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The Anderson Hamiltonian has been treated by the application of the cluster variation method for
the cooperative phenomena, which was first proposed by Kikuchi and later genera1ized by Morita. The
calculation has been carried out by retaining up to two-particle off-diagonal correlations. The self-consistent
equations obtained for the number of d electrons with opposite spins are found to have similar behavior
and similar self-consistent solutions to those of Anderson. The ground-state energy of this system has been
calculated for the cases of infinite d-d correlation energy and for a d-d correlation energy twice the energy
of the d orbital. This ground-state energy is found to be lower than the free-electron energy by an amount
219'(0)Ds expt' —] ee ) /P(0) ( V pj, where zy(0) is the density of conduction states of one spin at the
Fermi surface, D is the conduction bandwidth, eg is the energy of the d orbital measured from the Fermi
surface, and tt' is the ~i~ng strength between the conduction-electron states and the d orbital.

I. INTRODUCTION

f tHE discovery of the existence of a logarithmic
term in the conduction electron-magnetic impurity

scattering amplitude by Kondo and the successful
explanation of the presence of a resistance minimum
at low temperatures led many investigators to study the
various physical properties of dilute magnetic alloys.
However, since the K.ondo treatment is valid only at
high temperatures, various attempts have been made
to improve and to extend Kondo's theory to lower
temperatures. In particular, the analysis of the nature
of the ground state of such a system has become a
subject of many theoretical investigations. The problem
ls therefore, drastically simplified and reduced to find
the ground state of a magnetic impurity of spin mag-
nitude —', that interacts antiferrornagnetically with con-
duction electrons (the s-zf Hamiltonian) .

Nagaoka' treated this problem by the method of
two-time Green's function. By introducing an ad hoc

truncation scheme in his Green's function equations he
obtained a set of simultaneous integral equations. An
approximate solution of the integral equations for the
antiferromagnetic coupling led to the existence of a
quasibound state.

Suhl, ' and Suhl and %ong, 4 applied scattering theory
to the problem and showed that no bound state can exist
for such a system. Abrikosovs employed infinite-order
perturbation theory and also reached the conclusion
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that a bound state should not exist. Hamann, ' and
Falk and Fowler, ~ later solved Nagaoka's truncated
Green's function equations rigorously and found solu-
tions exactly identical to Suhl and Wong's solution.

Yosida Oloji, s Heeger and Jensen" Kondo" and
others have investigated the problem by the Rayleigh-
Ritz perturbation method. In such an approach the
ground state is assumed to be singletlike. Yosida con-
structed the trial wave function with one localized
quasiparticle above the Fermi surface together with
an undisturbed Fermi sea. This quasiparticle was then
allowed to interact with the impurity via the s-d ex-
change interaction forming a singlet configuration. By
using a modified perturbation method he derived a
bound state for the case of antiferrornagnetic coupling,
whereas there was no bound state for the ferromagnetic
coupling. The main objection to Yosida's theory is that
his trial wave function does not preserve the particle-
hole symmetry. In their calculation, Heeger and Jensen
incorporate the particle-hole symmetry in a BCS-type
wavefunction. Considering only an antiferrornagnetic
coupling they obtain a bound state that is the same as
that obtained by Yosida. A more refined variational
perturbation by Okiji has verified Yosida's calculation.

On the other hand, Kondo'2 uses a perturbation
scheme to obtain the ground-state energy. He assumes
that the ground-state energy has two parts; one is an
analytic function of exchange integral J and the other
is an indnite series of nonanalytic functions of J. Kondo
calculated the first three terms of this series explicitly
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and assumed the remainder to be the terms of a geo-
metric series, and carried out the summation. The
ground-state energy obtained by Kondo is lower than
those obtained from variational calculations.

Recently, Schrie8er and WolfP' have shown that
by a canonical transformation of the Anderson Hamil-
tonian one gets the s-d exchange Hamiltonian plus
some spin-independent terms, and thus the two models
are equivalent. However, Dworin" has shown that
the resistivities calculated from the models are dif-
ferent from each other. Also, more recently, Horwitz,
Alexander, and Fibich" have claimed from the detailed
singlet-triplet formulation of the two models that they
are not exactly equivalent.

