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We discuss the eGect of the discreteness of the Landau levels on the upper critical 6eld of a type-II
superconductor. At T=O'K an ideal superconductor will remain superconducting in an arbitrarily large
magnetic 6eld. However, the high-Geld state is destroyed by a minute amount, of impurity scattering or
by a small misalignment of up- and down-spin Landau levels. The residual effects are (a) a small shift in
the low-temperature critical 6eld prsIIes/IIes=(krpe) 'j and (b) oscillatory structure in the transition
temperature Trs(II) for temperatures T(tuo, /2nsk.

INTRODUCTION

ECENTLY Helfand and Werthamer' have de-
veloped an elegant method for solving the lin-

earized gap equation for a superconductor in a mag-
netic field. This enabled them to obtain the tempera-
ture and mean-free-path dependence of the upper
critical field of a type-II superconductor. The only
assumption made was to treat the effects of the field
semiclassically, that is, to assume that the only effect
of the field on a particle moving from x1 to x2 is to
multiply its wave function by the phase factor

2

expt (ie/Ac) A dsj.
1

The purpose of this paper is to investigate the validity
of this approximation, and find corrections to it.

Quantum effects in a magnetic field are only im-
portant when an electron can complete many orbits
before scattering, ', i.e., when to,r is suKciently greater
than L However, Gor'kov' argued that even when this
condition is satisfied, quantum eGects on H, 2 should
be small. He pointed out that at H,2 the center-of-mass
wave function of a Cooper pair (i.e., the order param-
eter) is spread over a coherence length tp, which is
approximately equal to the orbit radius r, =(5c /e H)"'
of the lowest Landau level. This wave function is
constructed from pairs of electrons near the Fermi
level, and these electrons have a much larger radius of
curvature, i.e., the cyclotron radius kyar,

' kriss. Thus
one can neglect this curvature with an accuracy of
order (kp$p) '. This leads directly to the semiclassical
approximation.

On the other hand, the quantization of the orbits
leads to singularities in the single-electron density of
states at energy values e„=(st+is)%co„where
eH/rrtc. The density of states at the Fermi level is thus
a periodic function of 1/H. Since the critical tempera-
ture is dependent on the interaction between electrons
near the Fermi level Land hence on the density of
states X(er) j, it too should be an oscillatory function
of 1/H. It was with this idea in mind that we began
this work.

In an earlier paper, ' we made use of the method of
Sondheimer and Wilson4 and determined the quantum
corrections to the kernel of the linearized gap equation.
Such corrections were also derived by Rajagopal and
Vasudevan, ' but these authors then made an approx-
imation that is valid only near H =0, T=T,o, in which
case quantum eBects are negligible. Their method
relies on an expansion of the single-particle Green's
function in terms of harmonic-oscillator wave functions.
Since this approach lends itself more directly to a
physical picture of what is going on, we will employ it
here. In Appendix A, it is shown that the two methods
lead to equivalent results. 1

In Sec. 1, we review the Helfand-Werthamer method
and generalize it to take into account quantum effects.
The kernel of the gap equation is found in Sec. 2, and
a qualitative discussion of the effects of quantization
is given. An explicit expression for T„(H) is derived in
Sec. 3. Ke include the effects of electron spin and non-
magnetic impurity scattering, but assume that the
field is small enough that the normal-state Pauli para-
magnetism is not an important factor in limiting the
upper critical field.
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ORBITAL QUANTIZATION IN TYPE-II SUPERCONDUCTORS

1. QUANTUM MODIFICATIONS OF THE
GAP EQUATION

The transition temperature T,z(H) of a pure type-II
superconductor in a uniform applied magnetic field II
is determined by the linearized gap equation

A(r) = K(r, r') tI((r') d'r',

where (2I') '=r is the collision time and N(erk) is the
density of states at the Fermi level.

In order to arrive at Eqs. (1.5) and (1.6) it is not
necessary to know the exact form of O'. It is only
necessary to assume that except for the semiclassical
phase factor

( p

exp] ic A'ds
I

where the kernel E is given by G depends only on the relative coordinate (r—r').
Since this is also a property of the exact Green's func-

VkZ", g G (r rk)G (r rk) (1 2) tion, all the arguments leading to Eqs. (1.5) and (1.6)
go through, except that @re must replace P by

G„~ is the thermal Green's function for an electron in
the normal state whose s component of spin is &~~,
and (G„=rrkT(2v+1) .

