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Recent experiments demonstrate that at the Curie temperature the specific heat may be a smooth function
of the temperature. We propose that this effect can be due to random impurities and substantiate our
proposal by a study of an Ising model containing such impurities. We modify the usual rectangular lattice
by allowing each row of vertical bonds to vary randomly from row to row with a prescribed probability
function. In the case that this probability is a particular distribution with a narrow width, we find that
the logarithmic singularity of Onsager’s lattice is smoothed out into a function which at T, is infinitely
differentiable but not analytic. This function is expressible in terms of an integral involving Bessel functions
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and is computed numerically.

1. INTRODUCTION

HE free energy of a two-dimensional Ising model

without a magnetic field was first obtained by
Onsager! in 1944. One of the most striking features of
Onsager’s result is that the specific heat has a log-
arithmic singularity at the Curie temperature T.. The
spontaneous magnetization for this lattice was deter-
mined by Yang? in 1952 and shown to approach zero
as (T.—T)Y8 as T—T. . In spite of the fact that these
calculations are for a two-dimensional system, they
form the basis of much of our understanding of ferro-
magnetic phase transitions. The precise form of the
singularity in the specific heat of various magnetic
systems is a matter of considerable debate, but the
existence of the singularity is rarely questioned. Sim-
ilarly, while measurements show that the % power
singularity of the spontaneous magnetization of the
Ising model is too small to fit the experimental data,
experiments have not yet revealed a necessity to
assume anything other than a power-law singularity
at T..

However, recent precise measurements of the specific
heats of EuS ? and Ni* indicate that in these systems,
among others, if measurements are made close enough
to T, the specific heat is seen not to diverge to infinity.
In fact it does not even have a discontinuous or in-
finite first derivative. To a high degree of accuracy
these specific heats are smooth functions of the tem-
perature. This smooth behavior is markedly different
from Onsager’s result.

Perhaps the most interesting feature of this dis-
crepancy between precise experiments and the intui-
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tion gained from Onsager’s calculation is not that
there is a discrepancy but that the discrepancy occurs
when T is very close to 7. and has resisted detection
for so long. Onsager’s calculation was carried out for
a perfect lattice, one in which all the vertical interac-
tions and all the horizontal interactions are respec-
tively the same. Virtually any difference between the
real system and the idealized Ising model with nearest-
neighbor interactions can be invoked to “explain” the
experimental data. Some are more reasonable than
others; one possible example is the finite size of the
actual sample. It is the purpose here to study one aspect
for the various differences, namely the presence of
random impurities. By impurities we refer not only
to the presence of foreign material but also to any
physical property that makes the various lattice sites
different from each other. An example is the presence
of various isotopes in a sample, e.g., nickel contains
roughly 68%, of Ni%, 269, of Ni%, 19, of Ni%, 4%, of
Ni% and 1% of Ni% The presence of impurities in
this sense seems unavoidable in most actual magnetic
systems. If these impurities distribute themselves
through the system in a regular ordered fashion, then
while the symmetry of the lattice would be reduced it
would not be destroyed. With sufficient labor such an
ordered sort of impurity can be studied in the Ising
model. However, such an ordering of impurities does
not always take place. Therefore, if we want to real-
istically study the effects of impurities in magnetic
systems we may have to allow the impurities to be
distributed at random throughout the lattice. The
regularity of the system now has been not merely
reduced but totally destroyed. A phase transition is a
cooperative phenomena in which the entire system
takes part. It is therefore not at all obvious that the
highly regular Onsager lattice should possess a phase
transition behavior that is in any way related to such
an impure system.

In order to gain any insight into the possibility for
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the random impurities to change qualitatively the
nature of the phase transition, it is necessary to study
a simple model in detail. Such a model will be described
shortly. At least in this specific model, and very prob-
ably under quite general circumstances, the logarithmic
singularity in the specific heat is no longer present
when there are random impurities. Instead, the specific
heat is an infinitely differentiable function of the tem-
perature. Thus, in the usual language, the phase tran-
sition is of infinite order. In particular, in the presence
of random impurities, the critical exponents no longer
have a precise meaning.

In this series of papers we consider the following
modification of the two-dimensional Ising model. We
retain the features of Onsager’s rectangular lattice to
the extent that all horizontal interactions are the same
and that the vertical interaction between any site in
the jth row and its nearest neighbor in the j4-1th row
is the same no matter what column these sites are in.
However, E.(j) is allowed to randomly vary from
row to row. More specifically we assume that, for
775, Es(4) and E,( j’) are independent random vari-
ables with identical probability distributions P(E,)dE:.

Let us try to describe the model in greater detail.
We are considering a collection of Ising lattices, each
of which is specified by a particular set of interactions
{E>(7)}. We are interested in the thermodynamic limit
where the size of these lattices becomes infinite. If,
in the thermodynamic limit, the free energy of each
lattice in our collection varied wildly from lattice to
lattice our model would be useless. In that case the
free energy of our random lattices would depend in
detail on the arrangement of interactions. Fortunately,
this is physically unreasonable and is indeed not the
case. In the thermodynamic limit the free energy per
site of each lattice does approach, with probability 1,
the same value. Therefore, with probability 1 the Curie
temperatures of any two lattices from this collection
are the same. Furthermore, we expect the spontaneous
magnetization of any two lattices to be the same with
probability 1, because the spontaneous magnetization,
like the free energy, is an average property of the
entire lattice. However, not all quantities of interest
have distributions which are so sharply peaked. For
example, the spin-spin correlation function of neighbor-
ing spins does depend in detail on the local value of the
interaction energies. For such quantities one needs
more than an average value to characterize the result
of a measurement made at an arbitrary position in the
impure lattice.

