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We give a simple microscopic description of the surface modes of a Gnite high-density electron liquid.
The random-phase approximation is reduced to a second-order difFerential equation with a surface solution
at the expected frequency. We discuss the excitation of the surface plasmons, and also describe the analogous
modes of systems with a short-range interaction.

I. INTRODUCTION

i 1HZ phenomenon of surface plasma oscillation has.. been discussed semiclassically by Ferrell and Stern, '
and by Ritchie, ' and more recently has been treated
microscopically by Fedders. ' It is our purpose here to
give a microscopic description of the surface plasmons,
which is based on the random-phase approximation
(RPA) as is the work of Fedders, but which is more
general in that approximations are introduced at a
later point, and which is considerably simpler, in that
lengthy algebraic manipulations are completely avoided.
The RPA is ultimately reduced to a second-order
differential equation plus small corrections, and the
surface plasmon is shown to be a solution with the
expected frequency.

We discuss the excitation of surface plasmons
through inelastic electron scattering. And Gnally we

study the analogous surface mode for a system with a
short-range interaction.

II. RANDOM-PHASE APPROXIMATION

The dynamics of the electron gas at high density is
described exactly by the random-phase approximation,
or time-dependent self-consistent Geld equations. The
electrons move against an isotropic background of very
heavy positively charged particles. And thus the energy
of the system is given by

E= d'x d'x'II —(P/2nt) B(x—x') jp(xx')

+("/2 I*—*' I)L (*)— (*))L ( ') — (*')jI (')
where p(xx') is the single-electron density matrix,
n(x) =—p(xx) is the average electron density, and

n&(x)/Z is the density of ions, Z being their charge.
Exchange terms have been neglected in writing Eq. (1).
The charge neutrality of the system implies that

h(xx') =BE/Bp(xx'). Thus we have from (1),

s(gx') = —(p/2m)+ f s'x" (e'/~ x—x" ))

XLh(xx") p(x"x') —p(xx")h(x"x') j, (3)

or in matrix notation, iBp/Bt=tch, p$. This equation
describes both the ground state and the excitations of
the electron gas. The ground state is static, and is
therefore the solution to I h, p7=0. Thus in the ground
state h and p may be simultaneously diagonalized. Let
))t, satisfy

where

L
—V'/2m+ Vsr(x) —(e,3P.(x) =0, (4)

re(*) = f ~'*" ("/I ~—~" I) L~'"'(*")—&a(&"))

and e+i is the ground-state electron density. Clearly h
is diagonal in the f, representation if n(x) =n(e)(x).
The ground-state density matrix is then simply

p"'(xx') = Z8(e~ —~.)0"(*)0"'(x')

which is diagonal in the s representation too. We have
defined 8(x) =1, if x)0, and 8(x) =0, if x&0. The
Fermi energy c& is determined by the condition that
the total number of electrons

d'x p(xx).

XLn(x") —ns(x") 18(x—x'). (2)

The self-consistent Geld equation is then

it(Bp(xx')/Bt j= dx"

d'xLn(x) —n~(x) ]=0.

The single-electron Hamiltonian is deGned by
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Clearly I h, pj=0 is satisfied with the choice (6), for
p& ), and E is minimized within the symmetry constraint
that no more than one particle occupy each state.

Weakly excited modes of the system are described
by linearizing Eq. (3) . We have thus
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and in the second term have made explicit use of Kq. (12) for the f„(s). This latter term of Kq. (16) is further
reduced using completeness, integration by parts where necessary, and using Eq. (17) once again. We thus obtain
simply d'), dn0 d

(nu0'q/27re')()q (qS(0) = dS'e 0~' *'~ n()(S') q' —
~

l)p(qS'(0) —,—,()p(qS'(0)
d'z") dh' dz'

(18)

(nu0'q/2s. e') (&q (s) = ds'e-0~ ~—*'~n, (s')

&&Lq'~() (s')+q sgn(s —s') (d/«') &0 (s') 3 (21)

For simplicity suppose that

n0(s) =n„(—s), (22)

j..e., that the electron density is uniform below z=0 and
drops sharply to zero at the surface. This is a reasonable
approximation if the behavior of by right at the surface
is not too important. We shall return to this point.
Using Eq. (22) in (21) we see that for s(0,

0
(nu0'q/2se'n )()00(s) =q' ds'e — *-*'

()q (s')

0

+q e 0~ *'~ sgn(s —s') (d/ds') by(s'). (23)

Integrating the last term by parts we obtain

(nu00q/2s e'n ) l)(0 (s) = 2qb(0 (s) qb(0(0) e0—', (24)

so clearly ()&p(s) =8&p(0)e0* and (00=2sn e'/(u=-'(0'
just as in the approximations of previous authors. For
s)0 we see that hp(s) =8y(0) e 0*, as expected.

For a more realistic density distribution n(0)(s), a
closed-form solution to Eq. (18) has not been obtained.
However, it would not be dificult to obtain a numerical
solution using the equivalent diB'erential equation (20) .
We note in passing, that if n(0) (s) had been chosen to
represent a slab of Rnite thickness rather than a semi-

Equation (18) may, however, still be reduced further.
We note that

(d'/«'). —
~

-*')=q"- )-')-2qr(s —s').