EGorts have also been directed to the study of the
bound state for the Anderson model. "Starting with the
Anderson Hamiltonian, Appelbaum'~ used the perturba-
tion approach of Kondo" to obtain the ground-state
energy. He too calculates the 6rst few terms of the in-
6nite series explicitly and then guesses the succeeding
terms to be a geometric series and carries out the sum-
mation of the series. As in the case of the s-d model,
he finds a negative exponential as the ground-state
energy. Anderson, ' by employing the variational tech-
nique, also obtains an energy lowering of the system in
the ground state.

In order to investigate the question of the equivalence
of the two models in detail we thought it would be
useful to investigate the Anderson model by still
another method. The approach here will be to treat
the problem by the technique of the cluster variation
method of cooperative phenomena. The method was
6rst proposed by Kikuchi" and later generalized by
Morita. " The variational free energy of a system is
constructed by introducing correlations among diferent
particles, which are then expressed in terms of the
Hamiltonian and the trial reduced density matrices.
Sy expressing the trial free energy in such a way, we
can introduce approximations in a systematic manner.
The number of terms that we retain depends on the
nature of the problem. If the trial free energy is trun-
cated after keeping correlations among e diferent
particles of the system, we say we are treating clusters
of e particles. The cluster variation method has been
applied to the Heisenberg model with arbitrary spin
and range of exchange by Morita and Tanaka, " and
more recently by Halow, Tanaka, and Morita~2 to the
calculation of the ground-state energy of the s-d
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Hamiltonian. Here we shall follow the method of the
latter paper where the reduced density matrices are
expressed in terms of unknown expectation values and
constructed such that their normalization and reduci-
bility conditions are automatically satisfied, thus avoid-
ing the problem of calculating the unknown Lagrange
multipliers which would otherwise have to be intro-
duced to satisfy these conditions. The variation of the
trial free energy is then taken with respect to these un-
known elements of the reduced density matrices.

II. CLUSTER VARIATION METHOD APPLIED TO
ANDERSON MODEL

The Hamiltonian of our system may be written as

H= p ekCkr Ckr+ p edCdr Cdr+ UCdr CdrCd r Cd

+V+ (Ckr Cdr+Cdr Ckr) y (1)
k, fy

where c~ * and c~, are the creation and annihilation
operators for the conduction electrons with momentum
h and spin 0.. cg *and c~ are the same for the local
d electrons with spin o. Hence the 6rst term on the right-
hand side represents the total energy of the conduction
band whose width we will take as 2D, the second term
is the energy of the d orbital, the third term gives the
Coulomb repulsion between spin up and spin down elec-
trons in the d level, and the last term represents the
energy due to mixing between the conduction electron
states and the d orbital.

As in Refs. 21 and 22, the trial free energy of our
system can be written as

F= trp~(P+hI&T lnp, )

=g tr, h&'&( j)p,&'&(g)+g tr;,kh&" (j, h) p&"&(j, h)
j g&k

+h.T(Z~t&(j)+Z~&&(j, h)+" &, (2)
j g+lo

where ho&( j) is that part of the Hamiltonian which
involves one particle operators in state j and h&'&(i, j)
is the part which involves two particles representing
the interaction between particles in states i and j.
p&" ( j) and p&'&( j, h) are the one- and two-particle re-
duced density matrices. The entropy term of the free
energy has been expanded in terms of the many-particle
cumulants p&'&( j), y&s&( j, h), etc., which are given by

"'( ) =t '"( ) l "( )

7"'(i, h) =tri, »~"'(i ~ h)»p~'"(j~ h)

—tr, p~"'( j)»p~"'( j)—trap~'"(h)»p~'"(h). (S)

These quantities show the eGects of the many-particle
correlations. If we truncate the series LEq. (2)j after
7t"&(1, 2. ~ n) we say that we are considering up to
e-particle clusters.