The complete investigation of all aspects of this
random Ising model is clearly beyond the scope of any
one paper. In this paper we begin the investigation by
considering the free energy in the absence of a mag-
netic field. In Sec. 2 we will formulate the mathematical
problem to be solved and find a general formula for the
critical temperature in terms of P(ZE;). In Sec. 3 we
will derive several general properties of the integral
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equation found in Sec. 2. There is a great deal that can
be said about the equations we derive because they
depend on the arbitrary function P(FE;). We wish in
this paper to emphasize the physical consequences of
random impurities. Therefore we specialize our treat-
ment in Sec. 4 to a particular distribution P(F;) which
has a narrow width (of order N~1) that is particularly
mathematically tractable. This distribution is in no
way physically distinguished and our results are ex-
pected to be typical of a large class of narrow distri-
butions. We show that while the critical temperature
is shifted by a temperature on the order of N~—! the
specific heat deviates appreciably (to order 1 as N—)
from Onsager’s specific heat only for 7—Te~0(N-2).
We furthermore find that at T the term of order 1 in
the specific heat is nof logarithmically divergent but is
an nfinitely differentiable function of T' though it is
not analytic. Finally we conclude in Sec. 5 with a dis-
cussion of the technical aspects of the calculation
and outline several ways in which our calculations
may be generalized.

2. FORMULATION OF THE PROBLEM

In this section we formulate the mathematical prob-
lem corresponding to the physical model described in
the Introduction. We do this in two stages. The first
stage is to relate the free energy to the solution of a
pair of coupled recursion relations. This procedure has
been discussed recently by us® for Onsager’s lattice.
That derivation of the recursion relation still holds
for the class of lattices under consideration. We there-
fore only repeat as little of that derivation as is neces-
sary to establish notation and refer the reader to the
previous work for a detailed discussion. The final re-
sults are given in (2.9) and (2.11). The rest of this
section is devoted to the study of the mathematical
problem formed by (2.9) and (2.11) and is self-con-
tained. We advise the interested, as opposed to the
dedicated, reader® to omit the first stage except for the
definitions.

We are interested in studying a particular class of
rectangular two-dimensional Ising models with 9 rows
and 29T columns. We impose cyclic boundary conditions
in the horizontal direction only. This class of systems
is characterized by the Hamiltonians

N N

8=—EIZ Z O k05 k1

=1 k=—31+1

M1

N
— 2 E(5) 2, oimvink
=1 k=—91+1

(2.1)

where ¢, is equal to +1 or —1, 7 and % label, respec-

5 B. M. McCoy and T. T. Wu, Phys. Rev. 162, 436 (1967).
This paper is hereafter referred to as IV. The present notation
differs from IV in a few trivial ways @=—ia, On=:2D,, and all
other German letters are replaced by their Latin equivalents.

6 The distinction seems to have been first clearly made by G. F.
Chew, M. L. Goldberger, F. E. Low, and Y. Nambu, Phys. Rev.
106, 1337 (1957).
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tively, the row and column of each lattice site, and
k=914-1is identified with k= —9+1. As far as thermo-
dynamics is concerned we may restrict £; and F; to be
positive without loss of generality. We are interested
in the limit 9t—» and M— o ; only in this limit will
a phase transition occur. We complete the character-
ization by requiring that E,( §) be independent random
variables with the probability density function P(E;).

Denote by Z g, the partition function for the system
described by (2.1) where the collection of bounds
{E2(4)} is chosen at random according to the prob-
ability density function P(E,). We are interested in F,,
the free energy per site of the system in the thermo-
dynamic limit. Under the assumption that with prob-
ability 1 this limit exists, F, is defined as

Fro=—811m N, 90,,2MN) ! InZ (5,;. (2.2)

Our class of lattices shares with Onsager’s lattice the
property of translational invariance in the horizontal
direction. Therefore the calculation of Sec. 3 of IV
may be taken over word for word to show that for
any set of energies E,( )

M1
Z m2y2= (2 coshBE;) % ] [coshBE,( 7) T
=1

X T1 | 142zet® 2% detC e, (6), (2.3)
[}

ia b

—b —ia 22(2)

We may further follow the procedure of IV and define
C, to be the determinant of the 2#X 2% random matrix
of the form (2.8) and iD, to be the corresponding
(2n—1)X (2n—1) random determinant with the last
row and column removed. Then detCg,;(6) =Cm(6)
and we obtain the recurrence relation for #>0,

l:c,,Jr1 6) [a2+b2 a]l:1 0 :":c,, (o):l
Dass (e):l~ ¢« tlo sm il ©
(2.9)

together with the boundary condition
Co(a) =1, Do(o) =0, (2. 10)
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where ] is the product over the 29T roots of —1:
[}

o=]1@2n—1)/20t, n=1,2,---29, (2.4)

% =tanhBE;, (2.52)

z( §) =tanhBEy( 7), (2.5Db)
and B=(kT)L. The 29X 29 matrix Cg,;(0) is de-

fined by
ia b
Cj,j_—' y (2 . 63,)
—b —ia

0 0
Ciin=—Ci, = (2.6b)
2(7) 0

[compare with (3.9) of IV] and all other matrix ele-
ments are zero. Here we use

a(0) = —2z; sinf | 142 |2, (2.7a)
b(0) = (1—222) | 14-ze® |2 (2.7b)

More explicitly Cg,,(6) may be written as

2(M—1)

—2(M— 1) ia b

—b —ia_]. (2.8)

where 2,(0) =0 by definition. Therefore, the free en-
ergy F, is given as

F,=—p1 {ln(2 coshBE;) + f ” dE,P(E,) In coshBE;
0
+ (4m)1 f " @81 | 1426 |2

+(4m) _/j d8 limgy, I lnCA(())} . (2.11)

The object C,(6) is the first component of the vector
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we obtain by applying #» random matrices of the form

a0 a\
a A
to the initial vector [3]. Here A=2? is a random vari-

able with the normalized probability distribution func-
tion u(\) given by

p(\)d\=P(E;)dFE;. (2.13)

The general theory of such random matrix products,
in particular the existence with probability 1 of the
limit of the right-hand side of (2.11), has been pre-
sented recently in a rigorous manner by Furstenberg.?
We begin our evaluation of (2.11) by noting that

(2.12)

. . LU= C‘n+1
limgi. ! InCor(6) = limg, 91 Y In c (2.14)
n=0 n
Using the recursion relation (2.9) this may be rewritten
as
nl C,
limgr, 92 Y, In ——éi'—l

n=0 n

M1
=limgr, 9t Y, In[a?+8*+a\(n) D,/C.]. (2.15)
n=0

This can be interpreted as an average over #. The only
drawback is that while the A(»#) are independent
random variables the D,/C, are not at all independent.
We now remark that because the matrix (2.12) is
real and acts on a two-dimensional vector space,

may be thought of as the tangent of the angle which
the vector [$"] makes with the D axis. From (2.9) we
find

Znp1=L(@+ ) xatar(n) )/ [ax.+N(n)]. (2.17)

Because the space of angular dependence of these
vectors is compact, as # becomes large the variable x,
will approach a limiting stationary distribution »(x)
that is independent of the initial vector.” This stationary
distribution is characterized by the property that, if
we apply a random matrix (2.12) to it and average the
resulting distribution over u(\) of (2.13), »(x) wil
transform into itself. Therefore, »(x) satisfies the equa-
tion

y(x) = /m dx’/l d>\6<x~— W)u()\)v(x').

