ 9.141 9.246
e1,-0 9.141 9.246
eru-€ 0.061 0.061
e1u-0 0.061 0.061
e2g-€ 0.023 see
e25-0 0.023 0.023
e2u-€ 0.020 eee
€20 0.020 0.020

F=(1/7%)5p 6.405 6.405=
R—3 0.01832

8 C. Froese, Proc, Camb, Phil, Soc. 53, 206 (1957).
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omitted, and so the calculated value of 4, is
A,=+16.13%X10~* cm™,

to be compared with the experimental value® 8.8 X104
cm™. Thus, unlike the results obtained for 4., there is
order-of-magnitude agreement with experiment for 4,.

B. Results for the NiFg Cluster

We describe briefly the results obtained for the NiFg
cluster both for completeness and in order to point out
the crude ligand spin densities obtained with these
limited one-center basis functions.

The spin density at an F~ site was computed from
the ground-state cluster wave function, which was first
orthogonalized to the F~ 1s orbitals, as

p°=p"(ay) +p* (&) +p*(tw)
p°(T) = D 2(ms) i | Yi(T) [Prmoomy

©el

(5.18)
where

is the contribution of all orbitals of symmetry T. From
p° we may easily calculate A4, as defined by Eq. (5.12).

In the usual LCAO picture a variety of corrections?-?
are applied to obtain p®, because of the nonorthogonality
of orbitals used to describe the cluster. In our calcula-
tions, all of these effects are included automatically
and one merely adds up the spin densities of all orbitals.
The spin density p* and fractional density f, computed
in this way for (NiFs)* was found to be an order of
magnitude smaller than the experimentally obtained
value.®! As already emphasized, this result was to be
expected since our limited basis does not have sufficient
angular freedom to build up a large ligand density at
the F- sites, although the radial behavior is quite good.
It is worth noting that while the dominant contribution
to f; comes from the unpaired 3e, « orbital, the sum of
contributions from the spin-split orbitals of the ay,
(s-like), ti, (p-like), and e, (d-like) representations is
of nearly equal magnitude.

VI. BONDING EFFECTS ANDlNEUTRON
DIFFRACTION

The effects of covalency on the measured neutron
magnetic scattering from magnetic salts have recently
been considered by Hubbard and Marshall®? (HM).
Using a simple one-electron antibonding LCAO wave

TasLE X. Contributions to H? by symmetry representation.

Representation H,
O1u —0.3332
e 0.0420
€€ —0.0105
€2u-€ —0.0072
total —0.3089
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function and covalency parameters determined empiri-
cally, these authors have shown that covalent bonding
affects both the absolute intensities and form factors
in a significant way. Here we calculate the neutron-
magnetic form factors from the cluster MO’s discussed
earlier. Our form-factor results confirm those obtained
more simply by HM and show quantitatively some of
the effects discussed qualitatively by them.

The magnetic form factor describing the coherent
scattering of neutrons by the magnetization density
is given by

1) = [ dvplr) explik-1), (6.1)
where K is the scattering vector [with | K| =4 (sinf) /A,
where 6 is the scattering angle and A the neutron wave-
length], and p(r) is the electron spin density sur-
rounding each one of an equivalent set of magnetic
ions in the crystal. Using the expansion

exp(iK-r) =4r > it(2+1)7,(Kr) Py(61), (6.2)
l

where 7;(Kr) is the Ith spherical Bessel function, Eq.
(6.1) is simply evaluated as

f(K) = Cimfin(K) Vin(Qg). (6.3)

The coefficients Ci, are factors and angular integrals of
products of spherical harmonics easily evaluated in
terms of the vector coupling coefficients. The radial
integrals

funE) = [ 72dr pun(K)js(K7) (6.4)
may be further divided into contributions from each
representation, since

Pim = Eplmr~
r

We have computed the functions f;(K) for /=0 and
4, which are the leading nonzero terms for a cubic
complex, for each spin in each representation of the
(NiFg)# cluster. We find that the neutron scattering is
dominated by the open ¢, shell; the contributions from
other symmetries due to spin polarization are only
1 or 29, of the ¢, term. The corresponding calculations
have been made for the Ni** jon computed in the
KNiF; crystal field in order to provide a comparison
between the single-ion and cluster spin densities.

