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Free Energy of Interacting Magnetic Dipoles*
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A system of spins on a lattice with magnetic dipole-dipole interactions, exchange, and anisotropy forces
is shown to possess a well-defj. ned bulk free energy, independent of sample shape, in the thermodynamic limit,
provided there is no external magnetic 6eld. The proof applies to classical or quantum spin systems with
arbitrary g tensors, and is independent of any assumption of order or disorder in the magnetic phase, con-
vergence of perturbation series, etc.

I. ~mRODUenom

ELEMENTARY magnetostatic considerations show
~ that the free energy of a sample of magnetic

material placed in an external magnetic 6eld will

depend on the sample's shape. The microscopic origin
of this shape dependence is the long-range dipole-dipole
interaction between the elementary magnetic moments.
Such interactions are often neglected in theoretical
calculations (typically, "exchange" energies are much
larger than dipole-dipole terms), but they lead to
important effects, such as domains, in real ferro-
magnets. In some materials, '' the dipolar energy is
comparable with or larger than the exchange terms
and makes a non-negligible contribution in low-temper-
ature phase transitions. In the absence of a magnetic
field, one would expect the free energy to be shape-
independent unless the sample has a net magnetization.

Calculations by Sauer' and by Luttinger and Tisza4
indicated that the ground-state energy of a system of
dipoles on a face- or body-centered cubic lattice is a
minimum when the dipoles are ferromagnetically
aligned along the axis of a thin, needle-shaped specimen.
On the other hand, they concluded that the extra
energy due to demagnetizing effects would favor an
antiferromagnetic state in a spherical sample. Thus
the ground-state energy should depend on the shape,
even in the absence of an external field. However,
Kittels subsequently pointed out that the formation of
domains (within which the dipoles are ferromagnetically
aligned) would be expected in samples with finite
demagnetizing factor, rather than a (local) anti-
ferromagnetic arrangement. This explanation seems
to agree with experiment for at least one dipolar ferro-
magnet. '
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Hiley and Joyce, ' Levy, r and Horner' have attacked
the problem of systems with dipolar forces by means of
perturbation series. They obtain the results expected
on the basis of naive magnetostatics: The free energy
is independent of shape in the absence of a magnetic
field, and has the expected shape dependence in the
presence of a field.

%e think the arguments of Refs. 5—8 are in essence
correct, though they stop somewhat short of rigorous
proofs. Despite its numerous successes, domain theory
still rests on rather insecure theoretical foundations. '
And the difhculty with perturbation arguments is
showing that the series converge. In fact, one would not
expect the series to converge beyond a phase-transition
point, and hence a different starting point for the
perturbation series is needed, depending on the phase.

For these reasons, we wish to present a rigorous proof
for the existence and shape independence of the bulk
free energy for a lattice of interacting (permanent)
dipoles in the absence of an external magnetic Geld.
The argument works both at finite temperatures and at
zero temperature for classical or quantum dipoles with
arbitrary g tensors. It does not depend on whether the
material is in an ordered or disordered phase. In ad-
dition, the Hamiltonian may include single-ion ani-
sotropy and isotropic or anisotropic exchange (assumed
to be of short range). Thus the argument applies to a
majority of the lattice models used in discussions
of ferromagnetism and antiferromagnetism. In par-
ticular, when applied to the systems considered by
Sauer and t.uttinger and Tisza, it shows that the
energy they obtain for long, thin needles is an upper
bound on the true energy for any sample shape.

An extensive (proportional to the number of par-
ticles) free energy for a macroscopic system presumably
reQects the short-range character of the forces between
the constituent atoms. Thus the free energy of a large
system composed of smaller components should equal
the sum of the free energies of the components, plus
terms due to interactions between different components.

6 B.J. Hiley and G. S. Joyce, Proc. Phys. Soc. 85, 493 (1965).
7 P. M. Levy and D. P. Landau, J. Appl. Phys. 39, 1128 (1968);

P. M. Levy, Phys. Rev. 170, 595 (1968).' H. Horner, Phys. Rev. 1'72, 535 (1968).
9 S. Shtrikman and D. Treves, in Magnetism, edited by G. T.

Rado and H. Suhl (Academic Press Inc., New York, 1963),
Vol. III, p. 395.
655



656 ROB ERT 3. GRAF FITHS 176

where C is a constant depending on the interaction
potentials but independent of the number of particles.

(2) One shows that the free energy Ii of a system
composed of two components with free energies P~ and
Ps is bounded front above by

++~1+~2+~12) (1.2)

where d» (a "surface energy") is suitably small in
comparison with Il for a large system.

