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We give a simple microscopic description of the surface modes of a finite high-density electron liquid.
The random-phase approximation is reduced to a second-order differential equation with a surface solution
at the expected frequency. We discuss the excitation of the surface plasmons, and also describe the analogous

modes of systems with a short-range interaction.

I. INTRODUCTION

HE phenomenon of surface plasma oscillation has

been discussed semiclassically by Ferrell and Stern,?
and by Ritchie,? and more recently has been treated
microscopically by Fedders.? It is our purpose here to
give a microscopic description of the surface plasmons,
which is based on the random-phase approximation
(RPA) as is the work of Fedders, but which is more
general in that approximations are introduced at a
later point, and which is considerably simpler, in that
lengthy algebraic manipulations are completely avoided.
The RPA is ultimately reduced to a second-order
differential equation plus small corrections, and the
surface plasmon is shown to be a solution with the
expected frequency.

We discuss the excitation of surface plasmons
through inelastic electron scattering. And finally we
study the analogous surface mode for a system with a
short-range interaction.

II. RANDOM-PHASE APPROXIMATION

The dynamics of the electron gas at high density is
described exactly by the random-phase approximation,
or time-dependent self-consistent field equations. The
electrons move against an isotropic background of very
heavy positively charged particles. And thus the energy
of the system is given by

E= f Bx & ([— (V) 2m) 6 (5—a) Jo(a)

+(¢%/2 | x—2a' |) [n(x) —np(x) In(a') —ns(«) I}, (1)

where p(xx’) is the single-electron density matrix,
n(x)=p(xx) is the average electron density, and
np(x)/Z is the density of ions, Z being their charge.
Exchange terms have been neglected in writing Eq. (1).
The charge neutrality of the system implies that

/ &x[n(x) —np(x) ]=0.

The single-electron Hamiltonian is defined by
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h(xx') =8E/8p(xx’). Thus we have from (1),
h(xx') =—(V¥/2m)+ fd‘”'x" (e2/| x—'"|)

X[n(a") —np(a") Jo(x—2"). (2)

The self-consistent field equation is then
i[0p(xx’) /06]= f d"

X[ (') p(a"a”) —p (2’ ) (") ], (3)

or in matrix notation, 49p/d¢=[k, p]. This equation
describes both the ground state and the excitations of
the electron gas. The ground state is static, and is
therefore the solution to [, p]=0. Thus in the ground
state %z and p may be simultaneously diagonalized. Let

¥, satisfy
[— V% 2m+Va(x) —ws u(x) =0, 4

where
Vala) = [ @ (/] a=a" NIn® () =ns(a") ],
(%)

and #©@ is the ground-state electron density. Clearly %
is diagonal in the ¢, representation if n(x) =7 (x).
The ground-state density matrix is then simply

PO (xx') = D8(er—awa) s (®)¥a* (o), (6)

which is diagonal in the s representation too. We have
defined 0(x) =1, if x>0, and 0(x) =0, if x<0. The
Fermi energy er is determined by the condition that
the total number of electrons

N= / d*x p(xx).

Clearly [k, p]=0 is satisfied with the choice (6), for
p©@, and E is minimized within the symmetry constraint
that no more than one particle occupy each state.

Weakly excited modes of the system are described
by linearizing Eq. (3). We have thus

50 =[O, SO TH+[H®, 5], )
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where

1O (') = ( [ @ | x_“zx | nw(x")) s(x—a'). (8)

Fourier transforming the time variable and taking the
matrix element of Eq. (7) between states ¢, and v, we
reduce it to

[ (08’—08) /(w_wa'l'ws’)]hss'u), (9)

where 6,=0(er—ws). But £ depends only on p® (xx),
not on the full density matrix p® (xx'), so Eq. (9) is
conveniently expressed in coordinate space as

1D (&, ) = Dy () Yo * () pogr®

oot =

= Z’(os'_es) / (w—wstws) s () 0 €)

—a D n® (x”: "-’) ’

X / &' " * (o) o (27) (/| &
(10)
which is an integral equation in x, for #® (X, ).
III. SLAB GEOMETRY

For definiteness we choose a slab geometry for our
system. Then #z(x) =#5(2), which implies through
Egs. (4)-(6) that z©(x), is also a function only of z,
the coordinate perpendicular to the slab surfaces.