—o o ax’+\
(2.18)
We may perform the N integration to obtain
b2 o) 2 b?_
»(&) = —— / ax'x'n [x u]v(x’). (2.19)
(x—a)? - x—a

"H. Furstenberg, Trans. Am. Math. Soc. 108, 377 (1963).
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The work of Furstenberg’” guarantees that a solution
to this equation exists and is unique.

Once we possess a stationary distribution »(x) we
may replace the average over # in (2.15) by an average
over X and over x. We thus arrive at the final result
that with probability 1

limgr, I InCon (6)
c) 1
= / dxv(x) f d\ u(\) In(@+b2+ara™).  (2.20)
o 0

An identical analysis may be carried out for the
quantity Dyy and we find that with probability 1

limgr, N1 In Doy (6)

=/°° dxv(x) /ldxp(k) In(\ax). (2.21)

0

Since Cop and Dgy are the components of the same
vector, their average rate of growth must each be
separately equal to the average rate of growth of the
vector itself. Therefore the right-hand sides of (2.20)
and (2.21) must be equal so that

/w dx v(x) /1 d\ u(\) In(@*+82+aNx)
o 0

=/°° dx v (x) fld)\p()\) In(\ax). (2.22)
- |

To prove this directly consider the difference d between
the two sides of Eq. (2.22)

[ 1 b2+ akx!
d= /_wdxy(x)/o anp(N) ln(——-——)\+ax ) (2.23)

This may be rewritten as

o 1 2 2. —1
d= /;mdxv(x)/o ax u(N) ln(xgib—j_—w\—af——)

A ax

— /m dxv(x) Inx. (2.24)

In the first integral we now replace the variable A by

g=x(a®+0+a\x™) / (A +ax) (2.25)
to obtain
Y b @ a*+b*—qa\ xb?
d= /_m dg/_wdxu(x —a )(q—a)“y(x) Ing

_/“’ dzv(x) Inx. (2.26)

We now use the integral equation (2.19) on the first
term of (2.26) to find that as expected d=0.

We may readily derive the expression for the critical
temperature 7 in terms of P(FE;) if we note that
at ¢=0 the matrix (2.12) is diagonal. The only possible
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stationary distributions of vectors are those with the
vectors parallel to the C or D axis. In the first case
the vectors are multiplied by 5%(0) under the action

of (2.12) so we find
limg.,o limg, I InCor =1nb(0)2  (2.27)

and in the latter case the vectors are multiplied by A
so that

1
Time.o limg, 91" InCor = f () Ih. (2.28)
0

The free energy is related to the larger of these two
expressions and the condition for T'=7% is obtained
by equating (2.27) and (2.28)

0= /0 "\ k() IDAB(0) 2]

- / " ABP(E) n{m[(142)/(1—2) P} (2.29)
0

or
28F,+ / ¥ ABP(E) Inm=0.  (2.29D)
0
If P(E;) =0(E;—E5") then (2.29) reads
2" (1—21) /(1421) =1, (2.30)

which is the known result for T=17% in the ferromag-
netic Onsager lattice. The correctness of this criteria
for locating 7T, will be seen more explicitly in Sec. 4
where we demonstrate for a specific u(\) that at the
T, given by (2.29) the free energy F, is not an analytic
function of the temperature.

We note that (2.29) has the property that T, is
zero if P(E,) =p5(E,)+-++-, where 0<p<1. This is
to be expected for our model. A § function at Ey=0
means that in every random lattice there are, with
probability 1, vertical bonds with zero strength a finite
distance apart. But for our class of lattices the condi-
tion Ex( 7) =0 cuts the lattice into two separate pieces.
Therefore the term pd(E:) causes the lattice, with
probability 1, to be cut up into an infinite number of
strips of finite width and any two-dimensional Ising
lattice that is not infinite in both dimensions has no
critical temperature. However, we also note that if
©(X) is bounded near E;=0 and E;> 0 then T is greater
than zero.

We finally remark that the argument leading to
(2.29a) does not depend on the fact that E, rather
than E; is random. We therefore see by a similar argu-
ment that if E; and E, are random with the joint
probability density P(E;, E») there is a ferromagnetic
phase transition at 7, determined from

f " dE, f ? AE,P(Ey, E) [zt (1—2) /(142 ]=0.
0 0
(2.31)
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3. INTEGRAL EQUATION FOR v(x)

In this section we study several general properties
of the integral equation (2.19). The limits of (2.19)
have formally been written as —w to -+, but over
much of this range »(x) vanishes identically. To see
this, first consider the stationary distribution corre-
sponding to the Onsager lattice where

p(\) =6(A —X). (3.1)

The stationary angular distribution of vectors will
clearly be a § function at that value of x which is un-
changed by the application of the matrix (2.12) with
A=X. From (2.17) we see that the values of x which
satisfy this eigenvector equation obey

w(X) =[(a*+0) xo(X) +-aX]/[axe(X) +X], (3.2a)
which is also usefully expressed as
A=xo(A) [+ 82 —axe(X) 1/ [x0(X) —a). (3.2b)

There are two solutions to (3.2) because the matrix
(2.12) has two eigenvalues. To obtain the correct free
energy we must choose that solution which has the
larger eigenvalue. It may easily be seen from (2.12) or
from (2.20) and (2.21) that the correct solution of
(3.2) is

xo(X) = (2a) " a? 02— X+ [ (@242 —X) 2+ 4Xha? ]2},

(3.3a)
with
%(X) 1= (2a))1
X {—(@+8*—X) +[(2+82—X)2+4Xa? ]2}, (3.3b)

If we use (3.1), (3.3), and (2.21) in (2.11) we find that
the free energy for Onsager’s lattice is!

