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Recent experiments demonstrate that at the Curie temperature the specific heat may be a smooth function
of the temperature. We propose that this effect can be due to random impurities and substantiate our
proposal by a study of an Ising model containing such impurities. We modify the usual rectangular lattice
by allowing each row of vertical bonds to vary randomly from row to row with a prescribed probability
function. In the case that this probability is a particular distribution with a narrow width, we 6nd that
the logarithmic singularity of Onsager s lattice is smoothed out into a function which at T, is infinitely
differentiable but not analytic. This function is expressible in terms of an integral involving Bessel functions
and is computed numerically.

1. INTRODUCTION

4HE free energy of a two-dimensional Ising model..without a magnetic Geld was 6rst obtained by
Onsager' in t944. One of the most striking features of
Onsager's result is that the specific heat has a log-
arithmic singularity at the Curie temperature T,. The
spontaneous magnetization for this lattice was deter-
mined by Yang' in 1952 and shown to approach zero
as (T, T) 't as T-+T—, . In spite of the fact that these
calculations are for a two-dimensional system, they
form the basis of much of our understanding of ferro-
magnetic phase transitions. The precise form of the
singularity in the specific heat of various magnetic
systems is a matter of considerable debate, but the
existence of the singu1arity is rarely questioned. Sim-
ilarly, while measurements show that the 8 power
singularity of the spontaneous magnetization of the
Ising model is too small to fit the experimental data,
experiments have not yet revealed a necessity to
assume anything other than a power-law singularity
at T'

However, recent precise measurements of the specific
heats of EuS ' and Ni 4 indicate that in these systems,
among others, if measurements are made close enough
to T„ the specific heat is seen not to diverge to infinity.
In fact it does not even have a discontinuous or in-
6nite first derivative. To a high degree of accuracy
these specific heats are sm.ooth functions of the tem-
perature. This smooth behavior is markedly different
from Onsager's result.

Perhaps the most interesting feature of this dis-
crepancy between precise experiments and the intui-
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tion gained from Onsager's calculation is not that
there is a discrepancy but that the discrepancy occurs
when T is very close to T, and has resisted detection
for so long. Onsager's calculation was carried out for
a perfect lattice, one in which all the vertical interac-
tions and all the horizontal interactions are respec-
tively the same. Virtually any difFerence between the
real system and the idealized Ising model. with nearest-
neighbor interactions can be invoked to '"explain" the
experimental data. Some are more reasonable than
others; one possible example is the finite size of the
actual sample. It is the purpose here to study one aspect
for the various difFerences, namely the presence of
random impurities. By impurities we refer not only
to the presence of foreign material but also to any
physical property that makes the various 1attice sites
di6'erent from each other. An example is the presence
of various isotopes in a sample, e.g. , nickel contains
roughly 68% of Ni", 26% of Ni'v, 1% of Ni", 4% of
Nier, and 1% of Ni". The presence of impurities in
this sense seems unavoidable in most actual magnetic
systems. If these impurities distribute themselves
through the system in a regular ordered fashion, then
while the symmetry of the lattice would be reduced it
would not be destroyed. Kith sufIicierit labor such an
ordered sort of impurity can be studied in the Ising
model. However, such an ordering of impurities does
not always take place. Therefore, if we want to real-
istically study the effects of impurities iII Inagnetic
systems we may have to allow the impurities to be
distributed at random throughout the lattice. The
regularity of the system now has been not merely
reduced but totally destroyed. A phase transition is a
cooperative phenomena in which the en. t3tre system
takes part. It is therefore not at aB obvious that the
highly regular Onsager lattice should possess a phase
transition behavior that is in any way reI.ated to such
an impure system.

In order to gain any insight into the possibility for
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the random impurities to change qualitatively the
nature of the phase transition, it is necessary to study
a simple model in detail. Such a model will be described
shortly. At least in this speci6c model, and very prob-
ably under quite general circumstances, the logarithmic
singularity in the specific heat is no longer present
when there are random impurities. Instead, the specific
heat is an infinitely diGerentiable function of the tem-
perature. Thus, in the usual language, the phase tran-
sition is of infinite order. In particular, in the presence
of random impurities, the critical exponents no longer
have a precise meaning.

In this series of papers we consider the following
modi6cation of the two-dimensional Ising model. We
retain the features of Onsager's rectangular lattice to
the extent that all horizontal interactions are the same
and that the vertical interaction between any site in
the jth row and its nearest neighbor in the j+1th row
is the same no matter what column these sites are in.
However, Es( j) is allowed to randomly vary from
row to row. More specifically we assume that, for
jWj ', E&(j) and Es( j') are independent random vari-
ables with identical probability distributions P(E&)dE&.

I.et us try to describe the model in greater detail.
We are considering a collection of Ising lattices, each
of which is specified by a particular set of interactions
IEs( j) I. We are interested in the thermodynamic limit
where the size of these lattices becomes in6nite. If,
in the thermodynamic limit, the free energy of each
lattice in our collection varied wildly from lattice to
lattice our model would be useless. In that case the
free energy of our random lattices would depend in
detail on the arrangement of interactions. Fortunately,
this is physically unreasonable and is indeed not the
case. In the thermodynamic limit the free energy per
site of each lattice does approach, with probability 1,
the same value. Therefore, with probability 1 the Curie
temperatures of any two lattices from this collection
are the same. Furthermore, we expect the spontaneous
magnetization of any two lattices to be the same with
probability 1, because the spontaneous magnetization,
like the free energy, is an average property of the
entire lattice. However, not all quantities of interest
have distributions which are so sharply peaked. For
example, the spin-spin correlation function of neighbor-
ing spins does depend in detail on the local value of the
interaction energies. For such quantities one needs
more than an average value to characterize the result
of a measurement made at an arbitrary position in the
impure lat tice.