Thus Kq. (18) is equivalent to the differential equation

f (tn(00/2s e') —
2n0 (s) g (d'/ds' —q') l)(0 (qs(0)

—2(dn0/ds) (d/ds) 8(0(qs(0) =0, (20)

together with boundary conditions, which may be
satished implicitly by substituting solutions of Eq.
(20) into (18) and requiring satisfaction of the latter
equation.

We see immediately that if e& &=constant, we get
ordinary plasmons and (00=(0~0=4m.e0n(0)/m. To find
the surface plasmon solutions requires more work,
however. Integrating by parts, it is easy to see that
Eq. (18) reduces to

(ui(0)
)
fg(1)f

~

ui(0) )
(ui"'

I f I
ui'" )

(27)

This result depends on the hypothesis that the eigen-
functions of Z(0) and 2()+2(') are in one-to-one cor-
respondence, which should certainly be true if

~

Xi") j&&

~

Xi(0) ~. In our case, of course, 2 0) corresponds to the
piece of the kernel of Eq. (13) that was retained, and
4&'~ corresponds to the rest.

infinite one, we would have obtained from Eq. (18) the
expected modification of the surface plasmon energy
due to "interference of the surf@,ces."This is a straight-
forward exercise.

We also remark that the approximation of electron
bound in a well with in6nitely high walls at the edges,
used by Fedders, ' has been completely avoided in the
present work. This approximation, which apparently
leads to the correct surface plasmon energy, neverthe-
less suHers from an ambiguity, namely, whether or not
one is to include the self-energy corrections in the
particle propagators. In the present method this
ambiguity is automatically resolved, and the "tedious
labor" of the older method is avoided, besides.

V. LANDAU DAMPING OF SURFACE PLASMONS

In order to estimate the correction to bp(s) due to
the term in Eq. (15) that was neglected, we must
formulate a perturbation method. It is convenient to
start from Eq. (13), which is completely equivalent to
(15). Equation (13) may be written formally. as

Z f n(')(q(0) = n(')(q(d) (25)
where

f, (ss') = (2~e'/q) -
e) 0I(

and 2 is a Herrnitian kernel. In order to define a
perturbation theory we write the auxihary equation

2,„ f,ui h~(q(d) ui, —— (26)

which reduces to Eq. (13) if X)=1. For fixed q and
~ a complete set of Ng's can be de6ned; the condition
X((q(0) =1 is then the dispersion relation for the lth
mode.

The advantage of Eq. (26) over Eq. (25) is that in
the former we readily see how to carry out a perturba-
tion theory for ), and can thus readily obtain successive
approximations to the dispersion relations of the various
modes. In particular, if Z=Z(0)+2('& and g(0)fui(0) =
Xi( )ui( ), we have immediately that X&='Ai(0)+)(1('&+ ~ ~

and
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In our formal notation let v& ——fN&. The v& satisfy We have
fZv~=)()v(, which is the formal version of Eq. !14).In
terms of the e~"& we have Imp(l)—

Note that

!v((())
i

gO)
i

v(((0)
y, (&)—

(v((())
( f &)

—v)(()) )
(28) P ((Ae' —(du+((a

—«)) —~ ((An' —«)~((e+(0) 7

f, '(»»') = (42re2) 'Pq2 —(d2/«2) 7()(»—»'). (29)

This ansatz satisfies the requirement that

(30)

).(') = 22m„e2/mv2 (31)

for the surface wave. (Note that the normalization
constant

=q/22re'. )
We obtain also

as can be seen using Eq. (19).
It is now straightforward to compute X~0& for the

surface plasmon, and to study the modification in its
propagation due to Z&'~. Assuming the square density
profile (22), we obtain v(= e 2~'(, and

The 8 functions in Eq. (33) require either f„org„
or both to be bound-state wave functions. Suppose P„
is a bound state. In order that one of the 8 functions
contribute, for co large, it is clear that f„must be a
state high in the continuum. Thus (u„k„'/2mand
p„.~exp(ik„.»)/(22r)'/2, and the sum on n' is actually
an integral. The matrix element must be treated with
some care. Suppose e/e'; then

= lim
«-»0

«4'*(»)f (»)(e "*—e "*)
which has an explicit limit, zero, as g

—+0. Now if e is a.

bound state, it cuts o8 the integral at about 2'=0,
But if e' is high in the continuum the spatial dependence
of P„is much slower than that of P„.. And thus we have

0

M„„'=lim «exp(ik„») (e2~ e2*)—
g-»0 co

2%8
),0)—

/OP

X d~ ~ 8 ~~a ~~t'~ 32

=q/(k„'—iqk„.) q/k„,2. (34)

We now substitute into Eq. (33). The sum on bound
states is converted to an integral for a "semi-infinite"
system. We obtain

This correction term is expected to be small for small q
and large ~, on the ground that when ((d„—+„.)2 is
large enough to be comparable to cv', the matrix
element ff„f„*e')') has fallen off considerably, and
conversely when ((d„—«) )' is small enough for the
matrix element to be large, the denominator is also
large because of the large cv', and the numerator,
((A„.—(A+,„)', is small besides.