—BFy=1n(2 coshBE; cosh8 Ey)
+ (4m)? /T do In[3 | 14z |2{ a2+ 02422

+[ (@452 —2%) 2+ 4a%2:2 ]2} ].

From (3.3) we see that the eigenvector of the matrix
(2.12) with the larger eigenvalue always lies in the
range

(3.4

axo(1) <ax<axe(0) = a2+ (3.5)

Consider any vector not in this range. Pick any matrix
of the form (2.12) with X not equal to O or 1 such that
the eigenvector with the smaller eigenvalue does not
lie in the direction of this vector. If we apply this
matrix to the vector a sufficient number of times, the
resultant vector will lie inside (3.5). But this is true
not only if all the matrices correspond to A but also if
the matrices correspond to A’s lying in some neighbor-
hood of X. Therefore, there is a nonzero probability that,
after the application of (2.12) a finite number of times
on a given vector, the resultant vector will lie in the
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sange (3.5). Furthermore, it is clear from (2.17) and
(3.2) that if =, satisfied (3.5) then w,.1 does also.
Therefore we conclude that no distribution of vectors
that does not vanish outside the range axo(1) <ax<
(a®+8?) can be stationary.

In fact the same argument shows that if
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To see what restriction (3.7) makes on the limits of
integration in (2.19), it is convenient to plot in Fig. 1
for >0, (1) the region in the x—x’ plane where the
kernal of (2.19) is not zero; (2) the contours along
which wu[%'(a®+82—a)/(x—a)] is constant; and (3)
the region where the kernal of (2.19) does not vanish
and »(x) and »'(«') are different from zero. We then

— ’
#(A)=0 unless N'SA<No (3.6) readily see that (2.19) may be more explicitly written
v(x)=0 unless axo(No) <ax<axy(No). (3.7) (when a>0) as
b2 min[\(e—a)/(a*+b*—az) ,zg(\o")] 2L p2— qx
»(%) = — dx'x'v (2 ) (x’ gAY a ) (3.8)
(x“‘ d) max[zo(o) Ao/ (z—a)/ (a?+b%—az)] x—a
for x(Ao) <x<x(No’) and v(x)=0 otherwise. If <0 we clearly have
v(x, a) =v(—x, —a). (3.9)
In the sequel we concentrate on the special case \o’=0 where (3.8) specializes to
B2 min{\o[(z—a)/(a+b*—ax)],(a*+b%/a } b2 —ax
v(@) = av(u (¢ T, (3.8)
(x—a)? Jaoir0 x—a

An important difference between the Onsager lattice
and all random lattices may be seen from Fig. 1. If
u(\) =86(A—X) then, as we have seen earlier, »(x) is
given by a § function at that value of x that lies
within the interval (3.5) where the curve «'=
X(x—a) (a>+b2—ax)~ intersects the line x=x’. This
intersection is at the point %(X) given by (3.3). There
are three distinct cases:

(a) if 8(0)2>X(T>T,) then as 6—0

2o (X)~[(0)2—X]/a, (3.10a)
(b) if 5(0)2<X(T<T.) then as §—0

xo(X)~Xa/[X—5(0)%], (3.10b)
(c) and if 5(0)2=X(T=T,) then as §—0

xo(X) >N, (3.10c)

We see from (3.10) that a é-function distribution of A
leads to a é-function stationary distribution. In the
limit #—0, the é-function stationary distribution re-
mains at a finite value of x if =T, but moves to zero
(or infinity) if T is less than (or greater than) T..
Contrast the above case with the case of a very
narrow u(\). As long as ¢ is sufficiently far away from
zero, a narrow u(\) must give use to a correspondingly
narrow »(x) because the projection on the x axis of
the region of the x=«" line where the kernel of (3.8)
is appreciably different from zero is small. However,
if @ gets close enough to zero and T is such that u(X)
is different from zero in the region (however small)
where AM~b(0)2, then the above projection on the
x axis becomes enormous. This dramatic broadening
of »(x) when T'~T, and ~0 will be exploited in the
next section to obtain the dominant contribution to the

specific heat for the particular narrow distribution

w(\) =N VAV (3.11)
for

OS A S )\0 = tanhZﬂEz"
and

uw(N) =0 otherwise.

The above discussion, however,-shows that there is
nothing particular about this¥form of u(\), and we
expect that the physical properties which (3.11) leads
to will be qualitatively the same for a wide class of
narrow distributions.

Before studying the power-law distribution (3.11)
in detail, it is convenient to perform some manipula-
tions on (3.8’) that are useful for any u(\) such that
w(\) =0 if A>X,. We first note that it is possible to
change variables so that the upper limit of (3.8') is
transformed from a curve and a straight line into two
straight lines. To do this let

11=x0(x—‘xo)/()\o+xox), (312)
where xo=wx(N\o). We also introduce
B =Xo(29—a) /xo(No+axo)
— a2+ b2+)\0"“E((12+b2—>\0) 2+4(1«2A0:|112 (3 13)
T @B L(@ 5 —) 2 4aiN ]2 '
so that
0<9<B<1. (3.14)
Define
v(x) =X (n) (dn/dx)
=X () L(1—n) %0/ (Aot ], (3.15)
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Bﬂ
f X (n)dn=1. (3.16)
0
Then (3.8") may be rewritten as
NB2 (A g Fx¢2) min[B?%,nB~?
X)) = ——-7+ a'X ('
(n) (Braitron?J, "X (n')
’ 4
7' No+20? [n Aot Bi—y ]
. (3.17
X 1—y 1—n" A 'B%o*+n ( )

This equation may be cast into a somewhat simpler
form when n< B* if we define

n

Y(n)= [ X (3.18)
0

and integrate (3.17) over 7 to obtain

n mB~?
Y (n) =NB*(Notx?) / dm / dn'X (n)
0 0

% 77,)\0+ X ["l’)\o‘{— X

Bz—‘"h ]
(1—=) (Bag+rom)? | 1=’ '

A1 B 4-m
(3.19)

Interchange the order of integration and make the
change of variable from 7; to

l)\ 2 Bz —
= Mhot n (3.20)
1—9" NB%g+m
to obtain
B2y
Yo)= [ arX()
0
A0
X g u($)
[Qon’+20D [ (1—1) 1 [(B2—n) [ (o~ 1B2z0%+14)]
7287%
=YaBY - [T ax()
0
[on™+20%/ A—n1[(B—1)/ Ao B0 ]
x [ de (). (3.21)

0

Using the definition of ¥, we may rewrite this as

7B~? 7B~?
f 'X(n) = / dn'X (')
7 0

g u(). (3.22)

f[Qoﬂ'+roz)/(l~n')][(B’—fl)/()\o'lB Zno%m)]
0

It remains only to write out the special case (3.11).
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F16. 1. (a) Contours along which the function
u(o' (a*+02—ax) / (x—a))

is constant. The kernal of the integral equation for »(#) is differ-
ent from zero only in the shaded region. (b) Enlargement of 1(a).
The shaded region is the only region in which the kernal of the
integral equation does not vanish and »(x) and »(x') are different
from zero.