The complete investigation of all aspects of this
random Ising model is clearly beyond the scope of any
one paper. In this paper we begin the investigation by
considering the free energy in the absence of a mag-
netic field. In Sec. 2 we will formulate the mathematical
problem to be solved and find a general formula for the
critical temperature in terms of P(Es). In Sec. 3 we
will derive several general properties of the integral

equation found in Sec. 2. There is a great deal that can
be said about the equations we derive because they
depend on the arbitrary function P(Es). We wish in
this paper to emphasize the physical consequences of
random impurities. Therefore we specialize our treat-
ment in Sec. 4 to a particular distribution P(Es) which
has a narrow width (of order X ') that is particularly
mathematically tractable. This distribution is in no
way physically distinguished and our results are ex-
pected to be typical of a large class of narrow distri-
butions. We show that while the critical temperature
is shifted by a temperature on the order of X ' the
specific heat deviates appreciably (to order 1 as X~~ )
from Onsager's specific heat only for T T. 0(i—V ').
We furthermore find that at T, the term of order 1 in
the specific heat is not logarithmically divergent but is
an infinitely differentiable function of T though it is
not analytic. Finally we conclude in Sec. 5 with a dis-
cussion of the technical aspects of the calculation
and outline several ways in which our calculations
may be generalized.

2. FORMULATION OF THE PROBLEM

In this section we formulate the mathematical prob-
lem corresponding to the physical model described in
the Introdgctioe. We do this in two stages. The first
stage is to relate the free energy to the solution of a
pair of coupled recursion relations. This procedure has
been discussed recently by uss for Onsager's lattice.
That derivation of the recursion relation still holds
for the class of lattices under consideration. We there-
fore only repeat as little of that derivation as is neces-
sary to establish notation and refer the reader to the
previous work for a detailed discussion. The final re-
sults are given in (2.9) and (2.11). The rest of this
section is devoted to the study of the mathematical
problem formed by (2.9) and (2.11) and is self-con-
tained. We advise the interested, as opposed to the
dedicated, reader' to omit the 6rst stage except for the
definitions.

We are interested in studying a particular class of
rectangular two-dimensional Ising models with 5E rows
and 2X columns. We impose cyclic boundary conditions
in the horizontal direction only. This class of systems
is characterized by the Hamiltonians

k=gt+X

k=X+I.

where o, s is equal to +1 or —1, j a,nd k label, respec-

' B. M. McCoy and T. T. Wu, Phys. Rev. 102, 436 {1967).
This paper is hereafter referred to as IV. The present notation
differs from 1V in a few trivial ways a= ia, Q„=tD—„,and all
other German letters are replaced by their Latin equivalents.' The distinction seems to have been first clearly made by G. F.
Chew, M. L. Goldberger, F. E. Low, and V. Nambu, Phys. Rev.
10', 1337 (1957).
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tively, the row and column of each lattice site, and
b =K+ 1 is identified with b = —X+1.As far as thermo-
dynamics is concerned we may restrict E& and E2 to be
positive without loss of generality. We are interested
in the limit X—+~ and 5K—+~; only in this limit will
a phase transition occur. We complete the character-
ization by requiring that E2( j) be independent random
variables with the probability density function F(E2).

Denote by Z~z, ~
the partition function for the system

described by (2.1) where the collection of bounds
IE&(j) I is chosen at random according to the prob-
ability density function P(E&). We are interested in F„,
the free energy per site of the system in the thermo-
dynamic limit. Under the assumption that with prob-
ability 1 this limit exists, Il„ is defined as

where Q is the product over the 2K roots of —1:

8 =g(2~ —1)/2x,

zi ——tanhPEi,

sm( j) = tanhPE2( j),

~=1, 2, "2X, (2.4)

(2.Sa)

(2.5b)

—2Q

(2.6a)

and p=(kT) —'. The 25RX29R matrix C~s2)(e) is de-
fined by

F,= —P i lim OK,K (29RX) i lnZ~@2). (2.2)
0

(2.6b)
Our class of lattices shares with Onsager's lattice the
property of translational invariance in the horizontal
direction. Therefore the calculation of Sec. 3 of IV
may be taken over word for word to show that for
any set of energies E&(j)

9R—1

Z~sE)2= (2 coshPEi) ~+ g [coshPEE( j)j'+
j=1

X g I
1+zie" I'~ detCtsm~(8), (2.3)

z2( j)

a(e) = —2zi sine
I
1+sic" I-',

b(e) =(1—zp) I
1+zie'I '

More explicitly C~s, ) (8) may be written as

(2.7a)

(2.7b)

[compare with (3.9) of IV] and all other matrix ele-
ments are zero. Here we use

28

—b —ia z~(1)

—»(1) 28

z2(2)

z2(aK —1)

—z2(OR —1)

—2Q (2.8)

We may further follow the procedure of IV and define
C„ to be the determinant of the 2n)& 2e random matrix
of the form (2.8) and iD„ to be the corresponding
(2e—1)X (2N —1) random determinant with the last
row and column removed. Then detC~z), ~(e) =Cza(e)
and we obtain the recurrence relation for e&0,

where z&(0) =0 by definition. Therefore, the free en-

ergy P„ is given as

P, = —E s Io(2 cosh)IEs)+ f dEPIE, ) Io coshEE
0

C-+i (8)

D.„(e)
a'+b' a 1 o C. (8)

1 0 z2(ri)' D (8)

P (42r) ' d8 ln
I
1+zie" I'

together with the boundary condition

C, (e) =1, D, (e) =o,

(2.9)

(2.10)

+ (42r)
—' IN lims)r „BR—' lnCA(e) . (2.11)

The object C„(8) is the first component of the vector
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0= dip), Ln)b 0
0

or

dE2P E2 ln s2' 1 sg 1—sg ' 2.29a
0

2PEi+ dEpP (Ep) lnzp ——0. (2.29b)

If P(Ep) =P(Ep EpP) then —(2.29) reads

zpP(1 —zi)/(1+zi) =1, (2.30)

which is the known result for 7=7, in the ferromag-
netic Onsager lattice. The correctness of this criteria
for locating 1; will be seen more explicitly in Sec. 4
where we demonstrate for a specific p()i) that at the
T, given by (2.29) the free energy F, is not an analytic
function of the temperature.