In the presence of a magnetic 6eld, 6 has the follow-
ing form (using units in which S=c=1):

The function G~„depends only on the relative co-
ordinate (r—r').' This is a result of the invariance of
the Schroedinger equation to a simultaneous trans-
lation and gauge transformation.

The semiclassical approximation results from replac-
ing G+(„(.(R) by G~(„(G(R) exp(+itk()HR/Vr), where
6' is the Green's function in the absence of a magnetic
field:

8,'=2 Re I8 RG)(R)G (R) exp( ,'esp ). (—1.8)

In order to take impurity scattering into account,
it is necessary to find how G„ is affected. We will assume
that G can be replaced by G~r. The validity of this
approximztion has been discussed by Dvrorin. ' We @rill

neglect the vertex corrections that lead to the denom-
inator of Eq. (1.7), since these are only important when
t/$() & 1; the quantum effects we seek are only important
when o),r) 1 and this leads to the criterion /assuming
H.r kc/e)()2)(kryo()) '(l/$(k) &1, so that I/$&)1. We thus
find

1=VkT,2 +8 „,
1) 0

G*(.('(R)=(—)e/2xR) exp(+(keR (e(R/Ve) (1 4) 8„=2Ref 8'RGex(R)G (ex)(R) exp( —eese').

1=VkT~ Q S„„', (1.5)

where

S o=2Re d3RG o R g o R

Helfand and Werthamer' make this approximation and
then show that the appropriate eigenfunction of Eq.
(1.1) is the ground-state wave function for a particle
with charge 2e moving in a magnetic field. They pro-
ceed to show that (1.1) can be reduced to a 'simple

algebraic equation:

2. EVALUATION OF 8
(1 9)

We begin by neglecting scattering. A representation
for the single-particle Green's function has been found
by RajagopaP and by Dvrorin. ' The Green's function
is expressed as a sum over harmonic-oscillator wave
functions. After integrating over orbit centers, one
obtains

OO dk
(r (R) =(eH/2') exp( —$t))g L„(t)

fgggQ 2%

Xexp(iks) (i(G—e,k )-', (2.1)

X

exp)�

(2itk()HR/ Vr) ——',eHp'j,

In order to take into account impurity scattering,
it is necessary to replace the kernel K of Eq. (1.2) by
its impurity con6guration average. When this is done,
an equation of the form (1.5) is found, ' with S„e
replaced by

(2.2)e„s,= (r+ rs) o),+k'/2m+tk()kt H er—
Substituting Eq. (2.1) into Eq. (1.9) and making use

tk'=*'+'))'. (1 6) where L„(t) is the Laguerre polynomial of order r,
t=ePp'/2, and

S =S(,'/$1 —I'S( „z,'/22rlV(e~) g, (1.7)
8 L. Dworine Ann. Phys. (N.Y.) 382 431 (1966).
2 A. K. Rajagopal, Phys. Letters Se 40 (1962).
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of the relation8

(2.3)

we obtain

dk
X —[(t'o}+e„s+)(—so}lets )5-'. (2.4)2'

These low-temperature divergences imply that at
su@ciently low temperatures there is a stable super-
conducting state, no matter how strong the Geld. It is
important to notice that these divergences occur as a
result of the discreteness of the energy levels.

To proceed further, we will assume that co,&&.ep. The
most important contributions to the sum over r and 1

will come from the region e, and e~ ep. Thus r and l
are quite large and we can make use of the Gaussian
approximation

'+[(r+-l)!/r!/I5~(rsr) 't' e px[—(r—t) /4r5. (2.9)

Finally, after making use of Eq. (1.9) and the identity Next we make use of the Poisson sum formula and

Eqs. (2.4) and (2.9), which enable us to write

we Gnd

tanhrs (Pe) =2kT g (—so}„+e) ', (2.5) $0— g g esca

n,eu

(2.10)

1= (VeP/47rc) Q gr)r

dk
X —[tanh(sPe„s+)+tanh(-, 'Pets )5/(e, s++ets ).2'

(2.6)

Ss„"" (—1)"+ (eB/2~) dh
0 0

exp [2s.i(ttx —my) —(x—y) s/4' (as.)

dk—[(to}+e»+)(—so)+e»-) 52'
where

This result was erst obtained by Rajagopal et al.'
It will be shown later that the results of the semi-

classical approximation can be obtained from Eq. (2.6)
by replacing the sum over r and l by integrals and mak-
ing a Gaussian approximation on the factorials. We can
now discuss qualitatively the eGects due to the dis-
creteness of the Landau levels.