We work the { integral in (3.22) and obtain

B2 7B~?
[ arxen=[" arxey-
1

0

X ()\on'+xo2 B—y > ()\oﬂ'+x02 B—y )
1= N B\ 1—n N Baitn)”
(3.23)
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The right-hand side of this equation may be further
simplified using the original integral equation (3.17).

We obtain
L (B2—1n) (B*¢*+1\o)
d /X / =
/ﬂ X0 = N B Ot )

Finally, it is useful to make the exponential change of
variable

X(n). (3.24)

n=e", (3.25)
where —InB*<r< . Call
U(r) =2X(), (3.26)
so that
f” dr Ulr) =1. (3.27)
—1nB?

Then we obtain
7+InB? (BQ_e~'r) (B2x02+)\oe—r>
dr'U(7)=— T .
f, U NBOurag U™
(3.28)

4. POWER-LAW DISTRIBUTION

In this section we determine the dominant contribu-
tion to the specific heat of the lattice characterized by
the power-law distribution (3.11). We consider only
the case of large NV and ignore all contributions to the
specific heat which vanish as N—c. Then the dis-
cussion of Sec. 3 shows that when ¢ is away from zero
v(x) is given by a narrow distribution which will
differ but little from the »(x) of an Onsager problem.
We are not interested in these small deviations and
concentrate our attention on the opposite extreme
when @ is close to zero. From (2.29a) we find that
T=T.if

In[3(0)2A¢ 1 ]=1nB2%(0) = — N1 (4.1)

When B? is close to this value and a~0, the discussion
of Sec. 3 shows that »(x) is very broad. Therefore
when « is of order 1, »(x) [and hence U(7)] may be
treated as slowly varying. Furthermore, (4.1) shows
that the region of integration of (3.28) is of the order
of N71. Hence to leading order in N~! we may expand

U )y~U(r)+ (7 =) U'(7) (4.2)

and do the integral in (3.28) to obtain the approximate
differential equation

1(InB»)?2(d/dr)U(v)+U(r) InB?

=[—(B*—e ) (B ™M) /NB N+ x2)JU (7). (4.3)

B? 1
limor.. 9 InCor (6) = [ dn X (n) f \ w(\) In[a+-Fax(1—n) / (ihori—+0) ]
0 .

0
Define f(5) by
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This is readily solved and we find
U(r) =Cy(B? x0) exp{st—ie~"—ue"}
where, by (3.3),
s=2(InB%) Y —InB*— N7 (N\oxs ' — o) / (Noxs  H-20) ],
=2(InB2)2{ —InB*+N"1(a>+ 52 —No)

(4.4)

X [(a®+b*—No)+4Noa? 712},  (4.52)
1=2(InB?)"2N"1B2\gx5 (Moo 1+ 29) 1
= (InB?)~2N-1B~2{1— (a®+5—\o)
X (a2 52—No) - 4hea? T2}, (4.5b)
u=2(InB%) 2N"1B2x(Nox¢ 1+ 20) !
= (InBY)—N-1B{ 1+ (a1 — )
X [(a+b2—No)2+4Na ]2}, (4.5¢)

and Cy(B? wx) is an appropriate normalization con-
stant. Therefore, when 7~7 and 6~0, we obtain

X(n)~Cy (B, a)n" exp(—tn—u/n). (4.6)

This approximation to X(7) forms the basis of all
further considerations of this section.

To give insight into the structure of X (n) we first
remark that as N—o the power-law distribution
(3.11) approaches 8(A—NX¢). Therefore when T#T,
and 650, the exact »(x) must approach &(x—xp)
as N—o [and hence X () must approach 8(y)]. Our
approximation to X (9) was derived under the assump-
tion that T—7T, and 6 were small and hence it is not
obvious that (4.6) will approach 4() as N—w. To
see that this is in fact the case we note that the max-
imum of nX () occurs at

= (28) [ — s+ (s2-+4tu) V2] (4.7a)

and its width (in the sense of a steepest descent inte-
gral) is

wy={ (8%/942) Us Inn+tn+un 1]} 112 1 N ="M,

=032 (20— 1) 7V, (4.7b)

1f T5# T, and %0 are fixed and N— o, s=—2(InB?)~1+
O(N™),t=0(N"1),and u=0(N"1) so thaty,=0(N?)
and w,=0(NY). Therefore X(7)—6(n—n») in the
sense that in the evaluation of the normalization inte-
gral of X(n) we may replace X (1) by 8(n—1m).

We are interested in the contributions of order 1 to
the specific heat when NV is large. This is found by using
our approximation for X(n) in the integral (2.20)
which in terms of 7 is

(4.8)

f(n) =In[a+*+ax(1—n) / (nhorg™4-20) ]

=In{ a2 B2+ 200 (@45 —No) + (147) (1—n) "1 (@B —Ng) H-4Na?) 2]}

(4.9)
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When T'5# 7T, and 8540 are fixed and N— we see that
if p=0(N")
f() =In[a®+ 8+ a e ]+0(NY).