We note that (2.29) has the property that T, is
zero if P (Ep) =p5 (Ep) + ~ ~ ., where 0&p & 1. This is
to be expected for aur model. A 8 function at E2 ——0
means that in every random lattice there are, with
probability 1, vertical bonds with zero strength a finite
distance apart. But for our class of lattices the condi-
tion E&(j) =0 cuts the lattice into two separate pieces.
Therefore the term p5(Ep) causes the lattice, with
probability 1, to be cut up into an iofinite number of
strips of finite width and any two-dimensional Ising
lattice that is not infinite in both dimensions has no
critical temperature. However, we also note that if
p(X) is bounded near E2 ——0 and Ei) 0 then T, is greater
than zero.

We finally remark that the argument leading to
(2.29a) does not depend on the fact that Ep rather
than E& is random. We therefore see by a similar argu-
ment that if E~ and E~ are random with the joint
probability density P(Ei, E&) there is a ferromagnetic
phase transition at T, determined from

dE,P(Ei, E,) in['zp '(1—zi)/(1+zi)]=0.

(2.31)

stationary distributions of vectors are those with the
vectors parallel to the C or D axis. In the first case
the vectors are multiplied by b'(0) under the action
of (2.12) so we find

limp p limsx 9R ' jnCsir=lnb(0)P (2.27)

and in the latter case the vectors are multiplied by X

so that
1

limp„p limsa 9R ' 1nCsg, = dX y(X) in) . (2.28)
0

The free energy is related to the larger of these two
expressions and the condition for T=T, is obtained
by equating (2.27) and (2.28)

~(l) =S(&—K). (3 1)

The stationary angular distribution of vectors will
clearly be a 5 function at that value of x which is un-
changed by the application of the matrix (2.12) with
X=K. From (2.17) we see that the values of x which
satisfy this eigenvector equation obey

xp(K) =L(u'+f') xp(K)+uk]/L'uxp(K)+K], (3.2a)

which is also usefully expressed as

2 =x (K) [u'+b' —uxp(), ) ]/Lxp() ) —u]. (3.2b)

There are two solutions to (3.2) because the matrix
(2.12) has two eigenvalues. To obtain the correct free
energy we must choose that solution which has the
larger eigenvalue. It may easily be seen from (2.12) or
from (2.20) and (2.21) that the correct solution of
(3.2) is

xpP) =(2u) {u'+b' h+[—(u'+b K) +—4Ãu]'~'}

(3.3a)
with

* (K)-'= (2')-'
X {—(u'+O' —K) +L(u'+ b' —X) '+4Ãu']'" }. (3.3b)

If we use (3.1), (3.3), and (2.21) in (2.11) we find that
the free energy for Onsager's lattice is'

—PFp=lil(2 coshPEi coshPEp)

+(4z.) ' do in[-',
~

1+zie" i'{u'+b'+zpP

+L"(u2+$2 z 2)2+4upz 2]1/2}] (3 4)

From (3.3) we see that the eigenvector of the matrix
(2.12) with the larger eigenvalue always lies in the
range

uxp(1) &ux&uxp(0) =u'+b'. (3 5)

Consider any vector not in this range. Pick any matrix
of the form (2.12) with K not equal to 0 or 1 such that
the eigenvector with the smaller eigenvalue does not
lie in the direction of this vector. If we apply this
matrix to the vector a sufhcient number of times, the
resultant vector will lie inside (3.5). But this is true
not only if all the matrices correspond to ) but also if
the matrices correspond to P's lying in some neighbor-
hood of ) .Therefore, there is a nonzero probability that,
after the application of (2.12) a finite number of times
on a given vector, the resultant vector will lie in the

3. INTEGRAL EqvanON FOR .(x)

In this section we study several general properties
of the integral equation (2.19). The limits of (2.19)
have formally been written as —pp to + ap, but over
much of this range v(x) vanishes identically. To see
this, first consider the stationary distribution corre-
sponding to the Onsager lattice where
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!ange (3.5). Furthermore, it is clear from (2.17) and
(3.2) that if x„satisfied (3.5) then x„+i does also.
Therefore we conclude that no distribution of vectors
that does not vanish outside the range axp(1) (ax(
(a'+b') can be stationary.

In fact the same argument shows that if

p, (X) —=0 unless Xp'&X(Xp (3.6)

v(x) —=0 unless axo(Xo) (ax(axo(&'o) . (3.7)

To see what restriction (3.7) makes on the limits of
integration in (2.19), it is convenient to plot in Fig. 1
for a) 0, (1) the region in the x—x' plane where the
kernal of (2.19) is not zero; (2) the contours along
which /orx'(a2+b2 a—)/(x a—)) is constant; and (3)
the region where the kernal of (2.19) does not vanish
and v(x) and v'(x') are different from zero. We then
readily see that (2.19) may be more explicitly written
(when a)0) as

min[) 0(x—a)/t(a +b —ax),zo(X0')]b2

v(x) =
(X a) m afxa(Xo)ohio( ,aa)/(a yp aa))-

minP, O[(x-a)/t'(a +5 —az)], (a +b )/a Jb
v(x) =

(x a) *o(&o)

for xo(hp) (x&xo(Xp') and v(x) —=0 otherwise. If a(0 we clearly have

v(x, a) =v( —x, —a).
In the sequel we concentrate on the special case Xp' ——0 where (3.8) specializes to

*—a

(3.8)

(3.9)

(3.8')

An important difference between the Onsager lattice
and all random lattices may be seen from Fig. 1. If
/i(X) =8(X—K) then, as we have seen earlier, v(x) is
given by a 8 function at that value of x that lies
within the interval (3.5) where the curve x' =
K(x—a) (a2+b2 —ax) ' intersects the line x=x'. This
intersection is at the point xp(K) given by (3.3) . There
are three distinct cases:

(a) if b(0)2)K(T) T.) then as 8—+0

hp(X) Pb(0) '—Kj/a,

(b) if b(0) (2K(T(T,) then as 8—+0

x, () )-~a/L) —b(0) 2$,

(c) and if b(0) 2=K(T= T,) then as ~0
xp(K) —++)~i/2.

