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calculate

H.s c)Z(H)i H.s (BR(H) ItSst=
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with

g(r) =rt 1—r+r(2/r —1)'tsj.

Finally, by combining (A18), (A20), and (A21), we
can derive
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The dielectric function of a degenerate electron gas in the random-phase approximation, and the one
proposed by Hubbard, which takes exchange eGects into account, have been extensively used in the study
of metallic properties. However, both dielectric functions lead to an overestimate of the short-range cor-
relations between particles. This is manifest from the fact that the pair-correlation function is negative
for small interparticle separations over the whole range of metallic densities, and implies an overestimate
of the correlation energy. An improved expression of the dielectric function is given, which includes explicitly,
in an approximate way, the short-range correlations arising from both Coulomb and exchange effects by
being a functional of the structure factor. The structure factor and the dielectric function can then be
determined in a self-consistent manner. The numerical solution of the self-consistent. scheme yields a pair-
correlation function which is positive for all values of the density up to r, =4. For r,)4, it is very slightly
negative at small separations, but it is so small that it can be considered to be zero for all practical purposes.
New estimates of the correlation energy are given for the entire metallic density range, and are smaller
than the earlier estimates. These results are used to recalculate the cohesive energy of the alkali metals. A
discussion of the plasmon dispersion relation, the compressibility, and the liquid-solid transition, both
for the electron system and for an astrophysically interesting system of protons over a background of
electrons, is also given.

I. INTRODUCTION

lHE dielectric formulation of the many-body prob-..lem has been found to be very fruitful in studying
the degenerate electron gas and the metallic properties
which depend strongly on electron-electron interactions.
The system that one studies is a degenerate electron
gas on a uniform, neutralizing background. The density-
Ructuation excitation spectrum, the correlations be-
tween the density Quctuations, and the ground-state
energy of the system are rigorously expressible in terms
of its frequency- and wavelength-dependent dielectric
function. This model system serves as a useful guide
to the study of many metallic properties, such as the
interionic potential and the screening of defects, under
the assumption that the dielectric function is not essen-
tially altered by the discrete nature of the ion lattice.
It is, therefore, of great importance to have a precise
knowledge of this function in the range of electron
densities encountered in metals.

~ Based on work performers under &ht; auspices of the U.S.
atomic gnt;rgb Corxpgjssjog,

The dielectric function 6rst given by Lindhard, 2

which corresponds to the random-phase approxima-
tion' 4 (RPA), is the one which is most commonly
used. It provides a good description of the plasmon
excitation modes and of long-wavelength screening phe-
nomena, but its validity is otherwise limited to high
electron densities (r,((1}.The inadequacy of RPA
becomes manifest, for instance, from the fact that the
pair-distribution function, which is positive-de6nite, be-
comes negative' ' for small separation between particles,
over the entire range of metallic densities (2(r,&6).
This arises from the failure of the RPA to take account
of short-range eGects; indeed, no local field correctiorF
is made in this theory. The neglect of short-range

J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 28, No. 8 (1954).

e D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953).
«M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364

(1957).
4 J. Hubbard, Proc. Roy. Soc. (London) A243, 336 (1957).' A. Glick and R. A. Ferrell, Ann. Phys. (N.Y.) 11,359 (1959).' Lars Hedin, Phys. Rev. 139, A'796 (1965).
r P. Nozieres and D. Pines, Nuovo Cimento 9, 470 (1958).
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eBects in the evaluation of the dielectric function leads
to a large Coulomb hole, resulting in an overestimation
of the correlation energy.

Approximate procedures to improve upon the RPA
value of the correlation energy have been proposed by
Hubbard4 and by Nozieres and Pines. Hubbard's cal-
culation of the correlation energy involved an approxi-
mate infinite summation of bubble-ladder diagrams.
In this way he was able to take into account the con-
tribution of the exchange terms, which at large mo-
mentum transfers tends to cancel one-half the contribu-
tion of the direct terms. On the other hand, the method
of Nozieres and Pines is based on an interpolation
procedure between the low and high momentum trans-
fer contributions to the correlation energy. The two
methods are in essence based on the same physical
idea, that is, that the RPA is approximately valid for
small momentum transfers while for large momentum
transfers the main contribution to the energy arises
from the interactions of electrons with antiparallel
spins only. Hubbard s approximation yields a modi-
fied expression for the dielectric function. This expres-
sion has been extensively used in the study of metallic
properties and has been found to yield improved re-
sults. However, the pair-distribution function obtained
from Hubbard's dielectric function remains negative
for small separation between particles, over the entire
range of metallic derisities. This defect arises, as we
now know, from the fact that Hubbard's dielectric
function includes the local-field correction only to the
extent that it takes into account the exchange hole in
the Hartree-Pock approximation. In the region of
metallic densities, where the electron-electron inter-
action plays an increasingly important role, the local-
Geld correction associated with the Coulomb hole must
also be taken into account.

Gaskell, "on the other hand, has used the Rayleigh-
Schrodinger variational method, with a wave function
which is the product of a Slater determinant and a
correlation function, to calculate the ground-state en-

ergy and the pair-correlation function of the electron
gas. He Gnds that the pair-correlation function becomes
negative for r,&2.66.

