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The '8 state of the Be atom is calculated in Hylleraas coordinates using a 25-term
single-determinant wave function having the proper spin-angular-momentum symmetry.
A ground-state enexgy of -29.3158 Ry is obtained, as compared with the expeximentally
observed value of -29.337 By and the best Haxtree-Fock value of -29.14596 Ry, indicating
that the application of the procedure to larger systems should be fruitful. Suggestions are
given to improve the accuracy of the present method and to extend it to atoms of higher
atomic number. Solutions of the integrals and procedures for manipulating them in
storage are presented.

INTRODUCTION

It is well known that the main defect in using the
Hartree- Pock formalism for an approximate solu-
tion of the many-electron Schrodinger equation is
its failure to represent adequately the correla, -
tions between the motions of the individual elec--
trons. Severa, l methods have been employed in
order to circumvent this failure. The simplest
one, computationally, is the method of configura-
tion interaction in which the wave function is
approximated by a linear combination of hydro-
gen-like orbitals, the coefficients being chosen
to minimize the energy. Although this method
is readily applied to a great many multielectron
problems (both atomic and molecular), difficul-
ties with convergence have lead some investiga-
tors'y' to suggest as an alternative, a trial wave
function which explicitly contains the interparticle
coordinates &&& . Recently generalized methods
for including interparticle coordinates in the
wave functions for atoms and molecules have
been developed by Sinanoglu' and Szasz. '

'Hylleraas' applied this method to the helium

atom. Using a six-term wave function depending
on the variables S=~, +~» t = ~,—~» and u=~»
he calculated an energy within 0. 02/& of the ex-
perimental value. By carrying many more terms,
more recent workers'y' have constructed wave
functions that give energies within the current
limits of experiment. Howevex, when the method
is extended to larger systems, extreme computa-
tloI1Rl diff lcultles Rle encountered. JRQles R11d
Coolidge' calculated the ground-state energy of
lithium using a wave function consisting of Slater-
type orbitals multiplied by r;&" (where n = 0, 1, 2)
with the limitation that at most only one inter-
electronic separation coordinate is present in a
given term. They did not, however, achieve
the accuracy Hylleraas obtained for helium. As
was later pointed out by James and Coolidge, '
their wave function was not of pure doublet
symmetry. Burke'0 has given an estimate of the
error involved in this lack of proper symmetry.
Hls cRlculRtlon for lithium Rs we'll as the wolk
of Berggren and Wood" and Smith and Larsson"
have improved on the original results of James and
Coekidge. All these workers used the correlated



R. F. GENTNER AND E. A. BURKE 176

or Hylleraas-type wave function.
The purpose of the present investigation is to

develop a simplified systematic approach for using
the Hylleraas-type wave function to calculate the
energy of a multielectron atom via the variational
principle. The greatest problem in using the
Hylleraas-type wave function is in the calculation
of integrals involving several interelectronie
separation coordinates. This problem is reduced
by choosing a wave function which introduces at
most only one rz& per term as was done initially
by Jaines and Coolidge. ' The justification of
this choice has been discussed by several investi-
gators. ', 4~" Hence all the possible different
types of integrals occurring in systems of larger
atomic number will occur for beryllium. The

present calculation is further simplified by
choosing a basis set of Slater orbitals. The
ground-state energy of beryllium is calculated
using a correlated wave function with the proper
spin angular-momentum symmetry. In the
present paper:

(i) The choice of the trial wave function is
discussed.

(ii) Formula for the matrix elements are
presented.

(iii) A technique for manipulating the integrals
in storage is described. This process should be
readily extendible to larger systems and thereby
remove a major difficulty in these calculations.

(iv) The integrals occurring and their evalua-
tion are discussed in the Appendix.

WAVE FUNCTION

The wave function for a multielectron atom in the central-field approximation is given by

e =~y (1)c(1)y (2)c(2) ~ .y (X)~(X),

where $3(q) is a normalized one-electron orbital, i standing for the set of quantum numbers n, f, and
mand q for the space coordinates; o is the spin coordinates o' or P, and A is the antisymmetrizer

A = (N!) ' Z (-1)~P.
p

For beryllium Eq. (1) becomes

~=(&') "'~ &0(~P~P), (2)

where U is a permutation operator which permutes the spin functions. Thus for Be, U generates, in
addition too!po.p, the spin configurations o.ppo. , nnpp, pn42p, ppnc2, and pc2pot The fun.ction%'2 is
given by

O,. =Z„(-1) ~(e,02',e,),,

where ff is a permutation operator which performs the appropriate permutations on ($1/2&3& ) .. For
example,

12342'

@1 41424344 43424144 414443~2 43444142'

For a spin-independent Hamiltonian, no product of two terms with different spin factors will contribute
to the energy and overlap matrix elements because of the orthogonality of the spin functions. Therefore
the calculation can be carried out using any one of the spatial functions in Eq. (2).