(3.10a)

(3.10b)

(3.10c)

We see from (3.10) that a 8-function distribution of X

leads to a 8-function stationary distribution. In the
limit 8—+0, the 8-function stationary distribution re-
mains at a finite value of x if T=T, but moves to zero
(or infinity) if T is less than (or greater than) T,.

Contrast the above case with the case of a very
narrow /i(X) . As long as a is sufI)ciently far away from
zero, a narrow /2(X) must give use to a correspondingly
narrow v(x) because the projection on the x axis of
the region of the x=x' line where the kernel of (3.8)
is appreciably diferent from zero is small. However,
if 8 gets close enough to zero and T is such that p, (X)
is different from zero in the region (however small)
where X~b(0)', then the above projection on the
x axis becomes enormous. This dramatic broadening
of v(x) when 2" T, and 8 0 will be exploited in the
next section to obtain the dominant contribution to the

specific heat for the particular narrow distribution

for

and

/ () ) =x);"H-'

0&) &),=tanhopZ, o

(3.11)

p(X) =0 otherwise.

2/
=xo(x —xp) /(Xp+xpx), (3.12)

where xp=—xp(Xp). We also introduce

~ =&o(xo—u)/xo(Xo+axo)

a'+ b'+ ho —$(a'+ b' —Xp) '+4'.oJ/2

a2+b2+) +L(a2+b2 g ) 2+4uo/ ji/2

so that

(3.13)

Define
0&g&82& 1.

v(x) =X(2/) (d2//dh)

(3.14)

=&(~)L(1—~)'- /()(o+*o') j, (3 15)

The above discussion, however, shows that there is
nothing particular about this&form of p, (X), and we

expect that the physical properties which (3.11) leads
to will be qualitatively the same for a wide class of
narrow distributions.

Before studying the power-law distribution (3.11)
in detail, it is convenient to perform some manipula-
tions on (3.8') that are useful for any /2(X) such that
p, (X) =0 if X)&p. We first note that it is possible to
change variables so that the upper limit of (3.8') is
transformed from a curve and a straight line into two
straight lines. To do this let
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so that

B
X()1)drl =1.

0
(3.16)

I & l & l ' I

24— (0)

2.0—

Then (3.8') may be rewritten as
1.2

0.8

ri') o+*o' Pl'&o+*o'

1—)1' )e 'B'xos+rl

0.4

This equation may be cast into a somewhat ampler
form when q&B' if we de6ne

-0.4

-0.8

F(ri) = X(pl') d)1' (3.18) -1.2

and integrate (3.17) over )1 to obtain -1.6

&()1) =)oB'()o+xo')
yyB

d)1'X(rl')

-2.0

l i A .II i I i l

12 16-1.6 -1.2 -.8 —.4 0 4 .8

rl') +x ' )i')),p+xp' B' rlt—
(1—rl') (B'xo'+))oar) ' 1 rl' 4 'B—' x+o)lr

(3.19)

Interchange the order of integration and make the
change of variable from q~ to

)1'P p+ xo' B' rir—
1—rl' )). 'B'x s+)lt

to obtain

4 I (f) 0 .1 .2 .3 .4 .6 .7
[(&On'+~0 )/(&—W') ] f(& —0)/(&0 & ~0 +0)]

~a '
d)f'X()1')

[(&pe'+&0 )/(&—n')] t(&'—n)/9p &'&0'+n)l

( 21)df) (0)

Fro. 1. (a) Contours along which the function

11(x'(a'+f)' ox) /(x o)—)—
is constant. The kernal of the integral equation for v(x) is ddter.
ent from zero only in the shaded region. (b) Enlargement of 1(a) .
Th h d d ion is the only region in which the kernal of the

v x' are differentintegral equation does not vamsh and u(x an v x
from zero.

Using the de6nition of F, we may rewrite this as

typo'+&0')/(& —0')7 t(&'—y)/Qp &'&p'+n)3

dt ~(i)

We work the i integral in (3.22) and obtain

eB I

dg'X(g') = f dg'X(n')F '
0

t'))orl'+xo' B' rl 'l &)) o)1 +xo'—
1—)1 )),o

' 'B+xos) )1), 1—)1 ))o B xo+rlJs

It remains only to write out the special case (3.11). (3.23)
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'/=8 )

where —lnB'&r& ~. Call

(3.25)

so that
U(r) =2tX(it), (3.26)

The right-hand side of this equation may be further
simplified using the original integral equation (3.17).
We obtain

B
d2t'X(2t') = X(2t) . (3.24)

NB2 (ho+ xp')

Finally, it is useful to make the exponential change of
variable

This is readily solved and we find

U(2-) =C~(B2, xp) exp{sr t—o ' u—e'} (4.4)

where, by (3.3),
s =2(lnB') L

—lnB' —N '(hpxp ' —xp) /(hpxp +xp) )
=2(lnB') '{ 1nB'—+N '(g +b' h)—

)(' { (g2+b2 h )2+4h g2)—1/2} (4 5a)

2(lnB2) —2N—1B—2h x —1(h x —1+x )
—1

= (InB') 'N 'B '{1—(g'+b' —ho)

&(L(g2+b' —h )'+4h g')—"'} (4 5b)

2 (lnB2) —2N—1B2x (h x —1+x )
—1

Then we obtain

dr U(r) =1. (3.27) = (lnB') -'N-1B2{1+(g2+-b2 —h )

XL(g'+b' —hp)'+4hog') '"}, (4.5c)
r+InB (B2 & r) (B2x 2+ho&

—r)
dr'U(r') = — e'U(r) .