It has recently been proposed" that the short-range
correlations responsible for the local-Geld corrections
can be taken into account in the dielectric function in
a more satisfactory and self-consistent manner by mak-
ing the dielectric function a functional of the Fourier
transform of the pair-distribution function g(r). This
was achieved in the classical case by an artsats, which
replaced the two-particle distribution function f(1, 1')
in the Liouville equation for the one-particle distribu-

' P. Nozieres and D. Pines, Phys. Rev. 111, 442 (1958).
~ F. Brouers, Phys. Status Solidi 19, 867 (1967).
'0 T. Gaske11, Proc. Phys. Soc. (London) 7/, 1182 (&96t); 80,

1091 (1962)."K. S.&Singwi and A. Sjolander, note from the Institute of
Theoretical Physics, Chalmers University of Technology, Gothen-
burg, Sweden, 1967 (unpublished) .

5g
$(q) = — Imge(q, (u)) 'd(o.

47r'e'e
(2)

Since the dielectric function is now a functional of S(q),
Eq. (2) imposes a, self-consistency requirement on S(q)
and e(q, ~) . This self-consistent scheme, as was antici-
pated, yields" values of g(o) which remain positive
for all values of r, up to r, =4, a region which covers
the majority of metals with the exception of the heavy
alkali metals. For values of r, &4, the calculated values
of g(o) are negative but are so small that for all practi-
cal purposes one can consider g(o) to be zero. The
ansais (1) is therefore reasonable even for the heavy
alkali metals. Similar calculations, based on the above
self-consistent scheme, " have also been carried out by
Hubbard' for r, &4. Thus the grave difficulty of a
large an,d negative g(r) for small separations, that the
earlier theories had encountered, has been overcome.
It therefore encourages one to reinvestigate those me-
tallic properties which are affected by short-range elec-
tron correlations. Experimental studies of many phe-
nomena in solids have recently been refined to the point
where it has become both interesting and necessary
for the theory to incorporate in a satisfactory manner
electron-electron interactions.

In this paper, we give a detailed discussion of the the-

ory, present numerical results for the pair-correlation
function and the correlation energy over the whole
range of metallic densities, and compare them with
the results of the earlier theories. A short discussion
of the plasma dispersion relation, the compressibility,
and the liquid-solid transition, both for the electron
system and for an astrophysically interesting system
of protons over a background of electrons, is also given.
The present estimates of the correlation energy are
smaller than those given by the previous theories, since
the short-range correlations are no longer overestimated.

II. THEORY

A. Classical Case

The equation of motion for the classical one-particle
distribution function f(x, p; t) in the presence of an

"See, for instance, D. Pines, E/ementm'y Sxcitations in Solids
(%'. A. Benjamin, Inc. , New York, 1964), p. 129-131.

"K.S. Singwi, M. P. Tosi, and A. Sjolander, Nuovo Cimento
54, 3160 (1968)."J.Hubbard, Phys. Letters 2SA, 709 (1967).

tion function f(1) by

f(1, 1') =f(1)f(1 )g(x-x ),
thus making it possible to close the hierarchy of equa-
tions. On the other hand, the Fourier transform of
g(r) —1, which is (1/rs)$5(q) —1], where rs is the
number density and S(q) is the usual structure factor,
is related to the dielectric function e(q, ~) through the
exact relation"
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external potential V, (x, t) is's

(cd(x, p; t)/ctt j+v.V f(x, p; t)

—V V.(x, t) ~ V f(x, y; t)

V C (x—x') ~ V, f(x, p; x', y'
j t) dx'dp'=0, (3)

where C (x) is the Coulomb interaction potential and
t(x, p; x', y'

~
t) is the two-particle distribution func-

tion, and the other symbols have their usual meaning.
The equation for the two-particle distribution function
contains, in turn, the three-particle distribution func-
tion, and so on. We terminate this infinite hierarchy of
equations by making the u1zsuts

f(x, p; x', p') t) =f(x, p; t)f(x', p'; t', g(x —x'), (4)

where g(x) is taken to be the eggilibrilttt, static pair
correlation fgttctiott The. ansatz (4) takes care, in an
approximate way, of short-range correlations between
the particles, through a function which has a simple
physical meaning. The function g(x) tends to unity
for large values of its argument, while for small values
it is expected to be small, but not necessarily tending
to zero in the special case of the Coulomb potential
that we are considering. The assumption g(x} =1 for
all separations in Eq. (4) corresponds to the approxi-
mation leading to the Landau-Vlasov equation. '6 The
usefulness of the ansatz (4) can only be judged a pos
terzori.

If one writes

f(x, p; t) -f&(p)+f&(x, P; t), (5')

where fi(x, p; t'j denotes the deviation from the equi-
librium distribution function fs(p) induced by the
(weak) external potential, and one linearizes Eq. (3),
one has the following equation for fi(x, p; t):
P(a/ctt)+v V )fi(x, p; t)

p*-~(q, ce) = fi(q~ ce; p) dp

where

V, (q, .), (10)c (q)+4 (q) Qo(q, ~)

C (q) =4xe'/q', (11)

4(q) =c(q)+~-' c (q') Ls(q —q') —i3q q', , dq'

g2 (2m)s
'

(12)
and

where the first two terms on the right-hand side cor-
respond to the usual macroscopic electric field, and
the third term corresponds to the local-field correction
in the present approximation. Only the first two terms
are taken into account in the RPA.