We see that

Vu(z)=¢ / &x'dd {[[(a—2') a2 ] 12—| & [}
X[nO (&) —ns(z) ], (11)

where the | &’ |~! term gives no contribution because of
charge neutrality and has been subtracted just to make
convergence in &’ explicit.

The wave functions y,(x) may now be written as

Yin (%, 3) =Yn(2) €%/ 2,
where

[—2mY(d*/dz*) + Vi (2) —wnn(2) =

The corresponding energies are thus win=w,+k/2m,
so Eq. (10) may be Fourier analyzed in the coordinate x

(12)

(go?/2me?) b (gaw) = = f d' e~ 1n® (") (q5 w)+ (2m) ! f

X /dz"[ W (7") = L

where in the first term we have used the fact that
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parallel to the slab. We obtain
a2k Opnr
(2m)?

- 0k+qn

Yn(2)¥n*(2)

n® (gaw) =
an! W wk+qn+wkn’

X / d7' A" * (3 on(3') (2mwe?/q) eI D (g2 ) .
(13)
Or, defining the fluctuation potential as
dolgm) = [ a2t/ et (g5,
we may rewrite Eq. (13) as
2me® &%k

( 27(') 2 nn! W— wk+qn+wlm’

okn’ - olc+qn

do(gaw) =
X f dg' 1=, (2 ) ¥ (&)

X [ a2 ¥ () bo(a0). (14)

IV. SURFACE PLASMONS

To see the appearance of surface plasmons, we
examine Eq. (14) in a high-frequency limit. That is,
we assume that terms in the kernel with (wpygn—wkn’)
comparable to w play little role, an assumption we check
at the end, and keep only the leading terms in 1/w?

With no approximation Eq. (14) may be rewritten as

(qzw) = 0k+qn)

X{ (wkﬂn—wkn:) ‘H: gt —wk+qn) 3/ (@t — Whqn) 2= w? ]}

X f 5 e, (2 ) ()

X [ d8a* (") o @) (15)

In lowest order we drop the term (Aw)3/[(Aw)?—w?].
But in the term we retain, the sums can be done
explicitly using the completeness of the y,. That is,
noting that wpign—Wkn'=wn—wnr+ (2kg+¢%) /2m, we
have

7= )22 Oonr—0) [ el () ()

dz'"? dz'"?

¢,,,,<z~>]a¢<qz~w), (16)

7



176

MICROSCOPIC THEORY OF SURFACE PLASMONS

553

and in the second term have made explicit use of Eq. (12) for the ¢, (z). This latter term of Eq. (16) is furth?r
reduced using completeness, integration by parts where necessary, and using Eq. (17) once again. We thus obtain

simply

(mata/ )0 ap) = [ i ene o) (= -2 bolar) — 2 ol |

Equation (18) may, however, still be reduced further.
We note that

(*/dg?) e 91> = el =2l — 295 (z—2').  (19)

Thus Eq. (18) is equivalent to the differential equation
[(ma?/2n6) —2mo(9) )@/ d— @) o (ga)

—2(dno/dz) (d/dz) 6 (gaw) =0, (20)

together with boundary conditions, which may be
satisfied implicitly by substituting solutions of Eq.
(20) into (18) and requiring satisfaction of the latter
equation.

We see immediately that if #©®=constant, we get
ordinary plasmons and w?=w2=47en®/m. To find
the surface plasmon solutions requires more work,
however. Integrating by parts, it is easy to see that
Eq. (18) reduces to

(muq/2me?) bo (2) = / dg'e1 == Iny(3")

X[g*oe(5) +q sgn(z—7) (d/d') s (2)].  (21)
For simplicity suppose that
ﬂo(?:) =nm('~z)7 (22)

i.e., that the electron density is uniform below =0 and
drops sharply to zero at the surface. This is a reasonable
approximation if the behavior of 8¢ right at the surface
is not too important. We shall return to this point.
Using Eq. (22) in (21) we see that for <0,

0
(muw?q/2nen.,) o (3) = / dé'e==15p(3")

—I—q/—0 e 97 ggn(3—2') (d/d7') o (5'). (23)

Integrating the last term by parts we obtain
(muq/2men..) b (3) = 2b0(s) — oo (0)ers,  (24)

so clearly é¢(2) =8p(0)er* and w?=2mne%/m=3w2
just as in the approximations of previous authors. For
2>0 we see that dp(3) =8p(0) €2, as expected.