The fo(K) contribution is the well-known spherical
(I=0) term in the form factor while the fis(K) con-
tributes  experimentally  substantial  deviations
(“bumps”) from the smooth spherical form factor.®
Figure 8 compares the f;(K) terms calculated for the
Ni** ion in the KNiF; crystal field with the computed
(NiFg)*-complex spin density. While both show the
usual peaking at large angles, the covalent spin density

32 J. Hubbard and W. Marshall, Proc. Phys. Soc. 86, 561 (1965).

3 A. J. Freeman, Acta Cryst. 12, 261 (1959); R. J. Weiss and
A. J. Freeman, J. Phys. Chem. Solids 10, 147 (1959).
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shows an unusual negative dip at low angles at which
some important reflections occur. The dip is a mani-
festation of bonding effects, here manifested on the
nonspherical (cubic) part of the magnetic form factor.

More striking is the effect of covalency on the
fo(K) form factor. Figure 9 compares the single-ion
and cluster fo(K) form factors, both shown normalized
to 1 at (sinf) /A=0. The large differences observed at
low scattering angles reflect the obvious fact that the
spin density of the cluster has a significant contribution
which resides on the ligand sites.

An even more dramatic way of showing the effect of
this ligand (covalent) spin density is to renormalize®
the free-ion f(K) curve in order to allow for the reduc-
tion in absolute intensity observed in neutron measure-
ments. Using the same scale factor (0.82) employed by
HM, we show such a comparison in Fig. 10. Here the
peak in the forward scattering direction® is clearly
seen, along with some additional structure at somewhat
larger angles. This additional structure does not appear
in the antiferromagnetic case®* because there is an
exact cancellation of the spin density at the ligand site
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o L \ Fic. 9. Spherical part of the
o \ form factor fo for (NiFg)*~ and
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3¢ Tt should, however, be emphasized that we are describing our
results for an isolated NiFg cluster for which there is no cancellation
of the spin density on the ligand sites, as is the case for antiferro-
magnetic ordering. The comparisons are made here to the anti-
ferromagnetic case because only for very small scattering angles
[where our f(K) curve has a sharp peak] would the two differ
significantly, and because experimental data are available only for
the antiferromagnetic case.
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which does not occur in the ferromagnetic (or paramag-
netic) case, and it is this ligand density which is
responsible for the structure (barely visible) at
(sinf) /A0.2 in Fig. 10.

Since the cluster calculations reported in this paper
suffer from a number of approximations (discussed
earlier), we shall not compare in detail our calculated
values with experimental data, such as Alperin’s® on
NiO. (To our knowledge KNiF; has not been investi-
gated.) We find that our computed f(K) lies below the
experimental data even when the latter is scaled by the
factor 0.82. It does, however, lie above the free-ion
curve (as is evident from Fig. 10). Part of the improve-
ment over the free-ion value is due to the allowance for
spin polarization (first considered for Ni** by Watson
and Freeman®), an allowance carried through, however,
for the calculated f(K) curves shown in Figs. 8-10.
While the inclusion of the scattering from the un-
quenched orbital moment of the Ni?* ion, discussed by
Blume,”” would also help the agreement with experi-

1.0

0.8

ol \
i - F1c. 10. Spherical part of the
o \ form factor fo for (NiFe)4~ and

0.4 A\ Ni?* jon (scaled to 0.82).

\\
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ment, the final neutron form factor is still too small at
scattering values >0.4471

More accurate cluster calculations would, of course,
be of interest for the Ni?* systems. However, calcula-
tions for the Mn?*t complexes would be of perhaps
greater interest since these show a form factor which
lies well delow the free-ion values and show no reduction
in absolute intensity in the forward direction, as
emphasized by HM. Neither of these effects is under-
stood presently using simplified LCAO models. More
rigorous calculations are in progress and results will be
reported in the near future.®

VII. DISCUSSION OF RESULTS AND
CONCLUSION

The calculations on Ni*t, Ni>*Fg-, and Ni2tF~
clusters reported in this paper emphasize the importance

3% H. A. Alperin, Phys. Rev. Letters 6, 55 (1961).