(3) The results (1.1) and (1.2) are combined with
geometrical arguments to establish the existence of a
bulk free energy for systems of increasing size that are
suKciently regular in shape.

To date, the proofs have been unable to cope with
two important potentials: Coulomb and dipolar
interactions. In both cases, difBculties arise at step 2
because of the long-range character of the interactions.
With pure Coulomb interactions, even step 1 is a
nontrivial problem whose solution has only recently
appeared. '4

Step 1 for magnetic dipoles on a lattice, discussed in
Sec. II, is not diKcult, but a bit more subtle than the
arguments that suf5ce for forces of short range. In the
absence of a magnetic Geld, step 2 may be handled by an
appeal to time-reversal invariance of the Hamiltonian,
as discussed in Sec. III. This argument for step 2 is the
only really original feature of our proof; the remainder,
including step 3 (also discussed in Sec. III) follows a
well-marked path. (The analog of time reversal for
Coulomb systems is charge conjugation, but this is only
useful in the unphysical situation where positive and
negative particles have equal mass. ) Some comments
on how our proof applies to model calculations and

M C. ¹ Yang and T. D. Lee, Phys. Rev. 8'7, 404 (1952) .
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The latter (when forces are of short range) should
represent a small fraction of the bulk free energy,
roughly proportional to the ratio of surface to volume
for the components.

The foregoing idea is the intuitive basis for a number
of proofs'~" that the usual procedures of equilibrium-
statistical mechanics (canonical ensembles, etc.) when
applied to a variety of models yield extensive free
energies in the limit of large systems. In essence, the
problem is to Qnd bounds for the ratio of "surface"
to "volume" free energies, and show that this ratio
goes to zero for an inGnite system. The proof usually
proceeds through three (almost) independent steps:

(1) One shows that the energy E (strictly speaking,
the free energy, but it is usually not dificult to extend
the bound to finite temperatures) for a system of N
particles is bounded from belotv by

measurements on real magnetic systems are found in
Sec. IV.

y;g ——R;—Rg, (2.1)
and

A,s'@=
[ p;s [

—3/8 p
—3p;s p;ss/[ p;s ~'j (2.2)

(we use Greek superscripts for Cartesian components),
then the dipole-dipole interaction energy Kq has the
form

&a=-,'g g A;s &p; ps& (2.3)
jk oP

(where we assume that A;s vanishes if j=k) .
If E&0 is one-half the minimum distance between

any pair of dipoles, we shall show that

1 Z Z (p~')'.
2R'

(2.4)

The inequality is established using the result that the
energy of a con6guration of magnetic "charges"
(monopoles)'s may be expressed as an integral of B'
over all space, if B is the magnetic Geld arising from the
"charges". Unfortunately, the integral diverges for
point dipoles, but the interaction energy between
dipoles is unchanged if each dipole is replaced by a
sphere of radius E with an appropriate surface "charge"
distribution. Of course, two such spheres must not
overlap; this determines the choice for E.

The field B,(r) due to the jth dipole may be written
as

where

B = V'f—
f; (r) = ts; r,/(r;), for r;)E

for r;&R

r;= r—R;.

(2.5)

(2.6)

(2 &)

The self-energy of the dipole is

(2 g)

and the total energy of the magnetic charges is

Ks+ Q E;= — d'r ( QB;)'&0,
sx j (2 9)

from which we obtain (2.4) .
One can, of course, verify (2.9) directly without any

appeal to magnetostatics by showing that

1
Q A;s'p, loess=

— &'r (B; Bs)
4x

(2.10)

«' Needless to say, we introduce magnetic monopoles for con-
ceptual purposes only. See M. E. Fisher and D. Ruelle Q. Math.
Phys. 7, 260 (1966)g for an analogous argument.

II. LOWER BOUND FOR THE ENERGY

Consider a system of X classical dipoles, where the
jth dipole located at the position R; has a moment
p;. If for j&k,



176 FREE ENERGY OF INTERACTING MAGNETIC DIPOLES

sZZA. .t-t. —,Z(t-)'
m n m

(2.11)

Since A „ I see (2.2)] is a real, symmetric matrix, its
eigenvalues X„are real, and A may be diagonalized
with the help of a real, orthogonal matrix V:

A„„=Q lb,oV „V„o. (2.12)

where the integraI is most easiIy evaIuated by noting
that P; L'as defined in (2.6)j satisfies Laplace's equation
except at

I r; I
=E.