For a more realistic density distribution #©®(3), a
closed-form solution to Eq. (18) has not been obtained.
However, it would not be difficult to obtain a numerical
solution using the equivalent differential equation (20).
We note in passing that if #©(z) had been chosen to
represent a slab of finite thickness rather than a semi-

2

an (18)

dz’? dz

infinite one, we would have obtained from Eq. (18) the
expected modification of the surface plasmon energy
due to “interference of the surfaces.” This is a straight-
forward exercise.

We also remark that the approximation of electron
bound in a well with infinitely high walls at the edges,
used by Fedders,® has been completely avoided in the
present work. This approximation, which apparently
leads to the correct surface plasmon energy, neverthe-
less suffers from an ambiguity, namely, whether or not
one is to include the self-energy corrections in the
particle propagators. In the present method this
ambiguity is automatically resolved, and the “tedious
labor” of the older method is avoided, besides.

V. LANDAU DAMPING OF SURFACE PLASMONS

In order to estimate the correction to d¢(2) due to
the term in Eq. (15) that was neglected, we must
formulate a perturbation method. It is convenient to
start from Eq. (13), which is completely equivalent to
(15). Equation (13) may be written formally as

eeqw fqn“) (‘Zw) = n(l) (qw) b

fo(ad') = (2me*/q) o=,

and £ is a Hermitian kernel. In order to define a
perturbation theory we write the auxiliary equation

Lo fettr="N1(qw) uz, (26)

which reduces to Eq. (13) if A;=1. For fixed ¢ and
» a complete set of #;’s can be defined; the condition
M(gw) =1 is then the dispersion relation for the /th
mode.

The advantage of Eq. (26) over Eq. (25) is that in
the former we readily see how to carry out a perturba-
tion theory for A, and can thus readily obtain successive
approximations to the dispersion relations of the various
modes. In particular, if £=£04-£Y, and £Of,®=
M@, @, we have immediately that Ng=A\@ 4O+ .,
and

(25)
where

(uz(") | f£(1)f| m(o))
(@ | f‘ ul“’))

This result depends on the hypothesis that the eigen-
functions of £© and £@+4£W are in one-to-one cor-
respondence, which should certainly be true if | \,® [«
| N\@ |. In our case, of course, £9 corresponds to the
piece of the kernel of Eq. (13) that was retained, and
£D corresponds to the rest.

AN =

(27)
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In our formal notation let »,=fu;. The v; satisfy
f&vm=N\m;, which is the formal version of Eq. (14). In
terms of the 9, we have

(0@ | £O | 9,®)

A 1) = .
! @ | f1]|9,®@) (28)
Note that
[ (z2) = (4ne?) [ (@*/dz?) Jo(s—2").  (29)
This ansatz satisfies the requirement that
[assir s =s6—a1, (30

as can be seen using Eq. (19).

It is now straightforward to compute \@ for the
surface plasmon, and to study the modification in its
propagation due to £®. Assuming the square density
profile (22), we obtain v;=¢~9%, and

NO = 27162/ mico? (31)

for the surface wave. (Note that the normalization
constant

1 )= [ ds ot (4met) L (/) Jeror

=q/2me?.)
We obtain also

AD = ZLez / Tk
(21r)

(ﬁkn’ - 0k+qn) (wlm’ - wk+qn) 8

(wkn' - wk+qn) I—w?

(32)

f 05 Yo () Y™ (5) €1

This correction term is expected to be small for small g
and large w, on the ground that when (w,—w,)? is
large enough to be comparable to «? the matrix
element [Ynn *e¢?#l has fallen off considerably, and
conversely when (w,—wn)? is small enough for the
matrix element to be large, the denominator is also
large because of the large «? and the numerator,
(Wknt—wryqn)?, is small besides.

Because of our use of the sharp density profile, we
expect to overestimate A® somewhat. If ¢~9# were
replaced by a smooth function of z, the matrix element
would fall off considerably more rapidly as (w,—wnr)?
increases.

It is particularly interesting to evaluate Im\®,
which enables us to compute the Landau damping of
the surface plasmon. This damping, small in the present
case, completely dominates the dispersion relation for
the low-frequency surface waves of semi-infinite liquid
3He; and as a result their propagation is not observable.