NB2 (h p+ xp')

(3.28)

4. POWER-LAW DISTRIBUTION

In this section we determine the dominant contribu-
tion to the specific heat of the lattice characterized by
the power-law distribution (3.11). We consider only
the case of large E and ignore all contributions to the
specihc heat which vanish as .V—+~. Then the dis-
cussion of Sec. 3 shows that when u is away from zero
1(x) is given by a narrow distribution which will

differ but little from the v(x) of an Onsager problem.
We are not interested in these small deviations and
concentrate our attention on the opposite extreme
when g is close to zero. From (2.29a) we find that
~=~c lf

ln{ b(0) ho ') =lnB'(0) = N' —(4.1).

When 8' is close to this value and a~0, the discussion
of Sec. 3 shows that 1(x) is very bros, d. Therefore
when x is of order 1, v(x) Land hence U(r)) may be
treated as slowly varying. Furthermore, (4.1) shows
that the region of integration of (3.28) is of the order
of S '. Hence to leading order in S ' we may expand

U(r')-U(~)+(~' —r) U'(r) (4.2)

and do the integral in (3.28) to obtain the approximate
differential equation

-', (lnB')2(d/do. ) U(r)+U(r) lnB'

= t' —(B' e') (B'xo'e'+ h ) /N—B'(ho+ xp2)) U(r). (4.3)

and C~(B2, xp) is an appropriate normalization con-
stant. Therefore, when T T, and 8 0, we obtain

X(2t) C~(B2, xp2)2t ' ' exp( —t2t —u/it). (4.6)

This approximation to X(2t) forms the basis of all
further considerations of this section.

To give insight into the structure of X(2t) we first
remark that as E~~ the power-law distribution
(3.11) approaches b(h —hp) . Therefore when T4 T,
and 040, the exact p(x) must approach b(x —xo)
as N +~ Land—hence X(2t) must approach b(2t)). Our
approximation to X(2t) was derived under the assump-
tion that T—T, and 0 were small and hence it is not
obvious that (4.6) will approach b(rt) as N +~. To-
see that this is in fact the case we note that the max-
imum of itX(2t) occurs at

it =(2t) 'L —s+(s'+4tu)"') (4.7a)

and its width (in the sense of a steepest descent inte-
gral) is

u1 = {(a2/8 ') Ls 1nit+t2t+u2t
—')}'"

{ it=it,
=g„ot2(2u —s2t ) "'. (4.7b)

If T&T, ndagAO reafi edxdaNn—+op, s= —2(lnB') '+
0(N '), t=O(N ') andu=O(N ') sothat1t =O(N ')

wo
——O(N 1) . Therefore X(2t)—+b(2t —it„) in the

sense that in the evaluation of the normalization inte-
gral of X(2t) we may replace X(1t) by b(it —2t„,) .

We are interested in the contributions of order 1 to
the specific heat when E is large. This is found by using
our approximation for X(2t) in the integral (2.20)
which in terms of q is

limmr „OR
—' lnCs11(e) =

B2

dit X(2t) dh ti(h) 1nLg'+b'+gh(1 —2t)/(2thpxp '+xp)). (4.8)

Define f(2t) by
f(1t) =.lnLg2+b2+gh(1 —1t)/(ithoxo '+xo) )

—ln {g2+ b2/ 2g2hL'(g2+b2 hp) y (1+2t) (]—
2t) 1((g2+b2 —hp) 2+4hg2)112)
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When TAT, and 8v»0 are fixed and S—b pp we see that case (b),

if 2/=O(E' ')
O(+—1—2b+Ry) 2e O(i))/'-1 —2b+py/2)

f()//) =1nb2+O(E &), and

f(r/) =1nLa2+b2+al~xp 'j+O(E ').
Therefore our approximation X(2/) may be replaced by
8()t—it ) for the purpose of obtaining the leading order
term of (4.8). This is the behavior expected of the
exact X(2/) in this limit so we conclude that approxi-
mation (4.6) may be used for al/ 2" and 8 for the pur-
pose of obtaining the leading order term in the specific
heat when N—+~.

In fact, for our limited purpose X()/) is well approx-
imated by 6(2/ —2/ ) not only when TA T, and 8AO are
fixed and N—+~ but also when a is of the order of
E ' and b(0)' —lip is of the order of X i', where 0(»& 1
and 0&y&1. There are three cases to be considered.
(a) y)», (b) y(» and b(0)' —l~p(0, and (c) y(» and
b(0)' —Xp) 0. We find

case (c),
w, =O(E '+i'/2),

x 2aL'1+b 2G) —x~fa2+b2 —X+G(1+2a'b ') j
—lipa} 1—G(a'+ b') Xp 'b 2) =0, (4.10a)

1/ =O(X '+~),

f(j) =1nb'+O(X "+~)

Since the variations in f(2/) caused by deviations in 2/

on the order of m„vanish as N~~, we conclude that
in these cases, for our purpose, X(2/) may be replaced
by 8(n —n-).

Because of the fact that even if T~T, the contribu-
tion of v(x) —5(x—x ) to the specific heat is very
small for

~
a ~&&E ', it is useful to consider the contri-

butions of 6(x—x ) and v(x) —5(x—x ) separately.
It is easily seen from (4.7a) and (3.12) that x obeys

case (a),
2/ =O(X '+'),

f(g) = inb2+O(X-'),

nr =O(E '+'")

where

G= —X '(lnB') 'L(a'+b2 —X )'+4aphpy/2 (4.10b)

If we use 8(x—x„) for v(x) in (2.20) we find, correct
to order N '

CO 7r CO 1

dE2p(E2) ln(2 coshpEi coshpE2)+ (42r) ' d8 dx b(x —x„) dpi /b(l) )
0 0

&& inI~ 1+sic@~2pa+b +alex ']}~ln(2 coshpEi coshpE2)+(42r) ' d8

X ln(~ 1+sic" ~'-L1 —G(a+b2)lip 'b j '(a2+b+l)p —Gb Vip 'L2(a+b )'+l)p(b'+2a') 1

+I [a2+b' —). +G(1+2a'b ') y+4a'X (1+b 'G) L1—G(a'+b2)X 'b q}'/2) } (4.11)

By comparing F„with the Onsager free energy Fp of (3.4), we conclude that to order E ' F, is the same as Fp
except that the critical temperature has been shifted from b(0) '—Xp=0 to

b(0)' —Xp ———G(0) = —
t b(0)2 —)ip)Ã 'Llnb(0)2Ap 'j ', (4. 12)

which is exactly the same equation for T, as (4.1) . Therefore over the range of T where v(x) is well approximated
by 8(x—x ), F„ is dominated by a term which has an apparent logarithmic divergence at 2', .