Since we have up to two-particle-interaction terms
in our Hamiltonian, it is reasonable that we retain up
to 7"'(j, h) terms in the free energy and neglect three-
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and other higher-particle correlations. The variational free energy is then written as

& =g 6g trq nq p, ' (k, o&+geq trig p, ' (d o)+ U I tr p
' (d, o')ng jtr, p~ (d, —n)n~, L+V g trq, ,g p~ (ko, do)

k, r 0' k,o

X (c&, cJ +co c&. ) +kJ&T {g tr&„p, "(k, o& lnp, ' (k, o) +g tr p~
' (d, o) lnp~ ' (d, o )+g Ltr&„,o,p~ "(ko, do)

k, a' 0' k,a

X inp~&')(ko do) —tr&„p~&')(ko) lnp, &'&(ko& —tr,p~&')(do) lnp &'&(do) g}j
We then write the reduced density matrices in terms of unknown expectation values so that the variation with

respect to these elements can be carried out explicitly. As shown in Ref. 22, these can be constructed very simply.
The relevant density matrices are given below:

+kodo

p, &'&(ko, do.
&
=

+ka +ke+do

Cdr Cl&;g

(ck~ cd~)

+da' +Qr+do'

0 1- (n&,.)- (ng.)+ (n),.ng. )I

Before we can perform the variation, we must carry out the trace operations in K In order to do this we shall
have to express the density matrices in a diagonal form. All one-particle density matrices are already diagonal.
Upon diagonalization, p&&2) (ko, do & assumes the following form:

p, &2) (ko, do)

&n&,.ng. )

0 ~ {A+8+[(A—8)'+4
I („o !'j»'}

-,'{A+8—L(A —8)'+4
I (~g!'J»}

where A = (e&,~)—(n&„eq, ), &= (nq )—(n&„eq ), and &),g = (c)„*cq,).
We can then write the trial free energy as

P—U&&)+ U&2) Tg&&) Tg&2)

1- (e&,.)
+de +ke+dg

(Sa)

(Sb)

(Sc&

(Sd)

where

U&'& =Q e&, (n&,.)+Q eg(ng, ),
k,e

U&'& = U(n~)(n~, &+V g (f&,a'+$&,a' &,
k, e

S'&» = —P» g! (n)„) ln(n&„)+ (1—(n&„)& ln(1 —(n)„))+(nq, ) in&no, )+ (1—(ng, )) ln(1 —(nd )& j,
k,o

S'&» =—p» Q {(n&„)(no, & ln(n)„)(n~)+~~! (n)„)+&ed, )—2(n&„)(nz )+ (((e), )—(nz, )) +4 I g&z' p)»~g
k, o

X»~&! (n~.)+(n~.)—2(n~. )(n~)+(((n")—(«.))'+41&~'!2)»nj+kL(n~ )+&n~)—2(n~. )(no.)
—((& ')—( '))'+4 I & "I')»'il lL( .)+( ')—2( )( )—((( .)—( ))'+4 I 4"I')»'j

+L1—(n&„)—(na, )+ (n)„)(ng, )g lnI 1—(n&, )—(na )+(n&, )(ng, )g—(n&, ) in(n&, )—(1—(n&, )) ln(1 —(n&„))

—&nd ) ln(na )—(1—(ng, )) 1n(1—(no, )) }, (Se)

where we have introduced the following decouplings:
(«&e~&)= (eo~)&n~&) and (n&,.n~)= (n&„)(nd, ), assuming
that the correlations between d electrons of opposite
spin, and between conduction and d electrons are neg-

ligibly small. Introduction of this kind of decoupling
in the problem does not imply that we are carrying out
the calculation in Hartree-Fock approximation. This is
because the decoupling is used only in quantities that
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have nonvanishing contribution in the Hartree-Pock
approximation. When a quantity is a correlation itself,
e.g. , fkd = &ck,*cd,), it is retained explicitly.

The expectation values $kd, (nk. ), and (nd, ) are to

be determined in such a way that the free energy F
given by Eq. (5) has a stationary value. Let us first
carry out the minimization with respect to $kd . This
leads to the expression

$kd ~B2 &nk. ) + (nd. )—2&nk. )(nd. )+L( (nk. )—(nd. )) '+4
I &kd

L((nk. )—(n~))'+4 I &k" I'3'" (nk )+(«)—2(nk )(nd )—I ((nk )—(nd ))'+4 I kk" I'2"

nd. (1—nd. ) "'
ek—I

V
I (1—2nk. ) =0,

nk. (1—nk. )
(9)

To calculate $kd' in the ground state, we take the limit
that the temperature T—4. Since the 6rst term V in
Eq. (6) is finite, the coefTicient of T in the second term
has to diverge. Now $kd'~ has a finite value and also the
denominator is 6nite since it involves the square root
of the sum of positive quantities whose maximum value
is unity. This implies that the logarithmic term has
to diverge. Since only the denominator of the loga-
rithmic term can go to zero, V and (kd

* have to be of
opposite signs so that Eq. (6) can be satisfied. This
amounts to a unique solution for $kd in terms of other
unknown quantities.