In the Appendix, we have discussed in a formal way
the approximations that are necessary to arrive at
Eq. (8) starting from the equation of motion for the
density matrix (P t(x, t)f, (x', t)). In this equation
the RPA term is isolated, and the remaining term is
recast so as to give a nonlocal eGective potential which
involves the density-density correlation function. If
this potential is made local, the density-density correla-
tion function reduces to the pair-correlation function
in the presence of the external field. When the latter
function is replaced by its equilibrium value, one re-
covers Eq. (8).

Because of the linearity of Eq. (6) we can find its
solution by considering a single Fourier component of
the external potential:

V, (x, t) = V, (q, cc) expLi(q x—tet)+rtt)+c c , (.9.)

where g is a positive infinitesimal. Proceeding in a
standard manner, one finds the induced charge density

V V, (x, t)+ V„P(x—x')fi(x', y'; t) dx'dp'
~

)

~ Vr fs(p) =0, (6)

Qo(q, ~) =—C (q) x'(q, ~), (13)

xs(q, ce) being the usual free-electron polarizability.
The dielectric function is, therefore, given by

where
V„+(x)=g(x) V„C(x). (7)

It is apparent from an inspection of Eqs. (6') and (7)
that the eGective electric field felt by a particle is

E.„(x., t) = —V.V, (x,t)

V„C(x—x')fi(x', p'; t) dx'd p'

Lg(x —x') —1]V„C(x—x')fi(x', p'; t) dx'dp', (8)

"See, for instance, E. G. D. Cohen, Fgndamental Problems ie
Statistical Mechagics (North-Holland Publishing Co., Amsterdam,
1962).

"See, for instance, R. Brout and P, Carruthers, Lectlres oe the
Many-Electron Problem (John Wiley 8z Sons, Inc., New York,
4963), p. 34.

Q.(q, -)
e(q, ce) =1

G(q) = —~-, Cs(q —q') —0 . (»)q'q dg

q" (2')'
Equa, tions (14) and (15), together with Eq. (2),

provide a set of equations which have to be solved self-
corlsi steetly.

It is easy to show that in the limit of large frequencies
Eq. (14) reduces to

e(q, ce) = 1—(tc '/ce')

where co„is the plasma frequency. From the analytical
properties of e(q, tc) and the above asymptotic be-
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havior, it follows that

and

(0 Im[q(q, (q) ]-'Cko =—-'q) (0 '
0

f (d Im[q(q, (q) ]d(o =-', qr(q„'.
0

Equation (14) also satisfies the "perfect" screening re-
quirement,

1)m[e(q, 0) j-'=0

The compressibility sum rule is discussed in detail in
Sec. IV B.

B. Quantum Mechanical Case

Our basic assumption consists in taking over the re-
sults of the preceding classical analysis of the dielectric
function to the quantum mechanical case, merely re-
placing the classical free-electron polarizability and the
classical structure factor by their quantum mechanical
analogs. Clearly this assumption is made in the same
spirit as the self-consistent —field method, in that the
system responds to a screened electric potential through
the free-particle polarizability. The only difference from
the RPA is that one has allowed for a local depletion
of the electron density around any given particle, which
is associated with its Coulomb and exchange holes.
Indeed, Eq. (14) reduces to the RPA expression of
the dielectric function if one neglects all local-Geld cor-
rections. On the other hand, as we shall see, it reduces
to the Hubbard expression if one calculates G(q) by
Eq. (15) using the Hartree-Fock expression for the
structure factor.

The non-RPA term in the equation of motion for
the density Quctuation p~ in the absence of an external
field can, indeed, be approximated to give an effective
interactio'n between the electrons which is given by
Eq. (12) with S(q) replaced by its quantum mechanical
analog. The equation of motion' of p~ is

r'g p; Sq' '
g

p = —g ~

'+—exp( —iq r;) —C(q) —Np,
i ( tÃ 2m m

—Z C(q')(q q'/m)~. )," (16)

value, I.e.,

(g exp[i(q' —q) ~ (r; r—;)j)
=e—'(P exp[i(q' —q) ~ (r; r—;)])
=S(q' —q),

Eq. (16) can be rewritten as

fq p; 5q')' g
p = Z I

'+
I exp( —iq r') —4(q) —qi~

), m 2mi m

(18)

The last term in the above equation has the same struc-
ture as the RPA term except that C (q) has been re-
placed by f(q) . If we remember this fact we can derive
Eq. (14) proceeding in the same manner as in the RPA.
One starts with the equation of motion for the particle-
hole pair in the presence of an external field and calcu-
lates the induced charge density (p~). In the expression
for the latter one then replaces the polarization field

~(q) (;)by ~(q) &..)
III. REDUCTION TO THE HUBBARD

DIELECTRIC FUNCTION

The simplest assumption that one can make in Eq.
(15) is to take the Hartree-Fock value for the structure
factor, which corresponds to neglecting the Coulomb
interactions in the calculation of G(q). In this case
one has