Therefore our approximation X (n) may be replaced by
8(n—nm) for the purpose of obtaining the leading order
term of (4.8). This is the behavior expected of the
exact X(5) in this limit so we conclude that approxi-
mation (4.6) may be used for all T and 6 for the pur-
pose of obtaining the leading order term in the specific
heat when N—w,

In fact, for our limited purpose X (5) is well approx-
imated by 8(7—7.) not only when 75T, and 8540 are
fixed and N— but also when @ is of the order of
N—¢and (0)2—X\, is of the order of N-7, where 0<e< 1
and 0<y<1. There are three cases to be considered.
(a) v>¢, (b) v<e and 5(0)2—1<0, and (c) y<e and
5(0)2—Np>0. We find

case (a),
Nm = O(N—1+e) ’
f(n) =Inb*+0(N-¢),

Wy =0 (N-1+e2) |
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case (b),
nmzo(N——l———2e+ 37) R wnzo(N~1—2s+57/2) ,
f(n) =Inb>+O(N-7), and
case (c),
Im=0(N"1),
f(n) =Inb4O(N-2+7).

Since the variations in f() caused by deviations in 7
on the order of w, vanish as N—, we conclude that
in these cases, for our purpose, X (1) may be replaced
by 8(n—"7m).

Because of the fact that even if 7~T, the contribu-
tion of »(x) —8(x—xs) to the specific heat is very
small for | a >N, it is useful to consider the contri-
butions of §(x—x,) and »(x) —86(x—x,) separately.
It is easily seen from (4.7a) and (3.12) that x, obeys

Tn?a[ 140G — [+ BN+ G(14-20%2) ]
—hea[1—Gla+ P 741 =0,

w,=0(N-+12),

(4.10a)
where

G=—N-"1(InB%) [ (a>+b2—\o)*+4a2\ ]2 (4.10b)

If we use 8(x—xn) for »(x) in (2.20) we find, correct
to order N1,

o T 0 1
—BF = / dE3p(Fy) In(2 coshBE; cosh8Ey) + (4r)~t [ db / dx 5(x—1,) [ a\ u(\)
0 - ~00 0

X In{| 1+ 2% 2L a®+ 82+ a ']} ~In(2 coshBE; coshBEL) + (4r)—! / ’ d9

X In{] 14-ze? A1 —G(a2+5) N b2] (a2 B2 ho— G2\ I[2 (@24 82) - N (824 2a2) ]

+ {[@+ 82— Mo+ G (142a%52) P+4a2ho(14-52G) [1—G(a+B2) N b1} 12)}.

(4.11)

By comparing F, with the Onsager free energy Fy of (3.4), we conclude that to order N~ F, is the same as F,
except that the critical temperature has been shifted from 5(0)2~X,=0 to

0(0)2—No=—G(0) = —[5(0)2—NoJN[Inb(0)2A 1],

(4.12)

which is exactly the same equation for 7', as (4.1). Therefore over the range of T where »(«) is well approximated
by §(x—x,), F, is dominated by a term which has an apparent logarithmic divergence at 7.

To study the behavior very near T, we write

F,—F~— (B4r)1 /jr 6 '/;m dx [v(x) —8(x—2) ] In[a®+ 0>+ arex1],

(4.13)

where the \ integral has been evaluated to O(N-). We consider only T close enough to T, so that 52—\, <0. The
~ sign is to mean that both sides lead to the same specific heat to order 1 as N—o . Furthermore we have seen
that unless a>+b*—X\y=0(N"") we cannot have a contribution of order 1 to the specific heat obtained from (4.13).
Therefore, axg=0(N™') and, since | %o | < | x|, we may expand the logarithm of (4.13) to obtain

Fo—Fe—(gam) [ ds /m dalv (x) —8(x—x,) Jako(a®+5%) 1

0 B?
=(=m) [ d (@) [ dn (X () —5(r—m) ]

0

X {0 =Nt (1+4n) (1—n) (& +02—No) +4a\ ]2} (4.14)
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To evaluate this approximately to order 1, we need to find the correct range of 6, n, and T—7,. We have pre-
viously considered the case @>>N-! and | b2—X, [>>N-! and seen via a steepest-descent integration that the con-
tribution is negligible. In a similar fashion we may show that the cases (1) @ is of order N4, (2) a=0(N™') and
s=0(N) give only contributions of an order N to the specific heat. The only region that gives a contribution of
order one to the specific heat as N—w is a=0(N"2?) and T—T,=0(N72).

When T'—T.=0(N-?) and a=0(N7?), X (’r)) and 8(n—1m) do not cancel at all so that F, and 7, must be eval-
uated separately. Because C,”= —TF,”(T) is to leading order in N the same as Onsager’s specific heat, we may

use Onsager’s result! to find

C~AkB 2T

Yzt (1—210) 2(1—20) 2 [E1(1—210) + EL(1—20)

X[InT./ | T-T. I —IngBe(E1(z1e+21571) + EL (220420 71) )]

—[ B4 (1—50) ~4gd28. E1+-2E B+ B4 2 (1 —210) ~'gd2B.E"]},

where gd stands for the Gudermannian [gdx=
tan™! sinhx], the subscript ¢ means T'=T,, and 2=
tanhB.ES.

We evaluate C,” by splitting the § integration into two
regions, one for 0< |4 | <O(N-2) and the other |8 | >
N—2 In the second region the integrand of (4.14) is
small. Therefore, to leading order the parts of C," and C,"
coming from angular integration over this second
region are equal. It is easily seen that the large angles
give a contribution to C,” that is a constant. The point
of separation between the two regions is not well
defined but, as will shortly be verified, the precise
choice of this cutoff does not affect the temperature-
dependent part of C,” but only the constant. Therefore,
we may evaluate the leading contribution to C, as
N— when T—T,=0(N~%) up to a constant by inte-
grating 6 only up to O(N—2). We then may determine
the constant by the requirement that, when | 7— T, | >
N—2, C,/~C," where C," is given by (4.15).