To begin with, we neglect spin and impurity scat-
tering. There are two situations that we wish to con-
sider:

e»g =eeoc,+k'/2m+tssH er. —(2.11)

There are three types of terms in Eq. (2.10) that we

will now consider separately.
(a) rt =m=0: The energies o}.x and o},y may be re-

garded as components of the kinetic energy. To make
this explicit, we introduce new variables q and q' which
are defined by the relations co,x =q'/2m and o},y =q's/2m.

Since q and q' are both of order kp, which is much larger
than (r,) ', we can approximate the exponent in Eq.
(2.10) by

(a) Suppose that the magnetic field is adjusted to
make (r+ ', )o},=er fo-r some integer r=ls. Then the g—y

' 4x~~q—q' 2c 2eH.

termr=t=rtoin the sum of Eq. (1.6) isproportionalto &t is convenient to regard q and q' as vectors. We
introduce new variables 8 and t!r' and "write

dq tanh (q'/4mk 2') /qs. (2.7)

This integral diverges like T 'I' as T—4.
(b) Suppose now that the field does not satisfy the We also take note of the following approximate

special criterion. Let us consider any diagonal term relation:
r =l for which e„=(r+as) &o,&er. This term will be pro-
portional to exp[—(q—q') '/2eB5 = (qq'/2e&) "'

1,'= f
X tanh f [q' 2m(er —e„)5/4mk—T I /[q' 2m (er —e,)5—

(2.8)
This integral diverges like lnT as T—&0.

2a'

d8«, exp[—(q q') s/2'—5 (2.14).
0

Finally, we regard (q, k) as a three vector and change

variables from q' to Q =q—q'. We then and

e J.S. Gradsteyn and J.M. Ryshik, Table of Irstegrols, Series crtd
Prodgets (Academic Press Inc., New York, 1965), p. 844. exp( Q'/2eP) [—(teo+es+) ( zo)+ee —kQ/m) 5—, (2.15)
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exp( —Q'/2eH)/f 2o}+i(2ypH+QVrs) j, (2. 16)

where Eo is the density of states at the Fermi level.
This term is the same as the semiclassical solution as
is shown in Appendix A.

(b) n=ns, n/0: Once again we go through the
steps leading to Eq. (2.16) . This time we obtain

s» ""=(}c»//»H} f t}»Qc»

Xexp/ —(Qs/2eH) +2rrni QVrs/o&, j
X/,2 +i(2/, oH+QVr. )j '.

We do the s integration by closing the contour as
shown in Fig. 1. The integrals along the vertical lines
are proportional to exp(&2a. inQVr/pp, ) and, when the

Q integral is done, the result is proportional to
expL —(krr, )'g and can be neglected. The integral
from A to 8 vanishes when this path is moved up to
infinity. Thus, we need only find the residue at s=
( 2/zpH+2i—p})/QVr. Then the Q integral can be done,
and we find

Sp„»=2gp(a s/o},er) &»Re

nrf, 0

Xexpt' —47r ) n
~

(o&+i///pH)/o}, j, n) 0

m&0.

(2.18)

(c) n&m: We erst evaluate the integral in Eq.
(2.10) for nonzero values of n and ns. The main con-
tribution to So„™comes from the region of integration
around ao,x~co,y~ep. Ke can thus approximate
(a4pc) "'exp/ —(x—y)'/4' by e& '/'. The remaining

where as+ ——ks/2m&/apH —er. In order to obtain the
last factor on the right, we have dropped a term Q'/2m
that is small compared to lr Q/ns everywhere except
in a very small angular region since Q~r, ' and k~~kr.

The k integral can now be changed to an integral
over energy and angle. After doing the integral over
ej„we find

s», ——/»v»/»z} f c'I}c»

integration is quite straightforward and we obtain for
e and m greater than zero

»»m+S m»» Re( 1)»»+mQ (2&) P/ze —
l(~ n rn ~)

—1/2

X exp/ —2a (n+tn) (o&+i/rpH)/pp, )
X cos f 2a (n—/n) (er/pp. )—szr); (2.19)

while S vanishes for e or m less than zero.
Finally, we can show that So„"' and So are neg-

ligibly small. The important region of integration in
Eq. (2.10) for Sp„"' is around xpp, er, but there is no
restriction on y. After doing the x integration, we are
left with an integral of the form

dEI= . expL2a in(Z/o}, ) E'/4er—/p, g, (2.20)
2M+ sE

which is proportional to expL —(krr, ) $ on account of
the oscillatory factor.