S(q) = — dk dk' ()(k—k'+q),
(2'') 0 (Q(qg) (Ql(q)p)

(19)

where qg is the Fermi momentum. Substituting Eq.
(19) into Eq. (15) we have

G(q) = 2,q. (q+k —k')

(2~)'~' ()&q,) ()«q,) I q+k —k' I'
'

(20)

If in the above integral we replace the factor

~
q+k —k'( 2 in the integrand by (q'+y') ', as also

done by Hubbard, 4 we find

The last term in Eq. (16) can be written as G(q) = l[q'/(q'+&~') j. (21)

m ' g (q q')C(q') +exp(iq r;)
a'(~a) i

X g exp[i(q' —q) ~ (r,—r;)],

where ri is the position of the ith electron at time t.
If we now replace the sum over j by its static average

'~ Reference 12, p. 99.

With this value of G(q), Eq. (14) is precisely the ex-
pression of the dielectric function given by Hubbard.
Thus the Hubbard approximation for the exchange cor-
rection corresponds simply to using the Hartree-Fock
value of the pair correlation function (representing the
Pauli hole) in the present formulation.

In our case it is, however, not necessary to make the
Hubbard approximation, in evaluating the integral (20) .
The evaluation of the integral is rather lengthy but can
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Tmzx I. Values of y.

10 20

0.4561 0.4894 0.5107 0.5261 0.5378 0.5471 0.5715 0.5986

limG(q) =-', (23)

and
limG(q) =s(q/qr)'. (24)

The Hubbard approximation given by Eq. (21) is cor-
rect in the former limit, but gives

be done exactly. The result is

G(q) =—
I

—
I

24 —+44+I —
I

9 (q&'[ 2 qr ' t'qi'
32 (qri 105 q EqFi

qr 8 (qr)' 4 1 (q)' q+2q»—2 ——
I

—
I

—+-I —
I

q 35 &qi 15 6 Eqri q 2q—F

——ln, . (22)
1'q ' 1 (q ' 2 q' —4qr'-

Eq~ 210 kqz 15 q'

From this the two limiting cases follow:

tion of phonon frequencies. Different forms of G(q)
have been used by various authors. Sham's and Vosko
et a/. "have used slightly modified forms of the Hubbard
G(q) reported in Eq. (21). Toya rs on the other hand,
has used the expression (24) for all wave vectors up to
q'= (8/3) qr', and unity otherwise.

y =—(2qr)
—' LS(q) —1]dq. (27)

IV. LONG-WAVELENGTH LIMIT

A. Plasma Dispersion

The dielectric function (14) in the limit q~0 and co

Gnite has the form

s(q, ~) =1—(~~'/~') L1+(9/5) (qlq»)'
—~(qlq )'7+", (26)

where ~p= (arse'/m)"', qrr' ——(4me'/xS') qr, and

limG(q) =-', (q/qr) '
q-+0

instead of Eq. (24) . In Fig. 1, the Hubbard factor (21)
is compared with the result (22). Since the two curves
are very nearly the same, one does not expect to And
large discrepancies between integrated properties cal-
culated by either formula.

The effective potential f(q),
~(q) =(4-"/q') Ll-G(q) 7, (25)

In the present formulation the quantity p has to be
determined from S(q) evaluated self-consistently. Since
p is an important quantity and occurs often in the
present calculations, its values for diferent values of
r, are given in Table I. On the other hand, in the
Hubbard case y has the value ~ if determined from
Eq. (21') or the value s- if determined from Eq. (24).
In the RPA, &=0. From Eq. (26) follows the plasma
dispersion relation:

enters the effective ion-ion interaction in the calcula-
~, q =re, 1+ 9 10 ——',p qrr qr '

q qrr '+" ~ .
0.5

0,4

0.3

0.2

O. l

1

0 ' I 3
q/qr

Fro. 1. G(q) versus q/qr in the Hartree-Fock approximation.
Curve a is based on Hubbard's approximation [Eq. (21)g and
curve b on Eq. (22).

(28)

It is interesting to note that for r,)5, to~(q) is initially
decreasing as q increases in both the Hubbard and the
present theory.

In Fig. 2 are given the plasma frequencies as a func-
tion of q for a few values of r„asevaluated from the
zeros of the dielectric function (14), with S(q) deter-
mined self-consistently as discussed in the following
section. 'Xhe difference between these curves and those
obtained from the Hubbard dielectric function is quite
small, amounting to about 3% for r, =6; whereas the
difference from the RPA values reaches as much as
10% at this value of r, . The decrease of &o„(q) with
increasing q becomes significant at r, = 10. In this case

"L.J. Sham, Proc. Roy. Soc. (London) 4283, 33 (1965).
9 S. H. Voto, R. Taylor, and G. H. Keech, Can. J. phys. 43f

1187 (1965).
~ T. Toya, J. Res. Inst. Catalysis, Hokkaidq Qgz. p,

(1958);6, 183 (1958);7, 60 (1959).