38 R. E. Watson and A. J. Freeman, Phys. Rev. 120, 1125
(1960) ; 120, 1134 (1960).

37 M. Blume, Phys. Rev. 124, 96 (1961).

38 D). E. Ellis and A. J. Freeman, Bull. Am. Phys. Soc. 13, 482
(1968).
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of treating all electrons of these molecular clusters in a
self-consistent manner. We accomplished this by
generating symmetry orbitals for the clusters which
may be any variationally determined mixture of
central-ion and ligand basis functions.

At this point we should emphasize once more that
our results, though they are self-consistent, still are a
very crude approximation to a solution of the Hartree-
Fock equations. This is mainly due to the limited
character of our basis set which, at this level of effort,
is probably inferior to a minimal Slater basis. It is very
well possible that the crude basis we are using affects
some of the results (for instance, the ordering of the
€y, o orbitals). Although our calculations are not more
than a very simple approach to more extensive HF
calculations on these systems, they already indicate a
number of features not found in earlier work. In
particular, the spin splitting due to the open e, shell is
found to play a predominant role.

Our results show that in addition to the mixing of
metal 3d and ligand orbitals usually considered in an
LCAO-MO treatment there is a significant mixing in
representations containing the metal 3s and 3p orbitals.
Thus the covalency found in the ay, and #, representa-
tions of NiFs seems as important as that of the ¢, and
ty, symmetries in any LCAO picture of the system. The
LCAO interpretation is further complicated by the
necessity of describing the strong s-p ligand hybridiza-
tion which is found; however, it serves as an invaluable
qualitative guide in the choice of basis functions and in
examining the self-consistent cluster orbitals. The fact
that the orbitals which we have plotted can be clearly
identified in terms of LCAQ’s of about the shape and
energy ordering to be expected is satisfying, considering
the very limited basis sets which were used.

It appears that the LCAO picture can be carried
only so far in describing the molecular orbitals of these
complexes since it has been known for a long time from
studies on small molecules that free-atom orbitals form
a rather poorly convergent basis set. For example, the
3s and 3p functions used here are not atomic metal
orbitals but merely basis functions for our calculation.
We know that a larger basis will give a more accurate
wave function and may reduce the 3s-3p-ligand mixing
along with the 3d-ligand mixing. However, we observe
that compared with the 3d mixing, the 3s-3p mixing is
still important and must be taken into account.

An alternative approach for the calculation of wave
functions for transition-metal complexes which has
received recent attention!®? is the familiar Heitler-
London or so-called “configuration interaction” tech-
nique mentioned in the Introduction. The term “con-
figuration interaction” is used advisedly because of very
special assumptions made concerning the participating
determinantal states. In this approach the interaction
of metal and ligands in the cluster is considered as a
perturbation on various free-ion states with a number
of possible single-electron transfers taken into account.
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Thus for NiFs one might write the cluster wave function
as a sum of states, each of which is taken to be the
antisymmetrized product of free-ion states with
particular orbital assignments for each ion.® The states
which are expected to be important for NiFs would
then include, for example, Ni(3d®%) XF(2522p°),
Ni(3d84sY) X F(251248), Ni(3d°) X F(2s?, 29°), etc. [note
that F(2sm2p") actually means the proper combination
of all six ligands]. The proponents of this method
conclude that a correct description of the cluster must
include electron-transfer effects of this type which
involve excited states of the ions.

We may suggest that the MO-SCF single deter-
minant method which is applied in the present work is
capable of reproducing many of the effects described
as one-electron transfers in the Heitler-London theory.
The reason is simply that one is not bound to the
restricted LCAO basis set and basis sets may be chosen
which have sufficient variational freedom to permit an
admixture of such functions as the metal 4s and 4p
orbitals in the occupied molecular orbitals. The model
calculations which we have made on KNiF; are not
intended to be highly accurate MO solutions for the
cluster problem, but were chosen instead to demonstrate
the feasibility of the method and to reveal general
features of the solution for a system of current interest.
A strict comparison of the Heitler-London and MO-SCF
results is not possible, because of the semiempirical
nature of the H-L calculations to date; however, our
results are sufficiently encouraging to conclude that
the MO-SCF method merits further study.