To explicitly carry out this evaluation, we define

b= —8X0_11221(1+Z1)—2N20, (4 16)
so that

a=}N"\2p+O(N9). (4.17)

(4.15)
We further define é by
N (1—2)2(142)2—e N'=iN"%. (4.18)
As N—w § is to be of order 1. Explicitly,
8= (T—T;) N*4kB2(1+2") 202
X{[E1(1=20) +EX(1—20) JHO(N ) ). (4.19)
We then have
o =—T(0°F,/0T%) ~—kBA16(1+20) 2250
X A{E1(1—21,) +EL(1—29) }2N4(8°F,/86%). (4.20)

Furthermore,

A+ —N=—NN"1—(2N)"1(6+1) JHO(N7?)
(4.21)
and
InB2=—N-1—(2N) % ]+0(N3). (4.22)
We then find
s=—0+0(NY), (4.23a)
t=2N+0(1), (4.23b)
u=(8N) 19?40 (N?). (4.23¢)

Therefore,

Cy~—kB2(8) 1(1—}-215)2(1-}—2200)222O_lzn,- Y B (1—2,) +EL(1—20) }2N1

+

02 i
35" ’ " exp(—2Nn—¢"* ) 4R, (424
X o fo de ¢ fo dn 11 exp(—2Nn—g%/8Nn) Cx (&, ) (1 1_n) YR (4.24)

where the coefficient of N? is arbitrary and K is deter-
mined by the requirement that as é—», Cy r—C,.

The normalization constant Cy (¢, ) is determined
from the requirement

1
1=Cy f dn 7 exp(—2Ny—¢?/8Ny). (4.25)
0
Letting §¢=4N¢™y, we ha.ve
Cyt=(40) 7% f " it (so/amy

X exp[—3¢(¢+E1]. (4.26)

The upper limit may be extended to « and we find
Cwi~2(¢/4N)*Ks(¢), (4.27)

where K;(¢) is the modified Bessel function of the
third kind?® of order 8. Similarly, we find

fl dn 9t exp(—2Ny—¢*/8Nn) [1— (1+9) (1—n) 1]
(1]

~—(¢/4N)Ks1(9).

Tf we also note that (1—22) (1—2) =4 | 210 || 20 | +

(4.28)
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O(N-Y), we have As p— 0,
Cor~ kB2 (1—210) 2 (1—22) 2212 Ksa(9)/Ks(¢)>1—¢71(6—3) +3¢72(8~ 1) +0(¢7%),
X {Ex(1—5) +ES(1—29) J2 (4.30)
® Y 6Ky a(9) so there is a term in (4.29) that behaves as InN?
X = / 6 ———— +K. (4.29) (where we remember that the coefficient of N2 is
95° /o Ks(¢) arbitrary). We explicitly extract this term to write
* M ¢Ksa(9) /w { 9 Ksa(9) }
J— _ L = —_— 1)1 1 2 —1 .
652[0 g = | 1 g Ry — T O, (4.31)
which, using the recurrence relation
Ks-1(¢) = —8¢7Ks(¢) — (d/d$) Ks(8), (4.32)
may be reexpressed as
o 62
/ deé [3_62 InK;(¢) ——(¢-|—1)-1] +InN2—14+-0(N71) =R(8) +InN2—1+0(N7Y), (4.33)
0

which defines the function R(3). )
For convenience we absorb the —1 term of (4.33) into K of (4.29) by defining

K =K—4kBn7 (1— Z1o) 2 (1= Zo0) 221,250 { Es(1— Z1o) + EL (1— Zo0) }2. (4.34)
To determine K we must expand (4.33) as —. We use the expansion?
Ky~ (3m)2(8+¢%) 71* exp[ — (8+¢*) 2+ sinh™2(8/¢) {1+ [ —5+(5/24) (14+¢%/8) 1] (8+¢?) 12},  (4.35)
to find that as é—

o 2
/ do [;—62 InKs(¢) — (¢+1)—1] +InN?=In2+InN%-1—15-24+0(57%). (4.36)
0

Therefore we find as 6—
Cv’(é)—>—4kﬁ'£7r‘1( 1 _"Zlc) —2( 1— 22,,0)_22102{260 { E1 ( 1 _Zlc) +E20 ( 1— cho }2

X In{2k82 | T—T. | (57 H+1) [Ex(1—210) + EL(1—20) [} + K.  (4.37)
Comparing this with (4.15) gives

K=—4kB2r [ (1—216) 2(1—2) 22162 [ Er (1 —210) + B (1 —2,0) 2
X { =In2 (5 1) [E1 (1 —21) + B (1 —20) JH+Ind[E1 (2104 21571) + B2 (204 201) ] }
+ E421°2 (1—2.") ™ gd 28.E1+ 21 Ex™- B2 22,92 (1—21,) ~ gd 28.Ex"]
= —4kB2r Y[ Es? sinh2B,.Ey’+ 2 E’+ E sinh28,E; ]
X [n% (E; coth2B8.Ey+ Ey coth28,Ex’) —In2{ (1+ cothB,E) [E1(1—tanhB,Ey) + EL(1— tanhB.EL) ]} ]
+ By sinh?2B,E gd 28, By 2E, B+ By sinh?28.F gd 28,E0}. (4.38)
We therefore have as our final result that when T—T,=0(N—2)

ey 2
Cy~20 kB2 Ex® sinh2B B+ 2Ey Ed+ Ex? sinh28.F; ) { / dé [b% InK3(¢) — (¢+1)—1] +1nzv2} +K, (4.39)
0

where § is defined by (4.19) and K by (4.38). We note in particular that C,” is an even function of 5.
The specific heat (4.39) has been calculated for the random lattice characterized by u(A) given by (3.11).

8 Higher Transcendental Functions, edited by A. Erdélyi (McGraw-Hill Book Co., New York, 1953), Vol. 2, p. 82.
9 Reference 8, Vol. 2, p. 26.
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Fi1G. 2. The integral R(8) as a function of 3.

The corresponding probability density P(Es) is
P(E;) =2N (tanhE,"8)?"B(sech?3 E;) (tanhB E,)*V—1
for 0<E,<ES. (4.40)

This probability clearly depends on temperature. The
probabilities envisioned in the original statement of
the model were to be temperature-independent. Fortu-
nately, because the only significant deviations of C,’
from C,” occurs when T—T,=0(N-2), we see that, in
the temperature range where (4.39) is valid,

P(E;) =0.(sech?8.Ez) 2N (tanh EB.) ~2¥
X (tanhB.E,) V[ 14-0(N1) .

Therefore P(E;) as given by (4.41) differs, when
T—T,=0(N-?), from a temperature-independent prob-
ability by a term of O(N™1), which is negligible.