To study the behavior very near T; we write

F, Fv (P42r) '— —8 dx Lv(x) —b(x —x„)j ln/a2+b2+a'Apx '$, (4. 13)

where the ), integral has been evaluated to O(E ') . We consider only T close enough to T, so that b' —Xp(0. The
sign is to mean that both sides lead to the same specific heat to order 1 as N—+~. Furthermore we have seen

that unless a'+b' Xp O(1V ')—we——cannot have a contribution of order 1 to the specific heat obtained from (4.13) .
Therefore, axp '=O(1V ') and, since

( xp ( ( (
x (, we may expand the logarithm of (4.13) to obtain

F F~—(/342r) '— d8 dx$v(x) —5(x—x ) jalap(a2+b2) 'x '

B
dba'b, (u'+b') 'f db [X[&)—b(b —

b )]
0

( I a2+b2 $2+ ( 1+r/ ) (1 2/ ) 1
} (a2+b2 $p ) 2+4a2$pj1/ 2} 1 (4 1 4)
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Yo evaluate this approximately to order 1, we need to find the correct range of 0, q, and T—T,. We have pre-
viously considered the case a)&N ' and

~

b' —Xo ~&)N ' and seen via a steepest-descent integration that the con-
tribution is negligible. In a similar fashion we may show that the cases (1) u is of order N ', (2) a=0(N ') and
s=O(N) give only contributions of an order N ' to the specific heat. The only region that gives a contribution of
order one to the specific heat as N—+~ is a=O(N 2) and T T,=—O(N ') .

When T—T.=0(N ') and a =0(N '), X(g) and 8(g —g ) do not cancel at all so that F„and F, must be eval-
uated separately. Because 0„"=—TF„"(T) is to leading order in N the same as Onsager's specific heat, we may
use Onsager's result' to Qnd

C„'~4kPPn —'{zi,s2,'(1—zi, )
—'(1—s2P)

—'{Ei(1—si,)+E,'(1—s ') g'

)&{lnT, /~ T—T, }
—ln-,'P.(Ei(si,+si, ')+E2O(s2'+s20-'))g

—
{ Ei'4si, 'z~,"(1—s2.') 'gd2P. Ei+2EiE,o+.E,o24z, nz, ~o2(1 z,~)~&d2P~E,oj }~ (4 15

We further define 8 by

y;i(1 z,)2(1+z,)-2 z-N-'=&N-&b (4.18)

As F-+00 8 is to be of order 1. Explicitly,

b = (T—T,) N24kp. 2(1+z2,0) s2,0-'

X {tEi(1—si.)+E20(1—z2')$+0(N ') } (4.19)

We then have

C . T(82P~/BT2) PP 316(1+z,0)2s, ~2

&& IEi(1—zi,)+E2 (1—z2p) } N (O'P/Bb'). (4.20)

Furthermore,

a2+b' —~,= —Z N-'L1 —(2N)-'(&+1) j+0(N-')
(4.21)

and
lngP = N—iLI —(2N) —i)/+0(N —') . (4.22)

We then find
(4.23a)

(4.23b)

(4.23c)

s= —8+0(N '),
& =2NPO(1),
I= (SN) 'qP+0 (N ') .

(4.16)y= —SXO»'zi(1+zi) '¹8
u=-'N-R, »'y+0(N-').

so that
(4.1/) Therefore,

where gd stands for the Gudermannian Lgdx =
tan ' sinhx$, the subscript c means T=T„and z2,0=
tanhP, E20.

We evaluate C„"by splitting the 8 integration into two
regions, one for 0(

~

8
~
&0(N ') and the other

~

tt
~
)&

N '. In the se—cond region the integrand of (4.14) is
small. Therefore, to leading order the parts of C„"and C,"

coming from angular integration over this second
region are equal. lt is easily seen that the large angles
give a contribution to C," that is a constant. The point
of separation between the two regions is not well
defined but, as will shortly be verified, the precise
choice of this cuto8 does not affect the temperature-
dependent part of C„"but only the constant. Therefore,
we may evaluate the leading contribution to C„" as
N +~ when T——T,=O(N ') up to a constant by inte-
grating 8 only up to 0(N '). We then may determine
the constant by the requirement that, when } T—T,

~
)&

N ', C,"~C„"where C„"is given by (4.15).
To explicitly carry out this evaluation, we define

C.——ep'(8 )-'(1+..)'(1+».')'»™z-'{Ei(1—')+E"(1—s ') }'N '
g2 N 1 1+gl-'

dp qP dg g' ' exp( —2' —qF/SNg) C~(P& b) 1—
~

+Z,
/$2 1—gj

(4.24)

The upper limit may be extended to ~ and we findwhere the coeKcient of E2 is arbitrary and E is deter-
mined by the requirement that as b~~, C,"-+0„'.