One property a wave function must have beside that of antisymmetry is to be an eigenfunction of the
operator of the square of the total-spin angular momentum. In order for a single-determinant wave
function to fulfill this requirement, orbitals must be analytically the same in pairs. Thus for beryllium,
electrons 1 and 2 must have identical analytic representations and so must electrons 3 and 4. To this
end we introduce the operator Q which acts so that the resulting function will have the proper spin
symmetry. Thus

Q [f(r,)e,~,~.e.] = [f(r,) f(r.)]e,e,~,e..

This requirement and the restriction of at most one r2j per term (to limit the complexity of a single
term) determine the final form of the trial wave function. The unnormalized, properly symmetrized,
singlet S function employed here is

R 2 2 2(-1) &Q[(c,+c3r»+C3r 3+C r 34+9 Cr1+2C11r13 +C13r34 C +13+rC1731r
B,Q

2 2
+C12r1 + C21r3 +C23r1r12+C23r3r34)$1/1/2++ (C2+ C4r12+ C4r13+ C r34

2 2 2 2 2+c»r» +c»r» +C14r34 +c,3r, +c»r3+C23r, +C22r3 +C24r,r»)$,$,$3/3],
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where p, (q) =e q, $3(q) =rqe q, and $3(q) =e q with o=4. 0, p=1. 0, and y=2. 0. Note that
whenever the coordinates q are not written explicitly in the above discussion the ordering 12 34 is
understood.

FORMULATION

The time-independent Schrodinger equation for a many-electron atom is

Hq'(ql, ol, . . . ,'q, vn) = E4(ql'ol' ' ' '
where the qi are the spatial coordinates and oi the spin coordinate of the ith electron. It is convenient
to divide the Hamiltonian into kinetic and potential-energy operators and to calculate these quantities
separately. Thus

H=T+ V,

where & = -&,'-&2'-, '-'74'

(4)

and V=-2ZQ —+2 g g
i=1 i i=I j=2 iji'

With these operators the energy is expressed in units of rydbergs, e3/2ao;
There are three classes of matrix elements according as the interelectronic separation coordinates

involved in the combining terms refer to the same pair of electrons (class I), to different pairs with an
electron in common (class II) or to different pairs with no electron in common (class III). Thus

r k' E' rn' n' P'
frl r2 r& r4 r

b exp[-(n'rl+p'r2+y'r +b'r )]H

&&rl r2 r& r r12 exp [-(orl+ pr2+yr8+br4)]dV= T+ V
I mn p (8)

isa generalmatrixelement; if r~~ = F12 itisclass I, if r~ =r&4 itis class II, andif re =~ itis Class III.
With the definition 12 ' 14 ~ + —

34

J(k, l, m, n, s, t,u, v, w, x,a, b, c,d)

r k E nz n s t N v gg x
J 1 3 3 r4 rg3 ry3 r]4 r33 r34 r34 exp[ (ar, + br-, + cr, + dr, )]d V,

we have for T and V:

T = —(a'+ b'+ c'+d')I(0000, 000000) + a(2k+ 2+P)I(-1000, 000000)

-0 (0 + 1 +p)I(-2000, 000000) + b (2 l + 2+p)I(0-100,000000) —I ( l + 1+p)I(0-200, 000000)

+ c (2m+ 2)I (00-10,000000) -m (m + 1)I(00-20,000000) + d (2n+ 2)I(000—1,000000)

—n(n+ 1)I(000-2,000000) +P[ —(k + I+ 2P+ 2)I(0000, -200000)

+ aI(1000, -200000) + bI(0100, -200000)-aI(-1200, -200000)

-bI(2-100, -200000) + II(2-200, -200000) +l'3I(-2200, -200000)],

V= -2Z[I(-1000,000000) + I(0-100,000000) + I(00-10,000000)

+ I(000-1,000000) + 2I(0000, -100000) + I(0000,0-10000)

+I(0000,00-1000)+I(0000,000-100)+I(0000, 0000—10)+I(0000,00000-1)].