To justify calling the temperature given by the solu-
tion of (4.1) the critical temperature we must show
that C, as given by (4.39) is not analytic at §=0.
For this purpose we integrate the integral in (4.39)
by parts once and consider

I S

(4.41)

98 K;(9)

When 6—0 the singular behavior of this function comes
from the region near ¢=0. Thus we may obtain the
most singular behavior of (4.42) if we integrate only
from 0 to some small positive upper limit e and expand
for ¢ and & near zero

Ks(¢)~(28)""[(¢/2)~*—(¢/2)*].
Therefore we study
[ g otsmiren /(o= = [ do 2(1—4)7 .
0 0
(4.44)

(4.43)

176
Now if e<1,
[ do/ing

0

exists, so the analytic properties of (4.43) are the
same as

10)= [ d 81—+ ()], (4.45)
0

We have been able to replace e by 1 in (4.45) because
the integrand is regular at ¢=1. It is easily seen that
I(8)—I(—5) =6 so we need consider only 6>0. Then
if we let

p=cth, (4.46)
we find®©
10)= [ ds et (1—et1—1]
—Ind—y(5Y), (4.47)

where ¥(2) =17(2)/T'(z). For small § we may use the
asymptotic expansion* for ¢(6~1) to obtain the formal
power series valid for both positive and negative §,

I(8) =%+ D Boud™(2n)~. (4.48)
n=1

Here By, are the Bernoulli numbers. Therefore, the
most singular part of C,” is an infinitely differentiable
function of T even at T'=T,. However, because (4.48)
diverges for all 60, C,’ is not an analytic function of
T at T=T.. It is therefore correct to call T, as deter-
mined from (4.1) the critical temperature.

Finally, it is useful to supplement these analytic
considerations with a numerical evaluation of C,
when T—T,=0(N"?). We have done this on an IBM
7044 computer and present the results in Fig. 2 and 3.
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F16. 3. Comparison of C, of the pure Onsager lattice and C, for
several values of N for the case Fy=EY.

10 Reference 8, Vol. 1, p. 18.
1 Reference 8, Vol. 1, p. 47.
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5. DISCUSSION

The principal result of this study is to exhibit
explicitly a model with random impurities where, to
order 1, the specific heat is an infinitely differentiable
function of the temperature even at 7. This behavior
is qualitatively in beautiful agreement with the exper-
imental findings previously quoted. We therefore feel
justified in proposing® that random impurities can be
the origin of the smooth specific heats observed exper-
imentally.

On the other hand, this particular model of random
impurities is obviously artificial. It is not realistic to
assume that all vertical bonds E,(j) in a given row
will be equal if we are allowing E.(7) to vary from
row to row. A realistic model of random impurities
should not have such a large amount of correlation
between the random bonds. For this reason, we are
extremely fortunate that the specific heat found in
Sec. 4 is infinitely differentiable. If random impurities
had increased the observed order of the phase transi-
tion to a higher but finite order, the question could
very reasonably be asked if relaxation of this very
stringent correlation requirement would further in-
crease the observed order. However, even the limited
amount of randomness allowed in this model has made
the dominant contribution to all derivatives of the
specific heat continuous, so no further increase of the
observed order is possible. This very smooth specific
heat is in distinct contrast to the result of Syozi’s
model.’®

We are unable to ascertain which of our results are
qualitatively dependent on the very special sort of
randomness allowed in our model. For example, we
find that if the impurities have a narrow width of
order N1, there is an effect of order 1 on the specific
heat only when | T—T, |=0(N-2). We do not know
if this order of magnitude persists in general.

It must be emphasized that in this computation of
the observed (order 1) specific heat we have in no
way settled the question of the order of the phase
transition. To answer this question, which admittedly
is not very important physically, one must study the
analytic behavior of all contributions to C,". There
are several reasons why this is not trivial. We mention
two.

(1) The relationship of the differential equation
(4.3) to the integral equation (3.28) must be studied
in detail. The naive procedure of using more terms in
the Taylor-series expansion of U(7) leaves one with a
differential equation of order larger than 1 and the
problem of determining the boundary conditions must
be resolved.

2B, M. McCoy and T. T. Wu, Phys. Rev. Letters, 21, 549
(1968).

B, Syozi, Progr. Theoret. Phys. (Kyoto) 34, 189 (1965);
I. Syozi and S. Miyazima, bid. 36, 1083 (1966) ; J. W. Essom and
H. Garelick, Proc. Phys. Soc. (London) 92, 136 (1967).
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(2) Formally, it is possible to write down an exact
iterative solution to the integral equation (3.28). This
iterative solution is analytic only in the segments
B << B*» D, The approximation employed in Sec. 4
approximates the analytic function which this seg-
mented solution approaches when #—oo. This is the
important region for the order-1 contributions to C,
but in general the effects (if any) of the segmented
nature of the exact solution are not understood.

There are several ways in which the considerations
of this paper may be generalized and extended.

(A) The present discussion has been concerned with
the case in which E, is the random variable. However,
the general formulation given in Sec. 2 applies equally
well when E; (and even both E; and E;) is random.
A new feature which can occur when E; is random is
that, as may be seen from (2.29), T, may be zero even
though | E; | is never small if P(E;) =P(—E).

(B) The specialization to the power-law distribu-
tion (3.11) has been made for clarity of presentation
only and many of the above considerations may be
generalized to any narrow distribution.

(C) Itisalso possible to consider distributions which
do not have small widths. In particular, the power-law
distribution (3.11) when N is not large may be ana-
lyzed in terms of a difference-differential equation.

(D) A more challenging problem is the study of
spin-correlation functions. The average value of the
nearest-neighbor correlation functions may be readily
obtained if we combine the results of IV which express
correlation functions in terms of C, and D, with the
considerations of the present paper. However, the spin
correlation functions themselves possess a probability
distribution function. To study the moments of this
distribution and also to study spin correlations other
than nearest neighbor, it is necessary to consider joint
stationary probability distributions. In particular for
the second moment of the nearest-neighbor correlation-
functions’ probability function the relevant joint prob-
ability function satisfies a two-dimensional integral
equation. This equation may be approximated by a
partial differential equation in a manner analogous to
that done in this paper.

(E) The most outstanding feature of this model
that remains to be investigated is the behavior of the
spontaneous magnetization near 7. Without a doubt
the eighth-root singularity found by Yang will be
weakened by the presence of random impurities. The
difficult question is, how much?
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