SINGWI, TOSI, LAND, AND S JOLANDER 176

I.24

I.22

I.20

I~ I8

I.I 6

I+I 4

I.I 2

Iel 0

comparison of the theory with experiment, it must be
borne in mind, however, that the computed values of y
are probably much too large, as is indicated by the
violation of the compressibility sum rule discussed in
the following section.

B. Compressibility

The dielectric function (14) in the limit q—&0 at
zero co has the form

408

eL i+06
3
~ Io04

3
I.02

lime(q, 0) =1+ (qi p/q)'
1—p qipz qip

From the compressibility sum rule one finds

Z'i,„/J=1 y(q&, /—qi )',

(29)

(30)
I.OO

0.98

Oe96

Oe94

Oe92

0.90—

0.88

Oo86—

0.2 ' 0.6
q/qF

0.8 I.O

FIG. 2. Plasma dispersion curve for various values of r,. Each
curve ends near the onset of the pertinent particle-hole continuum.

the plasma frequency reaches its minimum value for
q=0.7k', and then increases again. This decrease be-
comes even more pronounced at r, =20. Thus, as the
density is decreased, sufficient short-range correlations
are present in the system that it requires less energy
to excite a collective mode in which the electrons are
to some extent localized than to excite a collective
mode of infinite wavelength. The decrease in co„(q) is
in fact qualitatively similar to the decrease of the
longitudinal optical mode in the electron solid. In any

where E&„,is the compressibility of the noninteracting
gas. It turns out that the compressibility, when calcu-
lated from Eq. (30), is negative for r, &3 in both the
Hubbard and the present theory. It is worth pointing
out that the values of the compressibility calculated
from the sum rule are different from those calculated
from the second derivative of the ground-state energy
(see Sec. Vl. This inconsistency, which occurs also in
the RPA, arises from the fact that Eq. (30) represents
a lower order of approximation to the compressibility.
More generally, diGerent values for the Landau short-
range interaction parameters are obtained from an ap-
proximate transport equation such as Eq. (6) (in the
inacroscopic limit) than from the functional differenti-
ation of the approximate energy expression. This in-
consistency is characteristic of all perturbation theoretic
calculations.

V. CALCULATIONS

A. General Formulas and Self-Consistency
Requirement

The real and the imaginary parts of the Lindhard'
free-electron polarizability Qa(q, ~) are

q' 5 2q i e0 —2q+q'

Imgo(q, ru) =xi' (~'a)/g),

t&—
q t &—2q —

q 1+(4q) ' 1—
I -+2q-q j'

co+2/ —
g

(31)

=&im(~'/q ) (1 L(co q')/2qj2} I 2q q'
I

+co+2q+q'

=0, s)& 2q+q' (32)

where a& is expressed in units of Sqp'/2m, q is expressed in units of qi, and ~' =qi r'/qi '. In the same units, Eq. (15)
becomes

3 q' t'eI Ree(q, (a) —'
Imle(q, (o)] 'do&+- —,I

2 K ( (307 (g~p(g)

G(q) = —— q"L~(q') —1j 1+
3 ", , f q' —q'2 q+q'
4 I 2q'q q

—q'

The self-consistency condition (2) can be written as

3 ~9+9

~(q) =-
271

Q

(33)

(34)
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where we have written explicitly the contributions of
the single-particle excitations and of the plasmon exci-
tations to the structure factor.

Starting from the known expression of S(q) in the
Hartree-Fock approximation, G(q) was calculated by
Eq. (33) and the result was inserted in Eq. (14), which
was then used to recalculate a&„(q) from the zero of
e(q, ~) and S('q) by Eq. (34). After the initial two
iterations, the average of the structure factors obtained
from the two previous iterations was used as input for
each subsequent iteration. About 10 iterations were
necessary to obtain convergence in G(q) within 0.1%.
This implies on closer inspection a much higher accu-
racy in S(q). It was checked that alternative starting
points Lin particular, the assumption S(q) = 1) lead to
the same final result.

I.O

0.0060

-0.5

"0.68

- I.O

-I.33

I.O—

Fro. 4. Pair-correlation function g (r) versus
qgr for r, =3 and r, =4.

0.5

O.II

-0,16

0.5-0.53

ration (up to rkr~l). We may also note that our
value of g(o) for r, =1 is in close agreement with that
of Ueda" Lg(o) =0.22, as recalculated by Hedin'j, who
used a Green's-function approach valid at small r, .

For large values of r, g(r) exhibits an oscillatory
behavior, which is not displayed in the 6gures. How-
ever, the oscillations have a very small amplitude and
are very broad. This amplitude increases with r„but
even at r, =6 the first peak (at re =4.2) has a value

Fro. 3. Pair-correlation function g(r) versus
q~r for r, =1 and r, =2. I.O—

B.Pair-Correlation Function

(35)

The pair-correlation function g(r) is given by

3 CG

g(r) =1+— q(sinqr) (S(q) —1]dq,
2r p

where r is expressed in units of qp '. The self-consistent
values of S(q') obtained as mentioned above were used
in Eq. (35) to calculate g(r). The results are shown

graphically in Figs. 3—5 for values of r, of interest. For
comparison the corresponding curves obtained in the
Hubbard approximation and in the RPA are also given.