(10)

These formulas hold for all three classes of matrix elements if one makes the following definition:

I (fghi, stuvwx) = J'(0' 0++f,l'+l +g, m'+ m+n, n'+n+i, S,t, U, v, w, X,a'+ a, b'+ b, c'+ c,d'+d), (12)

where $ = P'+P +s,
S =P+s,
S =P+s,

class I,

U= &' +u' X=x class II,

U=u, X=p'+x class III.
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The integxals arising in the matrix elements are discussed in the Appendix. The solution of the secular
equation is described by Burke. 'o The necessary matrix diagonalizations were performed by the jacob&
method. '5 In performing the calculation, one term was added at a time, and the resulting secular
equation was solved.

RESULTS

The first step in the computation is to generate
the wave function; to this end the 8 and Q opera-
tors have been programmed to handle functions
of the general form

—QX.

kE'
II r 'e.

The energies are listed in Table I as a function
of the number of terms used. The cg refer to
the amplitudes of the terms in the 25-term
function. Table II compares theoretical energies
obtained by various authors. The exp=rimental
energy is taken fx"om Moore. '6

DISCUSSION

Energy improvement per term.

No. of
terms

Term amplitudes{,for 25 term
function

1
2
3

5
6
7
8
9

10
11
12
1.3
14
15
16
17
18
19
20
21
22
23
24

-28. 9155
-28. 9292
-29.1787
-29.1811
—29. 1867
-29.1873
—29. 2247
-29.2265
=29.2265
-29.2269
=29.2326
—29. 2333
—29. 2376
-29.2380
—29. 2637
-29.2640
—29. 2778
-29.2778
-29.2948
-29.2948
—29.3076
-29.3081
-29.3082
-29.3085
—29.3158

0. 172 550 0
0. 8327399
0.052 718 6
1.464382 0
0. 1133129
2. 131037?
0.073 7211
2. 178 467 9

-0.021058 9
-1.3960106
-0.018 883 2
-1.470 658 6
-0.014624 7
-1.287 734 9
—0, 005431 2
-0.658 256 6
-0.279856 7
-5. 1980127
0.054 207 1
0.098 717 2
0.0378293
3.1917551
0.010 832 1
0. 534066 1
0.014 160 5

where &&E is any one of the six interelectronic
distances. The full 25-term function requires the
evaluation of approximately 460000 integrals,
but since there is a gxeat deal of repetition in
this number, it was found expedient to devise a
system to calculate each different integral but
once and then store it for future use. In this way
the number of integrals that must be calculated
is reduced by a factor of about 25. An integral
is fully specified by listing its 14 arguments [see
Eg. (9)]. By transforming these 14 indicies into
a 14 digit code number ln which each dlglt
stands for one index, one can represent an inte-
gral by a single number. Before carrying out
this transformation, suitable interchances of the
indicies are made so that, in an integral involving
a single interelectronic separation coordinate, it
is always an s». By arranging the other possible
integral types into analogous "standard forms, "
one can determine what different integrals occur.

TABLE II. Comparison of various methods of energy
calculations.

Energjj
(e2/2a0)

Qoothaan
Boys'8
Iutsls
Kotchoubey2~
Wats on20

Wei.ee~
Szaez26
Present work
Kelly~2
Ne shet'3
Geller"
Sinanoglu~s
Experimental ~6

Hartree-Fock
Configuration interaction
Configuration interaction
Configuration interaction
Configuration interaction
Configuration interaction
Correlated wave function
Coxrelated wave function
Perturbation theory
Pexturbation theoxy
Many electron theory
Many electron theory
Many electron theory

—29.145 96
—29.274
-29.284
-29.306 6
-29.31480
-29.321 80
—29.3130
-29.3158
-29.326 14
—29, 330 3
—29.328 77
-29.334 68
—29.337

Using a 25-term wave function, an energy of
—29. 3158 Ry has been calculated. Compared to
the experimental value of -29. 33486 Ry, this
result is in error by about 0. 06/, . The even-
numbered terms in the wave function impart
some open-shell character to the 2s electrons.
Roothaan's" analytic self-consistent-field calcu-
lation, suffers from the usual Hartree- Pock
shortcoming of neglecting the details of the
electronic repulsions. The present energy is
considerably improved over the configuration
interaction results of Boys" and Kibartas et al. ,