We have

(nk.)+&nd. )—2 (nk. )(nd, )—( (nk. )—(nd. )) '

+4IP,:I=0,
which gives

~-.=~l & ")(")(1—( "))(1-(".))3'" (»
As mentioned before, the sign of $kd' must be chosen in
such a way that the product V)kd' is a negative real
number so that Eq. (6) is satisfied.

Introducing this solution in the trial free energy func-
tion at T=O we get

(nk. )+g (n.)+U(n. )(n .)
k, o 0'

-2l VI ZL(")(. )(1—
& "))(1—(. ))h(

k, o

Minimizing P with respect to (nk, ) and (nd, ), we are
led to the following two coupled equations:

forms:
ck—I

V
I (gd./qk. )"'(1—2nk. ) =0,

«,—(co./2gd, »') (1 2n—d, ) =0.

From Eq. (15) we obtain

".=~'I vl/("+4. "I vl),
which can be solved for ek, to get

(15)

(16)

(17)

Replacing the sum over k by an integral over ek and
recalling that the width of the conduction band is 2D
we get

~a =2&(oi
i
i'pea"'f [«~/(~J+4w i v i')"'i

=4K(0) I
v Imbed

"'sinh '(D/2'»'I v I), (19)

where the density of states has been assumed to be a
constant and is given by E(0), the density of the con-
duction states of one spin per unit energy at the Fermi
surface.

Combining Eqs. (16) and (19),we obtain the follow-

ing equation:

sinh '(D/2', »
I
v I) =«,/2$(0) I

v I'(1—2nd, ).
(20)

n,.=-', L1—ek/(ck'+4gd, I V I')»'g. (18)

Equation (18) gives the distribution of states modified
from the Fermi distribution by the presence of the s-d
interaction. If Eqs. (17) and (14) are combined, we
obtain

=2
I

V P y/d»' g L($ 2+47]d
I

V I2) '~'1—'

and In order to determine the number of d electrons of a
given spin, we shall have to solve Eqs. (11) and (20)
simultaneously, i.e., the following two equations must
be solved self-consistently:

(nk. (1—nk. ) )»'
«+ Und —.-I V

I Z I
'k nd. (1 nd. )]—

D «+ Undi
sinh '

2Lndi(1 —ndi) ji"
I

V
I 2%(0) I

V p(1—2«i)«.=«+Und

gd. =nd. (1—nd.),
(11)

(12)

(13)

(14)

(21)
'gk —nk (1 nk )

eo, ——2
I

V
I Q t nk. (1—nk. ) g"'.

Equations (9) and (10) then assume the

To show the meaning of these two equations, we plot
for five different cases in Fig. 1. In Figs. 1(a)-1(c),we
have chosen U=2

I «I, and in Iigs. 1(d) and 1(e)
U=4

I « I. From Figs. 1(a), 1(b), 1(d), and 1(e) itfollowing

(10)
D «+ Undi

where we have omitted the (~ ~ ~ ) notations for the ex- sinh '
pectation values. Let us now introduce the following
de6nitions:
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solutions are possible when U/E(0) ( V '))1 s .
(e)j.There is only one nonmagnetic solution w en-1 t:(c)j.

0,2 0.4 0.6
(ndy)

(e)

0.8 Q /. 0

is clear that when U/X(0)
~

V js is rather large there
f lutions for these equations. T e

ye~~
——n~~ and the third one is at n~t =n2 and n~~ ——n~.

1 t' nstable. The other two solutions
are the stable ones energetically and they correspon
to the up an ownh d d wn configurations of a localized spin.