The calculation of the crystal-field splitting for the
Ni2t and NiFs clusters reported here shows the necessity
of taking into account the metal-ligand mixing of
orbitals. Although the splitting between the ground and
first excited states of NiFs is found to be of the right
order of magnitude, one must be wary of attaching any
great significance to the result. We see that the energy
difference appears in the sixth significant figure of the
total-cluster energies, and results from the detailed
rearrangement of a large number of orbitals. The fond
hope that the excitation energy could be treated simply
as the promotion of a single electron from a o, to an ¢,
orbital without further rearrangement seems to be
unjustified; this is the same conclusion reached in an
earlier LCAO-MO study.’® The very small role which
the crystal field of ions external to NiFg plays in
determining A may help to explain why the optical
spectra are not very different for the complex in solution
or in the crystal. We have already mentioned that the
small size of crystal-field matrix elements results from
the cancellation of regions in the vicinity of the ligands
where the potential is large but varies in sign. In this
connection one would like to extend these calculations
to a basis with greater angular freedom to see to what
extent this cancellation holds for more accurate wave
functions.

The use of a spin-unrestricted wave function leads to
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a reasonable splitting A; the pseudo-closed-shell wave
function is useless for this purpose, since errors inherent
to the pseudo-closed-shell estimation of Coulomb and
exchange potentials are an order of magnitude greater
than the splitting. The fact that a single-determinant
wave function can lead to a reasonable value of A for
NiFs (although it gives a poor F~ spin density for
Ni,F) is encouraging; however, we have no idea as yet
what effect a spin projection of the wave function might
have on these parameters.

Three major problems remain for future work. The
first is to determine better single-determinant wave
functions, and this requires considerable work to
improve the type and number of basis functions used.
The second problem is to discover those limited-
configuration techniques which will allow a satisfactory
description of the spin and will include significant
correlation effects. The third, and perhaps most inter-
esting, task is to carry out the complete self-consistent
crystal solution which will (in the one-electron picture)
lead eventually to the true Wannier orbitals of the
system. Further work on these problems is in progress.

APPENDIX A: COMPUTATIONAL TECHNIQUES
FOR THE MIXED ONE-CENTER BASIS SET

We first describe a method for computing function
values for the function 9,um; (e, 7, R). This function can
be written in terms of modified Coulson-Barnett
¢ functions® according to

A—m)!
Nuimr (e, 7, R) =™t 'EX'_'*_—Z-;—,
1
X exp(— | ar—aR |) ;m(iiZ) (aR) 4
A-§
X (ar)i(—1)m > Dj(Am | im)tnt.i(or, aR).
=Dl

(A1)

Here the coefficients D; are the well-known vector
coupling coefficients for spherical harmonics.® To
compute { functions one may use the recursion formula

§m+2,n= (t2+72)g‘m,n
—[2tr/ (2n4-1) I8 mine1t (1) S nia ]

Starting values are given by

(A2)

Con(t, 7) = ()12 exp(r>— 7<) Inp1/2(7<) Kny1pa(7>)
(A3)
and

§'1,n=[t7'/(2”+ 1)](;0.11—1_.{‘0.7!14)1 (A4’)

® M. P. Barnett and C. A. Coulson, Phil. Trans. Roy. Soc.
A243, 221 (1951).

© F, J. Corbato and A. C. Switendick, Methods in_Computa-
tional Physics, edited by B. Adler, S. Fernbach, and M. Rotenberg
(Academic Press Inc., New York, 1963). Vol. 2, p. 155.
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where

7’<=(i, 7)< r>=(t) T)>:

and I,z and K,y are modified Bessel functions.
A more complete discussion of { functions can be found
in the literature.”? The radial parts of some typical
a and b functions are shown in Fig. 11.