"
who used seven and three configurations, respec-
tively. It is slightly lower (0. 001 Ry) than
Watson's" result for 37 configurations, whereas
gneiss's' energy is lower by 0. 006 Ry; the latter
work involved the superposition of 55 configux'a-
tions demonstrating the slow convergence of the
method. Kotchoubey and Thomas" used a 20-
function basis, obtaining the expansion coefficients
by an iterative pxocedure rather than by solving
the secular equation directly. Kelly's" calcula-
tion by the Brueckner-Goldstone perturbation
method has been modified recently, leading to a
new energy of -29.32816 Ry. Nesbet" has esti-
mated that his result, arrived at from the varia-
tional solution of the third-order Bethe-Goldstone
equations, is in error by approximately 0. 004 Ry.
Sinanoglu's" result is closest to the experimen-
tal value, but Geller et, al'. expxess some doubt



as to this value. They have used the Sinanoglu
many-electron theory to calculate the ground-
state enex'gy of beryllium. Choosing a set of
Hartree- Pock orbitals different from those used
by Sinanoglu, they obtained values for the 1s' and
2 s' correlation energies in reasonable agreement
with Sinanoglu's results. They did not, however,
calculate the 1s-2s correlation energy but used
Kelly's" perturbation result of -0.009 44.Ry
which agrees fairly well with Watson's'o value of
-0.01010 Ry. Both these results are consider-
ably higher than Sinanoglu's corresponding value
of 0. 01296',Ry, arrived at by- a "core-polarization"
method. ' Szasz's" work pa.ra, llels most closely
the current investigation but neglects the inter-
shell correlation effects. The current wave func-
tion, utilizing one less parameter but including
intershell correlation terms, yields a slightly
improved energy. It would not be correct to
attribute this improvement strictly to the 1s-2s
correlation since (a) Szasz uses the Hartree-Fock
orbitals of Roothaan" whereas simple Slater
orbitals are used in this work, and (b) for many
of Szasz's terms there are no comparable terms
in the present wave function.

The numerical results ax'x'1ved at ln this 1nvest1-
gation, reaffirm the already well-known fact that
the Hylleraas-type wave function is capable of
yielding energies at least comparable with, if
not better than, those from a superposition of
configurations, while using fewer terms than the
latter. Examination of the energy decreases due
to the &» and x,~ terms (terms 3, 4, 7, and 8)
indicates that r» is more effective than &,4 in
accounting for correlation in their respective
shells. This would seem to imply that the 1s
correlation differs significantly in nature from
the 2s correlation, a fact in agreement with the
previous conclusions of Watson, " Szasz, "and
Linderberg and Shull. " The intershell correla-
tion (terms 5, 6, ll, and 12) is fairly small for
Be, but it is not negligible; one would expect it
to be much more important for larger atoms
since there are many more interactions to be
considered.

Besides the specific calculation of Be, a
principal aim of this work has been the develop-
ment of generalized programming procedures
for using Hylleraas-type wave functions in

variational calculations of many- electron atoms
The results indicate that the application of the
method to systems with atomic number greater
than four should be feasible. With the approxima-
tion of at most one ~~& per term for the wave
function of an arbitrary atom, only eight classes
of integra, ls occur whose coordinates are not
immediately separable. All eight classes occur
in Be. Hence the programs for integral calcula-
tions used here are immediately applicable to
any system. What remains then is the need to
devise programs which, for an atom of arbitrary
size, mill determine to which of the eight classes
a particular integral belongs. The programmed
R and Q operators for the four electron system
make it a simple matter to introduce new terms
(obeying the previously mentioned restrictions)
into the wave function. In extending the caleula-
tlon to lax'gex' systems similar opex'atox's should
be considered. Although the present results are
not as close to experiment as those of others, it
must be remembered that only simple Slater-type
orbitals have been used as a basis here. At this.
point two methods for improving the procedure
suggest themselves.