We note that we can include the eGects of impurity
scattering by replacing o} by o}+I' on the right-hand
side of Eqs. (2.16), (2.18), and (2.19).

3. DETERMINATION OF Tcs(H)

We now proceed to discuss the corrections to the
semiclassical results. These will only be important at
suQiciently low temperatures, i.e., when the damping
factor exp( —2a'kT/o}, ) is not too small. We can thus
evaluate the semiclassical contribution to the gap
equation in the low-temperature limit. In Appendix A
it is shown that when the paramagnetic effect on H, 20

is small, the semiclassical contribution is

ln(2o}p/Ap) —(kT/1V p) Q S/kc„

=in(H/Hcsp) +/r(2"cs/T. p) ', (3.1)

where II,20 is the T=O critical field, T,o is the critical
temperature in the absence of field and u is a constant
of order unity that is given by Eq. (AS) .

Making use of Eqs. (2.18), (2.19), and (3.1), we
can write the equation for the transition temperature
as follows:

1n(H/Heap) = g(T/Tcp)a+2~ / (o}/er) Sr

+2(2') '/'(ppc/er) Ss& (3.2)
where

Sr =2'(k2'/o}, ) g g exp( 4/rnco„/pp—,),
n=1

FIG, l. Contour used in evaluating the z integral of Eq. (2.18).
There is a pole at P where z = ( 2/ccP+2c'cc)/QVg—

Sp=2zr(kT/o}, ) Q Q Q (—1)"+
n=1 m)n @=0

X exp/ —2a.(n+ns) co„/oI,j
X cosL2a [ n—rn i (er/o},) —sa.](i n —ns i) '», (3.3)
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Fio. 2. t = To2/T 0 as a function of tt= ff/H. 20 ca,r is .assumed to
be in6nite and the spin-splitting parameter q is equal to zero.
The oscillatory 6ne structure is not shown here. The parameter
o of Eq. (3.2) is taken to be 1.0 and kgb ——53.

with
rp, = (2v+1)prkT+ I'+stt, H. (3.4)

»(H/H. 20) =22r'"(~./er) Sl. (3 6)

For x«1 we can solve for T, with the aid of Eq. (3.5) .
The result is

kT 2=0 0900 (H/H 2p)
"t"'"'"

~

Thus superconductivity can exist at arbitrarily large
Gelds, but the transition temperature is exponentially
small when H&B,2p. This behavior is a consequence
of the discreteness of the energy levels. Our result is
similar to that found by Shapoval' for the critical
temperature of a very thin film in a parallel magnetic
Geld.

The deviation of T,2 from its semiclassical behavior is
shown in Fig. 2. An interesting feature of (3.7) is that
T,2 goes through a minimum when H /. 3H 20 and then
increases with increasing field. This can be understood
as follows: From Eqs. (2.6) and (2.9) it can be seen
that an electron in state (22, k„ t') where rt~eF/oi,
is paired with electrons in states (2tt, —k„$ ) provid-

0 E. A. Shapoval, Zh. Eksperim. i Teor. Fiz. Sl, 669 (1966)
I English transl. :Soviet Phys. —JETP 24, 43 (1967)1

S& and S2 represent the quantum corrections to the
critical-temperature —versus —field relation. Their prop-
erties are discussed in Appendix C.

First we will neglect eGects due to electron spin and
impurity scattering. S& then depends only on the ratio
x=22rskT/cp, . It has the following asymptotic behavior:

Si——(x/22r) e '*

S,= (q —1np:) /4~, 2:&&1

where 7 is Euler's constant. For large x, S~ is smaller
than the Ts term in Eq. (3.2). However, for x &1, Si
dominates. Also as a first approximation we can neglect
the oscillatory term S2 since there is an extra factor
(o~,/ep)'t2 multiplying it in Eq. (3.2). Thus, for x &1,
we find

ing [ rt —ttt [
&n't2= (Pr/cP, ) 'I'

kyar, . Thus the number
An of Landau levels involved in the pairing de-
creases with increasing II. The term that leads to the
low-temperature divergence (and hence to super-
conducting pairing in very high fields) is the one for
which n=m. It becomes relatively more important
as Art decreases. According to Eq. (3.7), this effect
dominates when H) 7.3H,20.