The most important point to notice is that in the
present theory g(r) remains positive for all values of
r, up to r, =4, whereas for values of r, &4 our calcu-
lated values of g(r) become negative for very small
values of r but are so small that for all practical pur-
poses they may indeed be considered to be zero. Thus
in the entire region of metallic densities, including the
heavy alkali metals, the aesafs (4) is proved to be
reasonable. On the other hand, the previous theories
give a pair-correlation function which not only is nega-
tive and large for r=0 over the metallic density range,
but also remains negative over a sizable range of sepa-

0"0.02

-0$
$7I

-0.92
- I.O

-I.5

-I.70

-2.0

Fro. 5. Pair-correlation function g(r) versus
qpr for r, =5 and r, =6.

"S.Ueda, Progr. Theoret. Phys. (Kyoto) 26, 45 (1961).
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TanLs II. Correlation energy (Ry/electron) .

10 20

Present theory
Hubbard
Nozieres-Pines
RPA

—0.124
—0.131
—0.115
—0.157

—0.092
—0.102
—0.094
—0.124

—0.075
—0.086
—0.081
—0.105

—0.064
—0.076
—0.072
—0.094

—0.056
—0.069
—0.065
—0.085

—0.050
—0.064
—0.060
—0.078

—0.036 —0.022

of only 1.013. This result is in agreement with the re-
sults reported by GaskelP' for his variational calcula-
tion.

The behavior of the pair-correlation function in the
electron liquid is therefore very different from the be-
havior to which one is accustomed in classical liquids.
In the latter, g(r) exhibits a very pronounced, narrow
peak followed by secondary peaks. This is understand-
able, since, in contrast to classical liquids, in the elec-
tron liquid the interparticle potential is very soft and
quantum eGects disfavor localization of the particles.
A similar effect" occurs in liquid He', where, in spite
of the very hard character of the potential, the erst
peak in g(r) is much smaller and broader than that in
classical liquids.

Ke have also evaluated the pair-correlation function

up to r, =20. It is gratifying to note that, even for
such larger values of r„g(o) is never smaller than
—0.05. This gives us some con6dence to estimate the
correlation energy of the gas at low densities by the
present method (see Sec. VI). The height of the first
peak in g(r) is only 1.04 at r, =20.

C. Correlation Energy

The interaction energy per particle is given by

E'-~(r.) = Z (2w"/~') I ~(q) -1j, (36)

which, in the notation introduced previously, is

E; g(r, ) = —(4/wr, ) (9w/4) '~sp(r, ) Ry. (3'/)

It is easily seen that the Ferrell condition'3 on the
ground-state energy, which is equivalent to

(d/dr, ) LE;.&(r.) /r, g(0, (38)

is satis6ed with the values of y given in Table I.
The total energy per particle is given by

2.2099 ' dP
E,= Ry+ —E;.,() ), (39)r2 A

where ) is a parameter representing the strength of the
interaction. Equation (39) can be rewritten as

2.2099 4 (9n.) '~'
p (r,) dr, Ry (40)

r,' rrr, ' & 4 J

» Y. Narahara, J.Phys. Soc. Japan 24, 169 (1968).
» R. A. Ferrell, Phys. Rev. Letters 1, 443 (1958).

and the correlation energy per particle is given by

TsnLs IIL Cohesive energy of the alkali metals (kcai/mole')

Li Na Cs

Present theory

Nozieres-Pines

Experimental

—36.0 —23.9 —19.9 —17.8 —17.6
—38.1 —26.4 —22.6 —20.6 —20.4
-38.4 -25.9 -21.5 -19.5 -18.7

In the calculation of the theoretical cohesive energy, we have taken
the values of the kinetic mass and of B,on adopted by D. Pines and P.
Nozihres, Ref. 24. The theoretical values in the second row differ slightly
from those given in Ref. 24. The experimental values are taken from G. N.
Lewis and M. Randall, Thermodynamics (revised by K. S. Pitzer and
L. Brewer) (McGraw-Hill Book Co., New York, 1961); Appendix 7.

s4D. Pines and P. Nozieres, The) Theory of Quantum& F/uzds
(W. A. Benjamin, Inc., New York, 1966), Vol. I, p. 333-336.

&sE„„=, ———(fs.)'I'y(r, )+0.9163 dr, Ry. (41)
fs p X

Using our computed values of 7(r,), the correlation
energy has been evaluated from Eq. (41) and the re-
sults are given in Table II. For the sake of comparison
the corresponding values of the correlation energy in
the RPA and in the Hubbard approximation and those
of Nozieres and Piness are also given. The values of
Gaskell' are quite close to those given by Hubbard and
by Nozieres and Pines.