First, the basis could be improved by using
Hartree-Pock orbitals or some other analytical
approximation, in the hope of attaining the accu-
racy Pekeris' achieved for the helium atom.
Secondly, it may be feasible to program the 8 and
Q operators to generate multideterminant wave
functions [the so-called Extended Hartree-Fock
(EHF) functions], whose energies are much
improved over the single-determinant representa-
tion. One or both of these approaches will be
incorporated into the application of the procedure
to atoms of higher atomic number in the near
future.
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APPENDIX

All the integrals occurring in this caLculation are evaluated by means of the following auxiliary
functions:

A(ka)= f x e dx,

V(k, l, a,b)= f, dxf, dye y e

~(k f f ) f d f d f d
k f 1' —(ax+Ay+ cz)

X

Recux'renee relations, and the power limits for which they remain valid, are given by James and
Coolidge'. It was found necessary to use double precision arithmetic" in evaluating these auxiliary
functions, since for certain combinations of the exponential coefficients (a, b, and c) repeated application
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of the recurrence formulas caused a serious loss of significent figures. Ohrn and Nordling" have
developed a scheme to circumvent this difficulty by evaluating the V and S' integrals as infinite series.
Geller, Taylor, and Levine'4 evaluate these partly in terms of incomplete gamma functions to avoid the
use of recurrence relations altogether.

The integrals that occur in this work can be classifi. ed according to the manner in which the interelec-
tronic separation coordinates enter. Thus, giving only the r

&& s, we have

(i) r„' (iii) r„' r„ (v) r» r»/r» (vii) r» r,4/r»

(ii) r„' (iv) r» ' r,4
' (vi) r» r»/r, 4 (viii) r» r23/r34.

Because of the limits on the wave function three odd powers of the x
~&

' s can occur only in one of the
four ways v to viii. Any integral involving other than three odd powers of the interelectronic separation
coordinates is expressible as a sum of one of the integrals i to iv. This is easily accomplished by
expanding even powers of x&~ by the law of cosines; for odd powers, multiply numerator and denominator
by that t'&~, expand the numerator by the law of cosines and the denominator by~

n n+1
12 ~ 12 12 12)'

By the simple expedient of rotating the coordinate system when necessary, so that the Z axis is along
the radius vector of one of the electrons, the 8 integrations have the general form

f(g,n) = f, P (cos e) cos'8 sin ed' . (is)

%ith the notation

(st uvsox p k l m n s t u v m x= fr, r2 r, r4 exp[ (ar, +-br, +cr, +dr, )]r» r» r„r» r„r„
S T U V W X

XCOS ~12 ~13 814 COS 82S cos 8 4 COS 834 ~ 1 dV2 dv3 CfV4

we have for cases (i) to (iv):

= (4v)'A(6+2, a)A(E+2, b)A(m+2, c)A(n+2, d),
roooooo
&000000

~

=(4v)'A(m+2, c)A(n+2, d)p 2f(S p)[V(E+p+2,b-p+1, b,a)+ Vg;+p+2, E-p+ i,a,b)],
-ioooooi

S00000) ' ' P

(is)

q~ )
(4')A(q+qq)E E 'f( ) q,'fq(q, q)[qq()+0+2, m+—q+qq p q, q, c,a)--

I, S T0000 ' P

+W(m+q+2, +Ep+2, k p q, c,b-,a-)+W(m+q+2, b+p-q+1, E-p+1,c,a, b)

+ W(E+p+2 b-p+q+ i,m-q+1, b,a,c)+ W(b+p+q+2, E-p+1,m-q+ i,a,b, c)

+ W(k+p+q+2, m-q+1, E-p+ i,a, c,b)), (20)

rE~-10000—1
~ (4 )4Q p &f(S p) —f(X q)[V(E p++2, b-p+ i,b, a) V+(k+p+2, E-p+i, a b)l

S0000 X) P q

x[ V(m+q+2, n-q+ 1,c,d)+ V(n+q+2, m-q+ 1,d, c)] ~ (21)

The evaluation of the fifth integral has been discussed in detail by Burke." His result multiplied by
4vA(n+ 2, d) obtains for the beryllium case. This is the only integral that is evaluated as an infinite
series. (The first two or three terms usually suffice. ) Bonham" avoids introducing the infinite series
by means of Fourier transform techniques. However, for integrals involving other than 1s Slater-type
orbitals, the method requires the taking of cumbersome derivatives. Roberts, "by means of Gaussian
transformation techniques, has succeeded in obtaining a closed-form expression for this integral.