The normalization constant CN(P, 8) is determined
from the re uirement

(4.27)C~ '~2(y/4N) 'Kg(g),

q
where K~(p) is the modified Bessel function of the

d~ ~5—1 exp 2+~ 2 8g 4 25 third kind of order ~. Similar1y, we find

0

Letting $ =4'—'g, we have
-I

C -'= (4N)-'e

dg g~' exp( —2' —qP/SNg) L1—(1+it) (1—g)
—ij-'

~—(y/4N) ~'Kg i(y) . (4.28)

&& expL" —ip($+gi)g. (4.26) If we also note that (1—zi,2) (1—s2,02) =4 } si, )) s2, ( +
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O(E ') we have

~4kP 22r
—1(1 Zlc)

—2 (1 Z2co)
—

2ZlcZ2co

X f Ei(1 z—i.)+E2'(1 z—2co) }'
"'d 4&s-i(4)

»2, Z, (y)

As g~~,
(4)/& (4) 1—4 '(~—')+l-4 '(&'—')+O(4 '),

(4.30)

so there is a term in (4.29) that behaves as lnlP
(4.29) (where we remember that the coeKcient of 1P is

arbitrary). We explicitly extract this term to write

dy = dP y —, —(d+1) ' +inlP+O(E '),d &s-i(4) " ~' &s-i(&)
& (e), »' & (~)

which, using the recurrence relation

&s-i(d ) = &e '&—s(4) (d/@—) &s(e),
may be reexpressed as

8
dy —lnEs(y) —(y+1) ' +in/2 —1+O(X ') =R(b)+in'' —1+O(E '),

882

which defines the function E(b) .
For convenience we absorb the —1 term of (4.33) into E of (4.29) by defining

g 4kP 22r
—i(1 Z, )

—2(1 Z, o) —2Z„Z,co{E,(1—Z„)+E,o(1—Z, o) }2

(4.31)

(4.32)

(4.33)

(4.34)

To determine E we must expand (4.33) as b~~. We use the expansion'

~s-(-' )"'(&+~')-"'exp{.-(~'+~')"'+»i»-'(~/~) 3f 1+k--'+(5/24) (1+~'/~')-'j(~'+~')-"} (4»)
to find that as 8—&~

co

dP —ines(g) —(&+1) ' +lnlP=ln2+1nlPb '—or&
—2+O(g—').

A/2

Therefore we 6nd as 8—+~

C "(b)~ 4kP's—r='(1 —zi, ) '(1—z2c) 'zi, z2,'{Ei(1—zic)+E2'(1 —z2') }'

(4.36)

X ln {2kPc2
~

T Tc { (z2,' '+1) {
—Ei(1—zi,)+E2'(1—z2,') 7}+E. (4.37)

Comparing this with (4.15) gives

E= —4kP '2r '{ (1—zi, ) '(1—z2') 'ziczoc'LEi(1 —zi,)+E2'(1—z ') )'
X f

—ln2(z2, ~'+1)
f Ei(1—zi,)+E2'(1—z2, ) )+lnoLEi(zl +zi, ')+E2 (z2c'+z2c™)j}

+E224zi.oz2.02(1—z2.0) ' gd 2pcEi+2EiE20+E2024zi, 2z2,02(1—zi,) 4 gd 2p,E20)

= —4kP 'sr '
f

-'
f
Ei' sinh2P, E2'+2EiE2'+E2" sinh2P+i j

XPine (Ei coth2P+i+E2' coth2P. E2') —ln2 f (1+cothP,E2') LEi(1—tanhP, Ei) +E2 (1—tanhP, E,') j}g

+E22 sinh'2p, E2' gd 2p,Ei+2EiE2'+E202 sinh'2p, Ei gd 2p,E2'}. (4.38)

We therefore have as our final result that when 2' T,=O(X ')—
QQ Q2

C„"~22r 'kP '{Ei' sinh2P+2 +2EiE2 +E2 2 sinh2P, Ei} 6P —ines(ct) —(/+1) ' +in' +X (4 39)8820
7

where 8 is defined by (4.19) and E by (4.38). We note in particular that C„' is an even function of P.
The specific heat (4.39) has been calculated for the random lattice characterized by ts(X) given by (3.11).
Bcgher Trarcscertderctat Fscnctcocss, edited by A. Erdelyi (McGraw-Hill Book Co., New York, 1953),Vol. 2, p. 82.

9 Reference 8, Vol. 2, p. 26.
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1.2

1.0

I '
I

~ '
I & I & I ' I '

I ' I '
I & I

'
I & I Now if &&1,

t

~/in/

0.8

R(8)
0.6

04

0.2

-0.2—
I & I i I i I i I I I t I t I t I I I i I t I

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
3 we find"

y =e-&~' (4.46)

exists, so the analytic properties of (4.43) are the
same as

1

1(b) = ~0 P(1—v') '+(»0)-'3. (4 45)
0

We have been able to replace e by 1 in (4.45) because
the integrand is regular at @=1.It is easily seen that
I(b) I(—b) =—b so we need consider only b) 0. Then
if we let

FIG. 2. The integral E(e) as a function of S.

The corresponding probability density P(Es) is

P(Es) =2X(tanhEs P) ' P(sech'PEs) (tanhPEs)'
—in' —P(8 '), (4.4'7)

for 0&Es&Ess. (4.40)

This probability clearly depends on temperature. The
probabilities envisioned in the original statement of
the model were to be temperature-independent. Fortu-
nately, because the only significant deviations of C„"
from C," occurs when T T, =O(X —'), we see that, in
the temperature range where (4.39) is valid,

P(E&) =P,(sech'P, Es) 2$(tanhEssP, ) '~

&& (tanhp Es)'~ '$1+0(X ') $. (4.41)

Therefore E(E&) as given by (4.41) differs, when
T—T,=O (X-'), from a temperature-independent prob-
ability by a term of O(E '), which is negligible.