With m an abbreviation for the pair ( j, n), and n
for (k, P), we write (2.4) as

~a& —
2~, Z I g I'St(St+1)

results from combining (2.18) and (2.4).

(2.19)

(with 8; the total spin quantum number), one obtains

g (tt; )'&
I g; I'8;(8;y1) (2.18)

a

as an operator inequality (where the right side is a
multiple of the identity) in the quantum case or an
ord. inary inequality for a classical spin: a point on the
surface of a sphere of radius I S(S+1)1't'. In either
case,

Dehne

(2.13)

III. EXTENSIVE FREE ENERGY

A. Preliminaries

and insert (2.12) in (2.11) to obtain

(2.14)

Since (2.11) holds when the tt are any set of real
numbers, the same holds for oo in (2.14), from which
it follows that for all p,

X„&—1/(2Zs). (2.15)

nQ g,ae. 8)I
P

(2.16)

where g; is a real, symmetric matrix, and
I g; I

is the
largest of the absolute values of its eigenvalues. By
diagonalizing g and using the relation

g (S,e) =8,(8,+1) (2.17)

' A discussion for tinite-dimensional matrices (adequate for
our purposes) wiII be found in P. R. Halmos, Finite-Dimensional
Vector Spaces'(D. Van Nostrand Co., Inc. , Princeton, N.J., 1958),
p.&139.

With the help of (2.15), (2.4) may be extended to
the case of quantum dipoles, for which the p; appear-
ing in (2.3) must be replaced by appropriate Hermitian
operators. A Hermitian operator (tl is positive, " 8&0,
if all its eigenvalues are non-negative or, equivalently,
if the inner product (p, Q,p) is non-negative for any P;
8~$ means that 8— is positive. It is in this sense
that we shall establish (2.4) as an operator inequality.
Let the Hermitian operators v„be defined by (2.13).
The square of such an operator is positive, and (2.15)
implies that each summand on the left side of (2.14)
is positive. Thus (2.14) holds as an operator inequality,
and the same is true for (2.11) and (2.4) .

For free electrons, the magnetic moment p (in units
of the Bohr magneton) and spin S (in units of fi)
operators are parallel and related by a g factor (~2),
but in paramagnetic crystals S will in general be some
"effective" spin operator, not in general parallel to p.
We shall assume that

Tr12)= expLC1V(Q) ), (3 4)

Consider an infinite crystal consisting of an aggregate
of identical unit cells arranged oa a regular lattice.
Each unit cell contains a 6nite number of dipoles at
arbitrary locations and with arbitrary choices of 8;
and g;. (Of course, the choice is only arbitrary for one
unit cell, since the cells are all identical. ) The "proto-
type" Hamiltonian for the in6nite crystal is

(3.1)

with Xq defined, in (2.3) and

SC.= g g ~;,-&S;-S,e, (3.2)

where the 6nite constants J;; are assumed to vanish
when spins i and j are further apart than some specified
distance, and are chosen so that K, has the transla-
tional symmetry of the lattice. Note that i=j is per-
mitted in (3.2), so that single-spin anisotropy is
allowed as well as isotropic or anisotropic exchange.

A finite crystal Q is a finite set of unit cells, cV(Q) in
number, , chosen from the infinite crystal. Its Hamil-
tonian K(Q) is defined. by deleting from (3.1) all terms
that involve one or more spin operators for spins not in
Q. The partition function Z and free energy F(Q) are
de6ned as usual:

Z(Q) =expI —F(Q)/kTj
=Tr[expI —SC(Q)/kT)I, (3.3)

where Tr stands for trace, a sum over the quantum
states of the crystal 0 or the corresponding multiple
integral for a classical system, and the temperature T is
positive.

An upper bound for Z is obtained by replacing 5C(Q)
by its lowest eigenvalue, or a lower bound for this
quantity. A lower bound for BC, proportional to X(Q)
(and not otherwise dependent on Q) is easily con-
structed using the methods of Ref. 12, while (2.19)
gives a corresponding estimate for 3'.~. The sum of
these lower bounds is a lower bound for K(Q).

Since, in addition
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where C is a constant determined by the contents of a
single unit cell, we conclude that F(Q) has a lower
bound

F(Q) )—DA" (Q) (3.5)

with D a function of temperature, etc., but independent
of 0.