The evaluation of the three remaining integrals proceeds via an analysis analogous to that for case (v).
%e present only the results. Let us first make the following definitions:
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J (k, E,m, n, ij) = Jri r2 r& r4 (cos 0 cos !!12rt2r g )
Q 1 2 3 r 12 12 e yo

&«~[ -(ar
1

+ br
2

+ cr2 + dr ) ] dv idv dv ~dv,

Wt(k l ma, b, c) = W(l+p+2, m+q+2, k-p-q-1, b,c,a)+ W(m+q+2, E+p+2, k-p-q-1, c,b, a)

+ W(m+q+2, k+P-q, E-P+ 1,c,a, b)+ W(l+P+2, k-P+q, m-q+ 1,b,a,c)

+ W(k+P+q+ 1, l-P+ 1,m-q+ l,a, b, c)+ W(k +P+q+ 1,m -q+ 1, l-P+1,a,c,b),

W2(k, l, m, a,b, c) = W(k+P+ 2,m+q-r+ 1, l-q-P, a,c,b)+ W(m+ q r-+ 1,k+P+2, l q-P, —c,a, b)

+ W(m+ q r+ 1—, E+p-q+ 1,k —p+ 1,c,b,a)+ W(k+p+2, l+q-p+ 1,m-q, —r, a, b, c)

(22)

+ W(l+P+q+2, k-P+1,m-q-r, b,a,c)+W(l+P+q+2, m q -r, k-P+-1,b, c,a) ~

With these definitions we have

Ca,se (vi),

1t-tooo&
~ 00 0000 ~= is ( + E m n 0)+ jig' (k+2, E+2,m, n, o, o)+J„' (k+2, l, m ~2 n 0 0)

+ ji3"(k, l+2,m+2n, o,o)-2[ji3 (k+3, E+1,m, n, o, l)+ ji3'~(k+ 1, l+ i,m+2n 0 1)

+ jis' (k+ 2, E,m+1,n, i,o)+j»' (0+1, l+2, m+1,n, 1,0)]+4jisi4(k+ 2, E+ i,m+ i,n, 1,1

(" '"'") (")'Z Z f('p)) f("') lt("' ) [ ( l.-, ,b, )-Wl(k l )1
I,

d"+2

ln+ 1
—(n+1)' Z t 1

W2(k+n-t+2, l, m, a+d, b, c) ~.

t = 1 (n+ 2-t)!d

(25)

(26)

Case (vii),

000 l

= j&,"(k+2, l, m+2, n, o, o)+j„"(0+2,E,m, n+2, 0,0)+J„"(k,E+2,m+2 n 0 0)
& too-tot&

+J~4' (k, l +2,m, n+2, 0,0)-2[J34 '(@+2, E, m+ 1,n+1, 1,Q)+ J' 2'(k, l +2,m+1,n+1, 1, Q)

+ jag (k + 1,l + 1,m + 2,n, 0, 1)+ j~~ ~(k + 1, l + 1,m, n + 2, Q 1)1

+4J, (k+ 1, l+ 1,m+ i,n+ 1,1,1), (2 7)

J24*'(k, l, m, n, iJ)= (4ii)'Q Q Q 2if(j, p) &f(o,q) if(i,r)R
P q

(28)

where RR = [ (n+r+ )l2/d ] W2(k, E,m, a, b, c)

t=n-r+ 1
+ (n-r+ i)!

t= O

1
W2(k, l, m+n+r+2 t,a, b, c+d)-

(n-r+ 1-t)!d

Case (viii},

t=n+t+ 2
-(n+r+ 2)! 1 W2(k, l, m+n+r+2 t,a, b, c+d). -

t= 0 (n+r+2-t)!dt+1
(29)

E
i 10010-tl
100000 0 l

= J23 (+k, 2+ Em2, n, , )0+0»"j(, k4E,+m, n, o, o)+j 34(k+2, l, m+2, n, o, o)
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+J„'4(k, I + 2,m+ 2,n, 0, 0) -2[J»"(k+ 1, E+ 3,m, n, 0, 1)+J»"(k+ 1, /+ 1,m+ 2,n, 0, 1)

+J 34(k+2, 1+ 1,m+ 1,n, 1,0)+J2, (k, 1 + S,m+ 1,n, 1,0)] + 4 J2S'4(k+1, l +2,m+ 1,n, 1,1), (20)

J'„'4(k, l, m, n, iJ)= (4m)4Z + 2 ,'f(j—,p)-,'f (i,q)-,'f (0,r)&
p q r'

where Rg is given by Eq. (29) .

~Based in part on a thesis submitted by R. F. Gentner,
to the Department of Chemistry of the Graduate School,
St. John's University, in partial fulfillment of the re-
quirements for the degree of Doctor of Philosophy.

supported in part by U. S. Army Research Office,
Durham, North Carolina.