It is important to note that the present estimates
of the correlation energy are smaller than earlier esti-
mates, because the correlation at small distances is no
longer overestimated. The deviation becomes as large
as 20-30% at r, =6

Following the procedure discussed by Nozieres and
Pines, '4 we have reevaluated the cohesive energy of
the alkali metals under the assumption that the cor-
relation energy is the same as for the electron gas on
a uniform positive background. In Table III, the val™
ues of the cohesive energy calculated on the present
theory are compared with those calculated by Nozieres
and Pines and with the experimental values. It is seen
that on the whole the values of Nozieres and Pines are
closer to the experimental values. However, it should
be noted that the polarization of the electron gas by
the discrete ions will tend to increase the magnitude
of the cohesive energy.
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D. Compressibility

The thermodynamic definition of the compressibility
yields the expression

j ' ) ' ) ' I
' tl

I
I

f 4 )'~s d'Es 2 dEe
Er, /J =l —

l
~sr,'

&9s.j dr.' r, dr,

which may be rewritten as

(42)

t 4 t
issr, ( 4 t, , lid

I,9+j e. (9sj ( dr, ' r, dr, j
(43) -0.10—

~ ~ I
I I

SOL10

TA'BLE IV. Ratio of compressibilities K&, /K.

Present theory
Hubbard
Nozieres-Pines
RPA

0.83 0.64 0.45 0.25 0.05 —0.17
0.83 0.65 0.46 0.26 0.06 —0.15
0.83 0.65 0.46 0.27 0.07 —0.15
0.83 0.64 0.45 0.24 0.03 —0.19

The first two terms in Eq. (43) represent, respectively,
the contributions from the free-gas kinetic energy and
from the Hartree-Fock exchange energy, while the last
term represents the contribution from the correlation
energy.

In Table IV are given the values of the compressibil-
ity for various values of r„ascalculated from Eq. (43)
by different theories. It is important to note that the
compressibility becomes negative in all cases for r, &5.
The electron gas on a uniform background becomes,
therefore, unstable for values of r, larger than 5,
in the sense that an infinitesimal fluctuation in the
density would lead the system to Qy apart. In fact,
the correlation contribution to the compressibility
is small compared with either of the Grst two terms
in Eq. (43). Therefore, the occurrence of the in-

stability, although not its precise location, is deter-
mined by the vanishing of the two leading terms at
r, 6, and is essentially independent of the approxi-
mation involved in the estimation of the correlation
term. It is apparent from Table IV that all the existing
theories of electron correlations give essentially the
same values for the compressibility as a function of r„
even though the corresponding pair-correlation func-
tions are widely diferent.

VI. WIGNER SOLID

We have seen in the foregoing section that the elec-
tron liquid becomes unstable for r, &5. One might think
that the liquid would undergo a transition to the solid
state, first discussed by Wigner, "when the instability
occurs. In fact, the available theories predict that this
is not so. First of all, as Van Horn' has shown using

~ "0.12—

+ -O.14—

-0.16—

-0.18-I2
1 i 1 t 1 i

'1
i 1

-4 0 4 8

P {IO s Ry. /Bohr volume)

FIG. 6. The quantity r, and the chemical potential p versus pres-
sure for the electron liquid and the electron solid.

the energy of the electron solid. evaluated. by Carr et cl.,sr

the solid itself becomes unstable at r, =6.4, because its
compressibility becomes negative. On the other hand,
the liquid is stable and its chemical potential is lower
than that of the solid for all values of the pressure at
which the solid is stable. This is illustrated in Fig. 6.
The foregoing analysis then suggests that the liquid-
solid transition could not occur. One would arrive at
the same conclusion if one were to use the expression
for the correlation energy given by Nozieres and Pines.

An interesting aspect of the Wigner solid, which
might have some astrophysical significance, has been
discussed recently by Van Horn. ss One deals here with
a liquid or a solid of protons on a neutralizing back-
ground of electrons at such high densities (occurring
in white dwarf stars) that the electrons can be treated
as noninteracting. In contrast to the electron liquid
discussed above, the system is now stabilized by the
electron background. Since the diGerence in density
of the solid and the liquid phases of the proton system
at the transition is very small, as pointed out by Van
Horn, the equilibrium condition of the two phases after
linearization reduces to the condition that their energies
be equal at the same density. The contribution of the
background to the equilibrium condition cancels, and
it is sufhcient to consider the energy of the proton solid
and that of the proton liquid as functions of r„which,
except for a trivial change of units, are given by the
corresponding energies of the electron system on a uni-
form background.

xn Fig. 7, we have plotted the energy of the electron
solid and that of the liquid as functions of r, . The

"E.P. Wigner, Trans. Faraday Soc. 34, 678 (1938).
2"H. M. Van Horn, Phys. Rev. 157, 342 (1967).

%.J.Carr, Jr., R. A. Coldwell-Horsfall, and A. E. Fein, Phys.
Rev. 124, 747 (1961).
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range of metallic densities. It marks a de6nite improve-
ment over the expressions given by the earlier theories.
One is, therefore, encouraged to use this dielectric func-
tion for the calculation of metallic properties. The pres-
ent dielectric function leads to more effective screening
of the bare potential than that given by the dielectric
functions of the earlier theories, and consequently one
expects an enhancement in the piling up of induced
charge on a foreign charge. It appears that this will
lead to an improvement in the theoretical results for
the annihilation rate of positrons and for the phonon
frequencies at large wave vector in the alkali metals.
These questions, besides others, are now being investi-
gated in detail.