B.Basic Inequality

Theorem: Let 0 be the union of two nonoverlapping
(disjoint) "subcrystals" Q& and Q2. Then

holds if P, is everywhere replaced by g;. However, t',7„
de6ned using (3.10) and replacing cb; by P;, is equal to
—|;v, because X&2, unlike X(Q&), contains only terms
linear in the spin operators of 0~, and these change sign
under 0&. Thus if we add to (3.8) the inequality ob-
tained by replacing p; by @; and divide by two, the
result is

Z(Q) ) g }exp)—(e,+qq)/kT7} cosh(l, q/kT)
jk

) g expL —(c,+7)g)/kT7=Z(Q ) Z(Q ), (3.14)
F(Q) (F(Q,)+F(Q,). (3.6)

where the inequality is a consequence of "Peierls's
theorem. ""' Using (3.7), we see that

(~,V., x(Q) ~A.)=;+~.+~;, (3 9)

~~= (4A'» x»4A'~). (3.10)

Let 8& be the time-reversal operator" for the crystal
0&, it is an antiunitary operator with the property that

g g.ne —j. g.a (3.11)

if i denotes a spin in crystal 0j. If, in particular, we
choose basis states so that the matrix elements of Sp
are imaginary, an explicit form for 0~ is

0~ ——
L JJ exp(AS@) 7t:, (3.12)

jeOy

where 8 is the (antilinear) operator that takes the
complex conjugate of numbers appearing to its right.

Since X(Qq) contains only terms quadratic in the
spin operators of 0~, it is invariant under, that is it
commutes with, 0~. Hence

(3.13)

is an eigenfunction of X(Q~) with eigenvalue e;, and
since 8& is antiunitary, the I@,} form a complete ortho-
normal set for Q~. Indeed, the inequality (3.8) still

"R. Peierls, Phys, Rev. 54, 918 (1938); see also Refs. 11(b)
RIll 12.' E. P. Wigner, Group Theory 4,

'Academic Press Inc., New York,
1959), Chap. 26.

Proof: %e may write

x(Q) =x(Q~)+x(Q,)+x,2, (3.7)

where X~~ includes all the terms in (3.2) and (2.3)
that involve the product of two spin operators with
one spin in Qq and one in Q2. Let {P;}be a set of ortho-
normal eigenfunctions for x(Qq) and Ie;} the cor-
responding eigenvalues; for X(Q2) let (fq} and fgq}
be eigenfunctions and eigenvalues, respectively. The
product states Ip,g~} form a complete orthonormal
set for 0, and may be used in evaluating the trace in

(3 3):
Z(Q) = Z (~,&., "pL—x(Q)/»7~, ~.)

) Z e p|:—(&A', x(Q)4A )/&2'7, (3.8)

and (3.6) is an immediate consequence.
The above proof was carried out for finite positive

temperatures. However, it also applies in the limit
T—+0, since it is obvious that for any finite system
the free energy goes continuously to the ground-state
energy as T—+0. The case of negative temperatures is
best handled by reversing the sign of X in (3.1). We
require in place of (2.4) an upper bound to X&, which
can be obtained by replacing the magnetic "charge"
on the spheres of radius R by a dipole (or current) dis-
tribution. (The reader may work out the details if he
is interested. )

The analogous proof for classical spins should be
obvious: Og turns S; into —S; for every spin in 0g and
is thus a volume-preserving map of the phase space
onto itself which reverses the sign of BC~2. The Peierls's
theorem inequality is, of course, unnecessary.

G. Geometrical Arguments

Procedures for proving existence and shape inde-
pendence of the bulk free energy given the basic
inequality (3.6) have been worked out in great detail
by Fisher, " so our discussion will be confined to a
skeleton outline. For convenience of discussion, we
assume a simple cubic lattice; the extension to other
cases is obvious. Define the free energy per cell

f(Q) =F(Q)/cV(Q), (3.15)

and when 0 is a cube measuring 2~ unit cells on a side,
denote f(Q) by ft,. Since we can always put eight
identical cubes together to form a larger cube, (3.6)
implies in particular that the sequence fo, f&, f2, ~ ~ ~ is
monotone decreasing, and (3.5) that it has a lower
bound. Therefore, the sequence possesses a limit f,
which we call the bulk free energy.