)Supported by U. S. Atomic Energy Commission.
'A. W. Weiss, Phys. Rev. 122, 1826 (1961) ~

~C. Schwartz, Phys. Rev. 126, 1015 (1962).
30ktay Sinanoglu, Phys. Rev. 122, 493 {1960).
4L. Szasz, Z. Naturforsch. 14a, 1014 (1959); 15a,

909 (1960); J. Chem. Phys. 35, 1072 (1961); Phys.
Rev. 126, 169 (1962); J. Math. Phys. 3, 1147 (1962);
Phys. Rev. 132, 936 (1963); Z. Naturforsch. 22, 2109
(1967) .

~E. A. Hylleraas, Z. Physik 54, 347 (1929).
T. Kinoshita, Phys. Rev. 105, 1490 (1957); 115, 336

(1959) .
~C. L. Pekeris, Phys. Rev. 112, 1649 (1958); 115,

1216 (1959).
H. M. James and A. S. Coolidge, Phys. Rev. 49,

688 (1936).
~H. M. James and A. S. Coolidge, Phys. Rev. 55,

873 (1939).
' E. A. Burke, Phys. Rev. 130, 1871 (1963).

K. F. Berggren and R. F. Wood, Phys. Rev. 130,
198 (1963).

~2V. H. Smith, Jr. , and S. Larsson, Uppsala University
Quantum Chemistry Group Technical Report No. 186,
1967 {unpublished) .

'3R. K. Nesbet, Phys. Rev. 155, 51 (1967).
' See Ref. 8, Eq. (8).
'~See, for example, S. S. Kuo, Numerical Methods

and Computers (Addison-Wesley Publishing Co. , Inc. ,

Reading, Mass. , 1965), Chap. 9.
Atomic Energy Levels, National Bureau of Standards

Circular No. 467, edited by C. E. Moore (U. S.
Government Printing Office, Washington, D. C. , 1949),
Vol. 1. However, since relativistic and other minor
effects have not been included in the determination of
the wave function, it is more appropriate to compare

the calculated energy to an "experimental" energy
obtained by subtracting off these effects. In this way
the "experimental" energy becomes —29. 334 86 Ry.
See C. W. Scherr, J. N. Silverman, and F. A. Matsen,
Phpre. Rev. 127, 880 (1962).

' C. C. J. Roothaan, L. M. Sachs, and A. W. Weiss,
Rev. Mod. Phys. 32, 186 (1960).

S. F. Bpys, Prpc. Rpy. Spc. {Lpndpn) A217, 136
(1953).
'~V. V. Kibartas, V. I. Kavetskis, and A. P. Iutsis,

Zh. Eksperim. i Teor. Fiz. 29, 623 {1955) jEnglish
transl. : Soviet Phys. —JETP 2, 481 (1956)].

R. E. Watson, Phys. Rev. 119, 170 (1960).
'A. Kotchoubey and L. H. Thomas, J. Chem. Phys.

45, 3342 (1966).
»H. P. Kelly, Phys. Rev. 131, 684 (1963); 136, B896

(1964). An improved value of —0.08976 Ry was found
for the 2s correlation energy.

3D. F. Tuan and O. Sinanoglu, J. Chem. Phys. 41,
2677 (1964) .

24M. Geller, H. S. Taylor, and H. B. Levine, J.
Chem. Phys. 43, 1727 (1965).

O. Sinanoglu and E. Mortenson, J. Chem. Phys. 34,
1078 (1961).

L. Sza.sz and J. Byrne, Phys. Rev. 158, 34 (1967) .
J. Linderberg and H. Shull, J. Mol. Spectry 5, 1

(1960).
For the CDC-6600 computer, which wa, s used, single

precision is 15 digits; double precision is 29 digits.
~~Y. Ohrn and J. Nordling, J. Chem. Phys. 39, 1864

(1963).
3 See, for example, H. Eyring, J. Walter, and G. E.

Kimball, Quantum Chemistry (John Wiley @ Sons, Inc. ,
New York, 1944), p. 369.

3 E. A. Burke, J. Math. Phys. 6, 1691 (1965) ~ The
numerical values of I and j in Eq. (5) andL and J in
Eq. (21) should be interchanged.

~2R. A. Bonham, J. Mol. Spectry 15, 112 (1965).
33P. J. Roberts, Proc. Phys. Soc. (London) 88, 53

(1966) .