The transition temperature remains vanishingly small
until the field is increased to make co, ep. This situa-
tion may be achieved in a semiconducting supercon-
ductor. However, the validity of Eq. (3.7) depends on
the Stirling approximation so our result is not appli-
cable. Moreover, it is unreasonable to use the phenom-
enological Bardeen-Cooper-Schrieffer (BCS) electron-
electron interaction when the Geld is so large. We will,
therefore, not pursue this question any further.

The above results are drastically modified by im-
purity scattering. The Landau levels are broadened
and this destroys the superconducting correlations for
large H. To see this, we note that S~ does not diverge
at T=0 unless ~,v = ~. In Appendix A it is shown that

Si(T=0) = (42r) ' ln (oi,r/22r), (3 8)

providing pp,r»1. Using Eqs. (3.2) and (3.8) we find
the maximum field H for which superconductivity can
exist:

ttpH/& =rt+2$ q —0 1 2

Si diverges at T=0 only if 2I =0.It is shown in Appendix

t0—

2e

O 8—

2060 2065
6F

c

2070

Fio. 3. Sketch of t versus er/cv, for (2v'kT/co) =0.3 and'P /H~0) =1.04. The amplitude of the oscillations has been
estimated with the aid of Eq. (3.2) . Impurity scattering and spin
splitting are neglected. We have taken kg)0=53.

(Hm K20)/+c20 (pro) /4pr) '" ln(pp. r/22r) . (3.9)

Thus, even for very pure materials (oi,r=102), the
maximum critical field does not differ considerably
fr om IIg2p.

Electron spin can also have a drastic effect. First,
we note that if 2ttpH/oi, is an integer, Si is not affected
by spin. When this condition is satisfied, there is spin
degeneracy that facilitates pairing. We set
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C that

Si(T=O) =—(44r) '1n(4nrrf),

By following the arguments that led to Eq. (3.8) we
find

N
1
o

(H —H, 2e) /H, re = (4ree, /4ep) '" ln(47rrf) '. (3.12)

Thus, even a small amount of spin misalignment will

suppress superconductivity fo gr H much reater than
IIf;20.

N t I t us consider the oscillatory term
~ ~ S. Its

effect is negligible unless @&1.Unfortunate y, inel in the
h the oscillations are first observable,

it is very difficult to evaluate S2. A sketch of the be-
havior of T, (sH) in the vicinity of @=0.3 is shown in

The behavior of S2 when x(&1 is discussed in Appen-
dix C. We let 2x.ep/ee =I+x+8, wit
very sharpy pea e ah 1 k d about 8=0 where it is given y

(3.13)

Furthermore, when x&36&4./er the Ss(b=0) term in
E . (3.2) dominates and T,s is then a very sharplyq.
oscillatory function of II

kT.x=0.144e,Lee,/ep in(H/H. 2e) g', h 0. (3.14)

~ ~

For 880, T,& is given by Eq. (3.7). This behavior is
illustrated in Fig. 4.

Impurity sca eringtt 'ng will have a drastic effect on
these oscillations. The T=O divergence of S2 is re-

that the Ss and Si terms in Eq. (3.2) be comparable.
This will happen only if re,r) (e&/ee. )L n(ee.r) O'. As
long as co.7.&, e1 th behavior shown in Fig. 3 should be
observable.

he stronSpin misalignment can also suppress t e s rong
oscillations. or

ear unlessq '~'. The strong oscillations will not appear un ess

(1nrf) '(eo,/er.

(b)

of T versus H ~. (b) Sketch of the resis-

unction of H ' The temperature is held fixed
the su erconductor devi e y

h 1 ().Th old ltas indicated by t e das e ine in a . o i u
when the transition is perfectly sharp; t e o e cu
tained when the transition is broadened.

4. CONCLUSIONS

The most striking feature of our results is the pre-
f uperconductivity for fields B&&B,20. Due to

d t ~i.e. one in which the collision irne 7-= ~con uctor i.e., one
de en-d h — and down-spin Landau levels are eg

crate) will be superconducting in arbitrari y ig e s
t The transition temperature is

cakedvery small LkT, &ee./(kr:r, ) 4j and is a sharply peake
oscillating function of II '. However, this state is o
academic interest only, since it is destroyed by a minute
amount o impuri y sf

' 't cattering or spin misalignmen .
'd 1 ff t re a small shift in the zero tem-

perature critical field PH, s/H, s of order (kris) 'j an

ture PT,/T, of order (krone) '$. These oscillations
appear on y w en vr co,1 h 2 'kT/ee, (1 and te.r)1. The most

folpromising me o oethod of observing them is to oo or
~ ~

th esistance in the transition region as
in the Little-Parks experiment. " A measurernen o
the resistance as a function o fie a
perature wou ex i ild hibit the behavior shown in Fig. 5.

es own tobeThe number of anomalous peaks can be s own o e
of order (ee,/2x-'kT) "'.