While f was obtained as a limit for a special sequence
of cubes, in fact it is also the limit for an arbitrary
sequence of cubes of increasing volume. Suppose that
0 is a cube nz unit cells on a side. If k is the largest
integer such that 2~(m, we may think of 0 as com-
posed of one cube with edge 2~ occupying one corner;
either 0 or 19 cubes with edge 2~' placed next to the
cube of edge 2~, etc. , so that 0 is composed of smaller
cubes whose free energies belong to the sequence

I fI,}.For large m, a negligible fraction of the volume is
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fr, limf(L, ——L, P) (3.17)

is well defined, and. then (3.16) tells us that fz,)f
and

(3»)ln11fz =f

IV. DISCUSSION

In Sec. III, we have established rigorously that for a
large class of lattice models that include magnetic
dipolar interaction, the bulk free energy exists and is
independent of sample shape in the thermodynamic
or infinite-volume limit, in the absence of an external
magnetic 6eld. These results have implications both for
model calculations and (we believe) for real systems.

Consider 6rst the work of Luttinger and Tisza. 4

The energy they calculated for a ferromagnetic con-
figuration in a long, thin needle in the fcc (or bcc)
lattice is an upper bound for the true ground-state
energy for this sample shape. But from our results it
must also be an upper bound for any other sample
shape. This completely rules out the possibility, at
T=O', of antiferromagnetism of the type they con-
sidered.

Our arguments also seem to imply, though we have
not constructed a rigorous proof, that a nonzero
magnetization (per unit cell) for, say, a spherical
sample always leads to an increase in the bulk free

~9 One may delne a spherical sample of radius R as the aggregate
of unit cells whose centers lie within a distance R from the center
of a particular cell, and analogous definitions work. for ellipsoids,
etc. The precise form of surface, if not too pathological, is unim-
portant in the infinite-volume limit. See Ref. 13.

occupied by cubes with sma11 edges, so that in the limit
m-+~, (3.6) implies that the free energy f(Q ) is
bounded from above by f T.o put a lower bound on
f(Q ), place Q inside a cube of edge 2"+' and fill up
the remaining space in the large cube with cubes of
edge 2~ ', 2~ ', etc., preference being given to the
largest cubes. As m-+ ~, one finds that f(Q ) is bounded
from below by f An.alogous arguments can be carried
out for other suKciently "regular" shapes —spheres, "
ellipsoids, etc.—see Ref. 13.

As one would expect intuitively, f is obtained only
if all linear dimensions of the crystal increase to in-
anity. However, it does not depend on the order in
which they become in6nite. Thus, for example, let
f(L, L, E) be the free energy per cell for a rectangular
block. measuring l.&&L&(P unit cells. Then if I'=el. ,
with e an integer, (3.6) implies that

f(P, I', I') &f(L, L, I') &j'(L, L, L). (3.16)

In particular, one can show that

energy. This is in contrast to the simple Ising or
Heisenberg ferromagnet without dipolar interactions
in which the existence of "spontaneous magnetization"
means that the magnetization may take on any value
from zero up to its "spontaneous" value without a
change in the bulk free energy. '

These two requirements of an energy corresponding
to ferromagnetism while at the same time zero net
magnetization suggest, of course, that there is a local
ferromagnetic alignment, but the direction of this
alignment is di6erent in different parts of the crystal.
A domain structure, as Kittel has proposed, wouM be
appropriate given sufhcient anisotropy. In systems
where anisotropy is small —e.g., if the Hamiltonian
is dominated by isotropic exchange (a situation to
which our arguments are equally applicable) —some
other pattern of nonuniform magnetization might be
expected.

In considering the situation in real magnetic systems,
one must keep in mind the limitations and simpli6ca-
tions involved in a model of spins located on a lattice.
This is true even for insulators, in which a "localized
electron" approximation should be better than in
metals. In addition, we have considered the free energy
corresponding to true thermodynamic equilibrium; and
this is, of course, not a good approximation in materials
where prominent hysteresis effects indicate the presence
of metastable states. A valid criticism of our proof is
that we give no estimate for the minimum crystal size
for which the free energy will provide a good approxi-
mation to the bulk value. Hysteresis and size effects
are, of course, subject to experimental investigation:
It is possible to test the latter, for example, by measuring
heat capacities on samples of various sizes and shapes.
Since experiments are always evaluated in terms of
(necessarily) oversimplified models, it is of value
to know precisely what features of the experimental
results are inherent in the model, and which are due
to terms that have been left out. We hope our argu-
ments may have made a modest contribution to this
end.

One mould also like a proof that the free energy
for a system of dipoles in the presence of a magnetic
field has the expected shape dependence predicted by
magnetostatic arguments. We hope that arguments
may soon be forthcoming, but it is clear that a more
sophisticated approach is required than that of Sec. III.
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