The computation of one-electron integrals containing
b-type functions is performed by straightforward
numerical integration, using Gauss-Legendre quad-
rature points for the region between 0 and R and
Gauss-Laguerre points for the region from R to «.
The only trouble for the one-electron integrals may
arise from the operators —3V? (kinetic energy) and
> B 1/rp (interaction with ligand nuclei). For the
kinetic energy one can derive that for #>1

— 5V bnimpne=3{L(+1) —n(n—1) 162, tm; 2o

+2anbn—1.lm;)uw"' azbnlm,k;w} . (AS)

Special formulas can be written for the case #=I. In
order to obtain a formula for the ) 5 1/75 operator one
can expand 1/7p for each ligand in a spherical-harmonic
series about the central ion and then rotate all spherical
harmonics to a common coordinate system. This leads
to the expression

§fs‘l= ;5‘(7, R) 2 denl (4=m) Y/ (I+m) 1]

XC(l, m, ) Pin(6) Sw*(¢), (A6)

T

o. tr r—
Fic. 11. Radial functions for the one-center basis.
(a) rme=r; (b) nom,0; (€) mowo; (d) 72101,

91 Q. N. Watson, Theory of Bessel Functions (Cambridge
University Press, New York, 1923).

2 M, P. Barnett, Methods in Computational Physics, edited by
B. Adler, S. Fernbach, and M. Rotenberg (Academic Press Inc.,
New York, 1963). Vol. 2, p. 95.
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where
3'(r, R) =r/r,tH,

em=1 for m=0, en=2 for ms#0,

C(l) m, ‘7) = ZDOﬂlma(aB: ﬁB: 'YB) .
B

The coefficients D are rotation coefficients for spherical
harmonics® and ap, Bs, ¥p are rotation angles corre-
sponding to the ligand B. For the two-electron integral

I=/dv1t1>,~*(r1)<1>j(l‘1) /dvzq’k*(rz)q’l(fz)fm—‘ (A7)

the operator 1/75; is expanded in spherical harmonics
about the central ion and the integral then can be
written as a finite sum of products of radial and angular

integrals
I=>R()AQ). (A8)
l

The angular integrals 4 (J) are easily computed with the
help of orthogonality relations for spherical harmonics.
The radial integrals are

RO)= [ dnos(r) [ draoa(m)dt (o), (89)
0 0

where pi1(71) is the radial part of 72®*®; and pa(72) is
the radial part of 72®.*®;. After partial integration,
Eq. (A9) may be expressed as

R()=(24+1)R l j; Lt [ /0  ou(uR) u‘du]
X [ /0 1 pg(utR)u’du] + fo "y [ fo " o(uR/) u’du]

X [ fo ' m(uR/1) u’du]} . (A10)

Using this integral transformation an efficient scheme
for computing two-electron integrals may be obtained
as follows:

(1) Compute first a two-dimensional grid of integra-
tion points using the Gauss-Legendre method.

(2) Compute the radial-function values of all basis
functions ®; at all points.

(3) With these function values, compute inter-
mediate integrals of the type

1 1
/ p(utR)u!du and (1/%) / p(uR/t) w'du
0 0
for all possible charge densities p.

(4) In order to compute a two-electron integral,
now first compute the angular integrals 4 (7). If these
integrals are nonzero, construct the radial integrals
R(l) from the intermediate integrals and sum over /.
Using this approach, two-electron integrals were com-

4 J. O. Hirschfelder, C. F. Curtiss, and B. B. Bird, Molecular

Theory of Gases and Liquids (John Wiley & Sons, Inc., New York,
1954), p. 905.
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puted on an IBM 7094 computer with an accuracy of at
least 10® a.u. and with typical computation times
of 1-5 msec.

The computation of two-electron integrals is also
speeded up by the fact that we can take advantage of
cases where all degenerate components of a given
symmetry species are occupied in the molecular wave
function. The secular equations for each component are
identical and there is no necessity of carrying about
redundant information; therefore, when two-electron
integrals are computed, all degenerate components are
immediately summed into the Coulomb and exchange
potentials. As an example, consider the interaction of
function pair (4,7) with the fully occupied triplet of
functions fp, (£, 9, {); the integrals which are actually
computed are

V5% (ty) = (s | 1/ma | E&+mm+-55),
Vi, B8 (ty) = (& | 1/r1a | E)+(im | 1/ | jm)
+ @ | /2| j8). (A1)

In this way redundancy in the computation of radial
integrals is eliminated and the number of integrals
which must be manipulated is greatly reduced.