APPENDIX A

The semiclassical contribution to the gap equation
can be written as

S ee = (n4 /2'') Re dsR /exp( 2e4R/Vr —ps/2r, ')j—/Rs,

0
495

1

500
1

505
(A1)

e„/

r H/H, 2P =40. Impurity scat-Fio. 4. Sketch of f versus er/ru. for (H/, 44)—
tering an spj.n sp id l tting are neglected. We have ta en

~I'~ '
H We have neglected the vertexwhere co=~ i@0

~o W. A. Little and R. D. Parks, Phys. Rev.v. Letters 9 9 (1962).
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corrections because we are interested in the kernel
only when l»$p

We follow Helfand and Werthamer and make a
Fourier transform of Lexp( —2o)R/Vr) j/Ro. After inte-
grating over O'R we obtain

2m' 2 +iQV
Im dQ exp( ——', (Qr,)') ln

eHVp 2(o—iQVr

by a Laplace transformation:

Oe, ,
(r r') =at f dt exp[(+i —

~ ~) tgt'. (r r'; hatt)

(31)

An exact expression for P, has been found by Sond-
heimer and Wilson4:

We need to evaluate
(A2) F

P.(r, r'; P) =exp(ie A(s) ds)p, (r—r'; P),

VkT g S„„o.
v=o

At low temperatures, we may use the relation

P,(R; P) = (rn/27rh'P) ' '/(P )o,/sinhP o))

X expL —&moo. /p' coth(~P(o. ) —(~z'/2P) —P/(o(& H) Rj.

(32)

2zkT P F(o)„)=

(A3)

The integral in Eq. (31) can be evaluated by means
of the method of stationary phase. Providing kr '(p(
k~r, ' and 3(2e~k~r, ', this leads to the following ex-
pression for G, the homogeneous part of G:

We will assume that l))go and @AH« the 3CS gap h.
We can then neglect AH and I' in the erst term on the
right-hand side of Eq. (A3). However, the last term
diverges when ppH = F=0. For'kov' has shown that this
term has the form T lnT in this case. We therefore keep
F+i/ oH in the T' term We t.hen obtain

S—=kTI&o g So @=1+-',y+ln(2(o, r,/v2V/F)

+p (o[kTr /V/F) ' Ret exp(z) E) (z) j, (A4)

where y is Euler's constant, E~(z) is the exponential
integral, and z= ——,

' (poH —iF) '(re/V&) '. Using the
asymptotic expansion of Eq(z) for small z, we obtain

G+) i (R) = ZG+(.i."(R))
n=o

G~) )
o(R) =—(rn/2z R) exp/&i(kr —pod H/Vr) Rj,

G+)„(,"(R) =~ (—1)"+~(in'/r, ) (2~okrpn)

X cos (kr/p —-',or) exp [&iPz'/4norr, '+ (2ornor/(o, ) ——,'or/

(2zn/o) ) (I (p I~i@pa H) }. (B3)

Making use of Eq. (1.8) we can now evaluate )So:

8„o=+ QS,„-,
n=o m=o

ln(2(oo//l) S= p Dn(H/H. po)+u(T/T, p) 'j, (A5)
Sp„" = 2 Re /l'R G~"(R)G~ ~(R) exp( —po/2reo) .

where

H, pp
——6.7LPc/5Vr'e,

a =0.34(1+p lnL2/[ (H/Hz) '+ d'or'(fp/l) '}j)
(A6)

APPENDIX B

In this Appendix w'e will compare the expression for
the coefBcients So„™calculated in Sec. 2 with those
obtained earlier by us' by a different approach.

We recall that the Green's function G+)„) (r, r') is
related to the single-particle density matrix

y.(r, r'; P) = g y„.(r) y„.*(r') e~(—Pp„.)