Because of our use of the sharp density profile, we
expect to overestimate M'& somewhat. If e ~~'~ were
replaced by a smooth function of s, the matrix element
would fall off considerably more rapidly as («) —«)„~)2
increases.

It is particularly interesting to evaluate Imago~,

which enables us to compute the Landau damping of
the surface plasmon. This damping, small in the present
case, completely dominates the dispersion relation for
the low-frequency surface waves of semi-infinite liquid

k2& k'
X

2mj 2m

q2

j k„'

VI. COUPLING TO SURFACE PLASMONS

= ( e' 2rqn/—2 /'m "co"'). (35)

Neglecting the real part of Xo~ we have

X= (2 2re2n/nuo2) I 1—Li2rq/8 (2m«)) "'7+ ~ ~ ~ I, (36)

which yields the dispersion relation

@2= («) 2/2) I 1—[j2rq/2)2/4(mg ) &/27+ ~ ~ ~
I (37)

Thus for long wavelengths the damping is rather small,
but more important than the next real correction to
co~ which varies as q'.

'He; and as a result their propagation is not observable. '
The excitation of surface plasmons is particular]. y

easy to treat within the formalism we developed to

(N.Y.) 48, 369 (1968). carry out perturbation theory.
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where K& normalizes
~

u&). And the density-density
response function is therefore

X((qo))K( '
S(q(o) = Q ~

up) (u& (.
1 ~t q&

(40)

In order to describe the inelastic scattering of high-
energy electrons it is sufhcient to use the lowest Born
approximation, in which case the rate of scatter from
incident momentum k into momentum k'+dk' is
given by

dk"
rstdQp = (2s/h) dQg

(2s) 5

In the notation of Eq. (25), the modification of the
equation of motion due to the introduction of a density
coupled external 6eld is simply

&.-l fe u'"(q~)+I'- t(q~) j=uo'(q~) (»)
This equation is solved by resolving it into solutions of
the auxiliary equation, (26). Thus,

~ K( 9,i(qco) (u( i V, t, (qa)) )

The low-energy modes of a system with an attractive
short-range interaction at its surface have been treated
elsewhere. 4 Here we discuss the high-energy modes of
a system with a repulsive interaction at the surface,
such as for example the nuclear system, in the isospin=
1 channel.

We simply replace the Coulomb interaction in our
equations by the vukawa force of strength g2 and range
a. Thus now

f (ss') =2s.g~ exp[—(q'+a ) (
s—s' ~]/(q'+a')'~ .

(45)

For long wavelengths q(&e and may be neglected. Thus

f.(ss') '-(2~g'/~) e 'I-'~ (46)

The above manipulations may be repeated, and at
high frequencies, Eq. (18) is simply replaced by

Ferrell and Stern, obtained without the use of a semi-
classical approximation.

VII. SYSTEMS WITH SHORT-RANGE
INTERACTIONS

d'xgd'x2d'xad'x4 I,.* xg I, xg v xg —x2 (mo'a/2~g') hq (qs~) = ds'e

XR(x~, xs, E'y 6p )~(xa x4)$&*(x4)P—I, (x4), (41)

where v is the Coulomb potential and

R(x, x'; e) = —(1/7r) ImS(xx'; e+ib) (42)

is the spectral function which is, as we see, given in
term of the density response function. For close to
normal incidence and not too large angular deRection
P& the electron-incoming and -outgoing states may be
taken as undistorted waves. (For reflection experiments
at close to grazing incidence, waves distorted by V~
must clearly be used, with careful attention to the fact
that the S matrix is given by (P& ~

PA+).) And Eq.
(41) may be reduced to

6tda= (2~A/5) dn

Im . , (43)(
—1& 1

x j 1 X,„,r(ye+i—8)

where A is the area of the slab, and where only the
surface plasmon contribution has been included in R
In the lowest approximation X,„,~=27re'u /m(&u+i8) .
Substituting this into Eq. (42) we obtain the differ-
ential rate of scattering into angle (8, y) as

u = (e'/m. 5n) [88'/(8'+8s') '$,

dSO d
X uo(s') q' , &v (qs—'~)—,—,&p(qs'~), (47)

d8 ds' dz'

which is again equivalent to a diGerential equation.
The assumption of the sharp density profile (22)
(which may not be such a good approximation here
because e ' the force range is of the same order as the
surface diffuseness) leads to a surface mode whose
spatial form q/a((1 is given by

8&0

(48)

The frequency of the mode is &u'=kg'e /3m. For the
nuclear system the 2'(isospin) =1 force has g'~50
MeV F, the inverse mass is m '=41 MeV F', and the
density is I 0.19 (particles) F '. Thus the energy of
the surface isospin wave should lie at around

~=[(4&/3) XSOX41X0.19]'l2 MeV 40 MeV (49)

for a semi-infinite nuclear system and at very long
wavelength. For a spherical nucleus, for a Gnite surface
diffuseness and a 6nite wavelength of course we wouM
expect the above number to be modiied. The dipole
resonance is experimentally observed in nuclei at
about 25 MeV.
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