APPENDIX B: CRYSTAL-FIELD POTENTIAL AND
MATRIX ELEMENTS FOR A ONE-CENTER
BASIS SET

1. Coulomb Field
The crystal-field potential may be written as
(L—-M)!
(Z+M)!
(B1)

expanded about the central ion. For cubic crystals we
have the selection rules

=0,
L=0,4,6,8, -+,
M=0,4,8, .-, L.

For a one-center basis set having maximum orbital
momentum /yax, the only nonzero matrix elements are
for LL 2l,.x. We do not compute the L=0 (Madelung)
term directly, but compute deviations from the (con-
stant) Madelung potential. If the Madelung constant
is known, the matrix elements can be placed on an
absolute scale, and are computed in atomic units
(a.u.).
The radial function Viyz may be written

Vinz(r) =D Cruz(v) U,L(r),

V(r)= D Viuz(r) PLM(u) Sa®(e) beur
LM

(B2)

where the sum is over all ion shells exterior to the
cluster. Crys(v) is a coefficient obtained by summing
rotation elements for all ions of a shell. If the basis orbi-
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F16. 12. Point-ion potential for (NiFg)4~ in KNiF;.

tals are of the form ®uums(r) =NRu(r) Pr(u) Sw’(e),
the matrix elements appear as

N_s e S(£)
(®@| V(r) | ®)=3(2aNN")5,% L%:'i AN

XDr(l, m |V, Fm')dimim| uRAD Ly minrr.  (B3)
For =0, the sign functions are S(+)=(—1)°,
S(—)=+1. The Dy are vector coupling coefficients,

and since L is even, we have [+ even for nonzero
elements. The radial integral is

RAD 14t miwtr = f 72drRos(7) Rurir () Viaro(r).  (B4)
0

To compute the radial integrals we divide the sum
v over shells of ions into a ‘“‘near-field’”’ and a “far-field”
part:

Vins(r) = }‘; Cruz(v) U,r(r)

The far-field or outer-shells sum is given in the non-
overlapping point-ion approximation. The near-field or
inner-shells sum takes all overlap effects into account.

The parameters u and vmax can be chosen to obtain
any required accuracy in the matrix elements. Since
R,= (n2(») +n2(v) +n2(v) )2d, where d is half of the
cube edge, we may rewrite the far-field sum as

( i:' Cruz(v)

efi (1') ) C rl
=ClLm Z T3
) n,IHD12) gLt Jr”

Thus

Crms’ — + Z Couz(»)U,r(7).

n 2 (B6)

Vius(r) =

We may now consider the radial potential U, in the
case of a spherically symmetric screening charge density.
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The charge density may be represented by a super-
position of Slater orbitals. In that case,

Usslr) = Zaar)on(r, R) = 5 S 2o
x(r+1) 3 20T g e, k), (B)

where
Zet1(v) =net charge on ion;
Sij=density coefficient for orbital pair 4, 7;
D;, Dj=normalization constants for orbitals i, §;
aij= o+, oy =orbital screening constant;
ni=mni+n; (ni=
A=n;—1;

{x,L=molecular zeta function (modified).

principal quantum number) ;

The first term accounts for the overlap of cluster basis
functions with a point ion, and the last is a correction
for overlap of cluster and ion charge densities.

As mentioned before, only deviations from the
Madelung (L=0) potential are computed. This means
that the term Cyo(1/d) is omitted in Eq. (B6) and
that U,, is modified by replacing 6&(r, R,) by
do(7, R,)—1/R, in Eq. (B7).