FIG. 7. Ground-state energy Ep per particle versus r, for the
electron liquid and the electron solid.

former has been evaluated from the formula given by
Carr et al'. ,

' and the latter has been obtained from the
present theory of the electron liquid. It is seen that
the transition from the liquid to the solid occurs at
r,~20. However, the shapes of the two curves near
the crossing are so close that, in view of the uncertain-
ties of the calculation, the critical r, may be uncertain
by as much as 20%. In view of this uncertainty, the
good agreement between our value of the critical r,
and that given by Van Horn (r, =22) must be con-
sidered as accidental. The density of the proton system
at which the transition occurs is given by

APPENDIX

The equation of motion for the field operator P, (x, t)
in the presence of an external potential U', (x, t) is

Lit)t(o)/clt) —h(x) —U, (x, t) jP.(x, t)

C(x—x")p(x", t)It. (x, t)dx"=0, (A1)

where h(x) includes the kinetic-energy operator and
the interaction with the background, and p (x, t) is the
density operator. The equation of motion of the density
matrix (f,t(x, t)P, (x', t) ) is then

L
—iS(c)/o)t) —h(x)+h(x') —V, (x, t) iV, (»', t) j

p = (3/4rrrx') Mo(Moe'/5') '&

where Mo is the proton mass. For r, =20 one 6nds

p=2X10' g/cm'.

(44)

d»"LC (x—x")—C (»' —x")j
(45)

X Q t(x, t) p(x", t)P, (x', t) ). (A2)

bg. t(x, t)lt. (x', t) )i5
8V, (x", t")VII. CONCLUDING REMARKS

This gives the highest density at which the solid-state
model' for calculating the proton-proton reaction rates Using the relation"
in a model white dwarf star can be used.

In this paper we have attempted to show that our
expression of the dielectric function for an interacting
electron gas, which includes the eGect of short-range
correlations, is a reasonable one to use in the entire

= (TfP,t(x, t) It.(x', t)P(x", t") f )
—(f,t(x, t)It, (x', t) )(p(x", t") ), (A3)

Eq. (A2) may be rewritten as

bg.t(x, tt)1(.(x', t+)), „b(f.'(x, t )lt. (x',t))-
8V, (x", t) &V,(x", t)

(A4)

where t+=t~o. We have thereby isolated the RPA term. Instead of asking how the density matrix varies with

"R.A. Wolf, Phys. Rev. 13't& B1634 (1965).
"See, for instance, L. P. Kadanoff and G. Baym, Quantum Statisticat illechanics (W. A. Benjamin& Inc. , New York, 1962).
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respect to the external potential we consider its variation relative"to the average density (p, (x, t) ), using the
relation

t')Q"'(» t)0"(x' t)) g d d
&8"'{»t)0'(x' t)) &()("(x t))

SV,(x", t) . S(p. (x,, t,)) SV,(x", t)
(AS)

Here @re assume, as is conventional, that there exists a one-to-one correspondence between the variation in th.e
external potential and the induced average density. Using Eq. (A3} for x=x in Eq. (AS}, and substituting the
result in Eq. (A4}, the latter becomes

where

f-ih(8/Bt}-k(x)+h(x') V—,lg(x x 0 t )+V ff(x', x, 0; t )g(f,t(x, t)()t, (x', t))=0, (A6)

Vx(x, x', x; f+) = )'.(x, t) + g f dx"4(x —x")(X. (x", t) )

with

&»Q"'(x, t+)f.(x', t') )X i&+ 2 dxidt — ' '
(X... (xt&, x"l) —'I]), (A))

xl $ n

P'4- (xx, ti)t" (x", t) ))
gx~x» Xytgx X

(((). (xg, tg) )(p."(x",t) )
' (AS)

The effective potential obtained in Eq. (A7) is non-
local in character and depends on time, as one would
expect. It is important to notice, however, that it con-
tains the normalized density-density correlation func-
tion def(ned in Eq. (A8), which reduces, in the absence
of the external 6eld and when t~=t, to the usual equi-
librium static pair-correlation function.

The simplest approximation for the functional deriv-
ative entering Eq. (A7) consists in assuming that

(A9)

This assumption makes the eGective potential local
and reduces the density-density correlation function
in Eq. (A7) to the pair-correlation function. From the
de6nition of the Wigner distribution f,(R, p; t),

,(R, p; t)

expiry

r ~ R ~r, t R—-', r, t dr, A10

it is apparent that the above assumption amounts to

neglecting the change in the velocity distribution as
the mean density is varying. If one further replaces
the pair-correlation function by its equilibrium value
in the absence of the external field, the effective field
goes over to that given in Eq. (8) of the text.

Mathematically, the assumptions discussed above are
equivalent to a truncation of hierarchy of Green's-
function equations, which, in the notation of Baym and
KadanoG, ~ may be expressed as

V(1—3)G2(13-, 23+) =$(1—3)G(3, 3+)G(1, 2).

(Aii)

Here, 6 and 62 are the one-particle and the tvvo-particle
Green's functions in the presence of the external poten-
tial, V is the bare interaction potential, and P is the
Fourier transform of f(q). It can be shown that this
approximation con6rms to the criteria" which guarantee
that the conservation laws are satisfied.

A possible improvement of the present theory vrould
consist in adopting the free-electron value for the func-
tional derivative entering Eq. (A7). We hope to take
up this question in a later paper.