However, w enh U/1V(0)
~

V ~s is rather small, as in
ne self-con-Fi . 1(c), the set of equations have only one se -con-

sistent solution n~t ——eq~. In this case p
t e system is zero anl1 t ero and hence this solution is m.agneti-
cally unmteres ing. inl

' t t Since V=2
~

66
~

is the most favor-
able case for localized moment, we Gnd that the con s-

tion nest = —nq~ is saatisfied for the two magnetic so u-
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tions in Figs. 1(a) and 1(b) . It is interesting to observe
that although the self-consistent equations for «t and
eq~ derived in this paper look quite diferent from
Anderson equations LEq. (27) of Ref. 16j, they have
similar behavior and similar self-consistent solutions.

GE. GROUND-STATE ENERGY

We can now proceed to the evaluation of the ground-
state energy. The energy lowering of the system due to
the presence of a magnetic impurity is given by

W= g pktpt + g I pk I (1—Nt )+g pj's@ +U«oNd g—pp 'gg

k&kg, a k(kg, o 0'

Using Kqs. {18)and (14) in Kq. (22) we get

(22)

1( eg I ( el,
I+ Q Ip~I-I 1+

k&pg, r 2 4 (pt+4nd. I
V Ip)'"2 t(kF; 2 E (pk+4nd. I V Ip)"'i

+@(«t+e« 1)—+Utt&t «& L«t'N t"'+'pp«"'j.
I

Converting the sum over k to an integral over e& and carrying out the spin sum we have

+@(«t+«t—1)+U«t«t —
I pptggt'~'+pptq«'"1

D
E- d6 Ed6

( p
I

I2) i/p ( p+ 4 „ I
v Ip) Up

+pg(mgt+«t 1)+U«—tI« feptggt'~'—+pptq«'I'g.

Carrying out these straightforward integrals and using Eq. (19) for ppt and ppt we get

W= —N(0) I V I'I tlat L1+2 sinh ' (D/2' 'I'
I

V I) j]+g«I 1+2 sinh '(D/2q«'~'
I

V I)j
+~(«t+«t 1)+U—«t«& (23).

is always satished. Hence we have yet =y~~ =gg. Using
these relations in Eqs. (21) we obtain

Ke shaH treat the ground-state energy in two limit-
ing cases. First let us consider the Appelbaum approx-
imation where U/N( )0 I

V I' tends to inftnity. In such
an approximation the solutions of the self-consistent
Eqs. (21) are obtained as «t~i and «t 0 (cf. Fig. 5
of Ref. 16). Hence we shall have ttqt tt«ttq and
«t+«t =1.Then from Kqs. (21) we obtain

U=4N(0)
I

V P sinh '{D/2ttg'IP
I

V I)

which is the same as Eq. (24) .Hence in this approxima-
tion also we obtain

W= —2N(0) I
V I'ttg.

(24)
Again, as before, for weak-coupling limit

n~ I
V I'= D' expI:—I a I/N(0) I V H

U=4N(0) I V P sinh '(D/2ttg'IP
I V I) ~

Equation (23) then reduces to

W= —2N(O) I
V IP«. (25)

Again substituting Zq. (24) into Eq. (21), we have

pq+2N(0) I
V I' sinh '(D/2aq'IP

I V I) =0~

from which we obtain in the vreak-coupling limit
(I at l))N(0) I V I')

ttg I
V IP=DP expL —

I at I/N(0) I V Pj. (26)

Substituting Eq. (26) into Eq. (25), we have

W= —2N(0) I V I'expI —
I pz I/N(0) I

V I'g. (27)

Let us now consider the opposite limit of U=2
I

pa I,
which is the most favorable case for a localized moment.
In this approximation the solutions of the self-consistent
equations (21) are such that the condition Ngt+«t =1

and hence

W= —2N(0) D' expL —
I pg I/N(0) I

V I'j, (28)

which is the same as Eq. (27). W is the energy difference
between a system with a magnetic impurity and the
unperturbed system at absolute zero. Thus, Eqs. (27)
and (28) show that the ground-state energy of the per-
turbed state is lower than the ground-state energy of the
unperturbed conduction electrons. The expression for
the ground-state energy has the same exponential
behavior as that obtained by Appelbaum, although he
has an extra factor of 2 in the denominator of his
exponent. Anderson also obtained a similar 'energy
lowering but his numerical factor in the exponent is
quite different from Appelbaum's and our result.