To justify calling the temperature given by the solu-
tion of (4.1) the critical temperature we must show

that C,' as given by (4.39) is not analytic at 8=0.
For this purpose we integrate the integral in (4.39)
by parts once and consider

where f(z) =I"(z)/I'(z). For small b we may use the
asymptotic expansion" for g (8 ') to obtain the formal
power series valid for both positive and negative 8,

I(b) =-,'-b+ g B,„P (2e)-'
n=l

(4.48)

5.7

5.5—

Here 82„are the Bernoulli numbers. Therefore, the
most singular part of C„" is an snglite/y differentiable
function of T even at T= T,. However, because (4.48)
diverges for all 840, C„" is not an analytic function of
T at T=7,. It is therefore correct to call T, as deter-
mined from (4.1) the critical temperature.

Finally, it is useful to supplement these analytic
considerations with a numerical evaluation of C,"
when T T, =O(N ').—We have done this on an IBM
7044 computer and present the results in Fig. 2 and 3.

+(0+1)-' (4 42)
cib' Xg(y)

When 6—+0 the singular behavior of this function comes

from the region near &=0. Thus we may obtain the
most singular behavior of (4.42) if we integrate only
from 0 to some small positive upper limit e and expand
for p and n near zero

& (4) (2&) 'L(4/2) '—(4/2)'j (4 43)

Therefore we study

(4.44)

5.1—
Cv

k
4.9—

4.7—

45—

4.1—

$ 9 I t I t I & I t I t I t I i I i I i I i I i I
-1.2 -1.0 —.8 —.6 -.4 ".2 0 .2 .4 .6 .8 1.0 L2

(T/T -1) x 10'

FIG. 3. Comparison of C& of the pure Onsager lattice and C," for
several values of Jttl for the case BI,=Ep.

~o Reference 8, Vol. 1, p. 18.
~~ Reference 8, Vol. 1, p. 47.
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S. mSCUSSroN

The principal result of this study is to exhibit
explicitly a model with random impurities where, to
order 1, the specific heat is an infinitely diGerentiable
function of the temperature even at T,. This behavior
is qualitatively in beautiful agreement with the exper-
imental findings previously quoted. We therefore feel
justified in proposing" that random impurities can be
the origin of the smooth specific heats observed exper-
imentally.

On the other hand, this particular model of random
impurities is obviously artificial. It is not realistic to
assume that all vertical bonds E&(j) in a given row
will be equal if we are allowing E2( j) to vary from
row to row. A realistic model of random impurities
should not have such a large amount of correlation
between the random bonds. For this reason, we are
extremely fortunate that the specific heat found in
Sec. 4 is infinitely differentiable. If random impurities
had increased the observed order of the phase transi-
tion to a higher but finite order, the question could
very reasonably be asked if relaxation of this very
stringent correlation requirement would further in-
crease the observed order. However, even the limited
amount of randomness allowed in this model has made
the dominant contribution to all derivatives of the
specific heat continuous, so no further increase of the
observed order is possible. This very smooth specific
heat is in distinct contrast to the result of Syozi's
model. "

We are unable to ascertain which of our results are
qualitatively dependent on the very special sort of
randomness allowed in our model. For example, we
find that if the impurities have a narrow width of
order S ', there is an e6ect of order 1 on the specific
heat only when

~

T T,
~

=O(E '). W—e do not know
if this order of magnitude persists in general.

It must be emphasized that in this computation of
the observed (order 1) specific heat we have in no
way settled the question of the order of the phase
transition. To answer this question, which admittedly
is not very important physically, one must study the
analytic behavior of all contributions to C,". There
are several reasons why this is not trivial. We mention
two.

(1) The relationship of the differential equation
(4.3) to the integral equation (3.28) must be studied
in detail. The naive procedure of using more terms in
the Taylor-series expansion of U(r) leaves one with a
differential equation of order larger than 1 and the
problem of determining the boundary conditions must
be resolved.

j2B. M. McCoy and T. T. Ku, Phys. Rev. Letters, 21, 549
(1968).

» L Syozi, Progr. Theoret. Phys. (Kyoto) 34, 189 (1965);
I. Syozi and S. Miyazima, ibid. 36, 1083 (1966);J.W. Essom and
H. Garelick, Proc. Phys. Soc. (London) 92, 136 (1967).

(2) Formally, it is possible to write down an exact
iterative solution to the integral equation (3.28). This
iterative solution is analytic only in the segments
8'"(p(B"" '&. The approximation employed in Sec. 4
approximates the analytic function which this seg-
mented solution approaches when e—+~. This is the
important region for the order-1 contributions to C,",
but in general the effects (if any) of the segmented
nature of the exact solution are not understood.

There are several ways in which the considerations
of this paper may be generalized and extended.

(A) The present discussion has been concerned with
the case in which E2 is the random variable. However,
the general formulation given in Sec. 2 applies equally
well when E~ (and even both Et and E2) is random.
A new feature which can occur when Ej is random is
that, as may be seen from (2.29), T, may be zero even
though

~
Et

~
is never small if P(Et) =P(—Et).

(8) The specializa, tion to the power-law distribu-
tion (3.11) has been made for clarity of presentation
only and many of the above considerations may be
generalized to any narrow distribution.

(C) It is also possible to consider distributions which
do not have small widths. In particular, the power-law
distribution (3.11) when S is not large may be ana-
lyzed in terms of a difference-differential equation.

(D) A more challenging problem is the study of
spin-correlation functions. The average value of the
nearest-neighbor correlation functions may be readily
obtained if we combine the results of IV which express
correlation functions in terms of C and D„with the
considerations of the present paper. However, the spin
correlation functions themselves possess a probability
distribution function. To study the moments of this
distribution and also to study spin correlations other
than nearest neighbor, it is necessary to consider joint
stationary probability distributions. In particular for
the second moment of the nearest-neighbor correlation-
functions probability function the relevant joint prob-
ability function satisfies a two-dimensional integral
equation. This equation may be approximated by a
partial diGerential equation in a manner analogous to
that done in this paper.

(E) The most outstanding feature of this model
that remains to be investigated is the behavior of the
spontaneous magnetization near T,. Without a doubt
the eighth-root singularity found by Yang will be
weakened by the presence of random impurities. The
difIicult question is, how much'
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