By way of illustration we show in Fig. 12 the point-ion
potential in several directions about a Ni** site in
KNiF; including all ion shells from (%1, #2, #3)=
(1, 1, 1) to (20, 20, 20) and truncated at an angular
momentum L=10. Extending the sum to higher L acts
to make the walls of the potential somewhat steeper as
one approaches the edge of the cavity. In Fig. 13 we
plot the L=4 component of the point-ion potential
separately. Since very restricted basis sets will only
sample small-L components of the potential, one obtains
a very different picture of the crystal environment. We

(1,1,1) direction

04—

(0,1,1)

.02

V.0 o

pt ion

L=4 only

(0,0,
-.04 |~
|

9 f 2 r/d
F16. 13. L=4 component of point-ion potential.
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may note that the L=4 component even shows the
opposite sign to the total potential beyond the ligand
(F-) radius in the (001) and (011) directions. In view
of our limited basis set calculations, this leaves the
size of the actual external crystal-field splitting some-
what questionable.

As an example of the size and importance of overlap
corrections to the point-ion potential we plot in Fig. 14
the overlap correction for the (F~)¢ ligand shell. The
quantity plotted is CreUL(7) with Zess=0 in Eq. (B6),
using Clementi’s F~ wave function.”® Since the overlap
correction decays exponentially with r, only the first
few shells of neighbors need be included in the overlap
sum.

2. Exchange Field

The simplest approach to the crystal exchange field
is to consider first the two-center exchange integral

(AdB| AB)= ff dvidva*(4, 1)

Xax(B, 1) (1/rs)as*(4, 2)as(B, 2). (B8)

In particular let as=as, and write these functions as
ai(B) =Rui(r) Viu? (6, ¢) (B9)

in terms of normalized angular and radial functions. If
the orbitals a; and a4 are members of a fully occupied
orbital shell, we may make use of the addition theorem:

> Vs (B, 1) Yiur (B, 2) =[(21+1) /4x1P2(B; 1, 2).
(B10)

Thus we shall treat sums of integrals of the (4B | AB)
type over orbital closed shells on center B. Define the

(F)g
(0,0,1) direction

[¢] t r/d
05 I 1.5

T16. 14. (F-)g overlap correction to its point-ion potential.
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two-electron density for angular momentum L as

shells I=L

ou(B;1,2)= 3

13

a®(B,1)a:(B,2), (Bll)
where, for example, po is the summed two-particle
density for electron 1s, 2s, 3s, ++- shells. Using Eq.
(B11), this can be written as

pu(B;1,2) =[(2L+1) /4x]P1*(B; 1, 2)

shells I=L

X 25 Ru(1)Ru(2)

=[(2L+1)/41r]PLO(B; 1, 2) RadL(rm, 7’32)

(B12)
where
shells I=L

Radr(rs, ) = 2,  Ru(1)Rau(2)

is the radial two-particle density.
Now clearly the exchange sum of integrals can be
written as

fixed L

> (41Ba(m, o) | AsBs(m, o) )= f f dnduar*(4, 1)

% ((2L+1) PL(B; 1, 2)

™ o~ Radp (s, fBz)) a(4,2),

(B13)

and the exchange interaction of orbital pair a:(4),
@;(A) with a closed-shell ion at B appears as .

ion B

V'-'].Exch____. kZ/ d‘l’ld‘l)ga,'*(A, 1)ak(B, 1)(1/1’12)
Xa*(B,2)a;(4,2)
ion B 2L 1
= Z ( + )/f dﬂld’l)zd1*(A, 1)

T 4r

P(B; 1,2
X (—’f—(—r———) Rady(7s, rBz)) a;(4,2). (B14)

12

The operator P1°(B;1,2)/r» depends only on the
relative coordinates, and can be transferred to center
A directly. The radial function Rady, can be expanded
about center 4 in a double spherical-harmonic series,
and the orthogonality of spherical harmonics reduces
the expression for V; ®xt to a single infinite series of
products of angular and radial integrals. The com-
putation of exchange with an entire shell of (closed-
shell) ions is only slightly more difficult than the two-
center case. The radial integrals are identical and the
angular integrals become a sum of products of rotation
and vector coupling coefficients. The formulas are
rather lengthy and will not be given here, but are quite
easy to program for a computer.