The expression for So„" is the same as that given by
Eq. (1.6) for S„', while Eq. (2.19) is obtained when
n&rn by integrating in Eq. (B4). Also, Sp„o" and
So„"'are vanishingly small, as shown by us previously. '
However the z integration in Kq. (34) for Sp ""appears
to diverge at large s. The reason for this is that the
expression we have found for G=QG" is valid only
for

~

z
~

(2n~krr, '. When
~

z
~

is larger, the correspond-
ing stationary point in Eq. (B1),moves to the imag-
inary t axis, and 6" no longer contributes to 6. We
therefore cut off the z integration in Eq. (34) and
obtain

Ftrt~s~p/pit)l (pro) )-1/o expL —4/rn(op+ jp~)/op ]. (35)
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This approximate result differs from Eq. (2.18) by a
factor of 4/m.

APPENDIX C

In this Appendix, the low-temperature behavior of
Si and Sg is discussed. We first note that if 2p~/co,
is an integer, the electron spin has no effect on Sl.
We write

Next, let us consider S2, which is given by

S2——Re(~kT/(o, ) Q Q (—1)"+
v 0 em 1

X expL —2s (n+m) co„/co,j
X cos((2m(e —m)ev/(o, g—4~} ~

I—m
~

'". (C9)

po&/~c=2g+g) q=0, 1, 2, ~ ~ ~,
I n l&k.

The summation variables may be changed to e and
r=e—m. After performing the n sum, we obtain

We will assume that
~ g ~((1 and I'&&&o,. After summing co cc)

over e, Sl becomes Sp=Re(2xkT/(o, ) P g (—1)"r '"
v=1 v=0

Si(T, g, I) =Re(2)rkT/a). ) g Lexp(4')r(u„/(a, ) —1j

(C2)
where co =co+I'+ig.

It was pointed out in Sec. 3 that S~ diverges log-
arithmically as T—4 when F=g=0. To obtain the
leading terms when I'«I, and

~ q &(1, we subtract
and add g„a&./L4)res„(1+2~co„/~, )j. Since this and
its derivative both have the same behavior when
co„—4 we can write

S1~Re(4)r) ' dxILexpS —1$ '—Lg(1+i2$) j '}

(a) 6P 0)c for some integer p.

After approximating the last factor in Eq. (C10) by
cu,/4)res„and the r sum by an integral we find

where,

Sm =Re((o./16''kT) "'t'(-' '+ a/2mk-T), (C.11)

X cost (2~rcv/co, ) —-', m j
X expt —2s.res„/co,)I exp| (4+co„/o),) —1$} '. (C10)

The r sum depends crucially on the ratio ev/~, and it
is necessary to consider two situations separately:

~„=I Ev+ '+ (I'+ig(-o, )/27rkT j
+ ((v./16~'kT) QA„,

f(e; s) = Q (m+s)-".
m=0

where

X[v+2+(I'+igloo, +co,/2x)/2~kTj} ', (C3)
For a=0, this reduces to

S2(T, 0, 0) =((u,/2s'kT)"'(1 —2 3")f(-'). (C12)

S=x+kr(1'+igloo, ) /co, (C4) For a&0, T=0 we find

(C13)S2(0, )t, I') =Re(2m a'i') —'.

o& [ a [
&-,'.ev/a&, =p+ ',+b)-

We can approximate expL —2~r~„/co,j by 1. This leads
toS,=Refry-', +(a+~,/2 )/2 kTj

S2 SiF(a), ——

F(a) = P r '~' cos(2~re —i~m).

(C14)
—)p(-,'+a/2skT) —ln2}/4)r, (CS) where

(C15)where

This approximation includes all terms that do not
vanish when

~
~kT+I'+ipse, ~mo. The integrals in (C3)

are elementary while the sum can be expressed in
terms of the digamma function. We find

a= I+zfjM); ~ (C6)
This sum may be evaluated in two limiting cases:

When @=0, this reduces to
F(B) = (2 i

8 i) 'I', o&
f

a /«-',

S&(T, 0, 0)~(4r) 'Ly+in(~, /2x'kT) j, (C7)
F(b) =2 'I'(1—2 '~')f'(-')

( 8 [=-', . (C16)
where y is Euler's constant and (~,/2s'kT)))1. When
T=o, (C6) leads to

Si——(kn.) 'in(o). /4r
~
a ~).

By comparing Eqs. (C8), (C12), and (C14) we see
that S2 is sharply peaked about 8 =0 when 2n'k T/co,«1.

(C8) It is large when
~

8
~
&a.