P. J. Feibelman, Phys. Letters 26B, 601 (1968); Ann. Phys.
(N.Y.) 48, 369 (1968).
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We have
T\ =+ (x%6/g) [ [P/ (25) T (O —Oorar)
L8 (@kn —kpgn—) — 8 (@t —wppgn ) ]
[ast@ur@en | 39

The 6 functions in Eq. (33) require either ¢, or ¢,
or both to be bound-state wave functions. Suppose ¥,
is a bound state. In order that one of the § functions
contribute, for w large, it is clear that ¢, must be a
state high in the continuum. Thus wn.~ok.2/2m and
Ynoexp (tkq:2) / (2wr) V2, and the sum on #' is actually
an integral. The matrix element must be treated with
some care. Suppose #7#'; then

Monst= f dz Yn*(3) Y () 7014l

—_-limfdz‘/,”*(Z)‘l,n,(z) (ealel —gealel) |

which has an explicit limit, zero, as ¢—0. Now if # is a
bound state, it cuts off the integral at about z=0.
But if #' is high in the continuum the spatial dependence
of ¥, is much slower than that of ¥,,». And thus we have
0
Mo ®lim | dz exp(ik,oz) (e22—et?)

>0 Yoo

= Q/(knﬂ—iqkn’),NQ/kn"z- (34)

We now substitute into Eq. (33). The sum on bound
states is converted to an integral for a ‘“‘semi-infinite”
system. We obtain

m2e?

Pk [ dka
Tm\ORs+ —

(2m)®J 2rx

k2 Enr? ¢
X [*2" (ff“ 'z;) g (3; “)] P

= (—mweny,q/252m3%52) . (35)
Neglecting the real part of A we have
A= (2metn,/me?) {1—[irq/8(2mew) V¥ ]+ - -},  (36)
which yields the dispersion relation
= (wp%/2) {1—[imq/ 25 (mep) 214+ -}, (37)

Thus for long wavelengths the damping is rather small,
but more important than the next real correction to
w? which varies as g2

VI. COUPLING TO SURFACE PLASMONS

The excitation of surface plasmons is particularly
easy to treat within the formalism we developed to
carry out perturbation theory.
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In the notation of Eq. (25), the modification of the
equation of motion due to the introduction of a density
coupled external field is simply

Loo[ fn® () +Vext (qw) 1= 1" (qu). (38)

This equation is solved by resolving it into solutions of
the auxiliary equation, (26). Thus,

where 9; normalizes |#;). And the density-density
response function is therefore

Ai(go) 942
S(ge) zz: 1—-Ni(qw) |
In order to describe the inelastic scattering of high-
energy electrons it is sufficient to use the lowest Born
approximation, in which case the rate of scatter from
incident momentum k into momentum k’4-dk’ is
given by

I 2 >) (39)

uz)(u; [. (40)

dk"?
(2m)5

RdQr= (2 /%) A B2

x[ﬁwmﬂmﬁa%ﬁmwﬂmwm—w

X R (%3, 233 ev—err) v(wa—20) Y™ () Y- (%), (41)
where v is the Coulomb potential and
R(x,x';¢)=—(1/7) ImS(xx’; e+18) (42)

is the spectral function which is, as we see, given in
term of the density response function. For close to
normal incidence and not too large angular deflection
¥r, the electron-incoming and -outgoing states may be
taken as undistorted waves. (For reflection experiments
at close to grazing incidence, waves distorted by Vg
must clearly be used, with careful attention to the fact
that the S matrix is given by {¥»— | ¢st).) And Eq.
(41) may be reduced to
2me?

dQ= (2w —_—
RAQ= (2w A/h)dQ . 2t

E2dk [ 2 ]2
(ks—k.)2+¢

X <_1) I 1 (43)
—)m—
T 1—Nsurt (quw+18)

where A is the area of the slab, and where only the
surface plasmon contribution has been included in R.
In the lowest approximation Asurt=2men.,/m (w+158)2
Substituting this into Eq. (42) we obtain the differ-
ential rate of scattering into angle (6, ¢) as

u=(e/r7iv) [00r/ (6>+05%)%],

where 0p=hwsu:t/2E, E being the incident electron’s
energy, and v its velocity. This is just the result of

(44)
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Ferrell and Stern, obtained without the use of a semi-
classical approximation.

VII. SYSTEMS WITH SHORT-RANGE
INTERACTIONS

The low-energy modes of a system with an attractive
short-range interaction at its surface have been treated
elsewhere.® Here we discuss the high-energy modes of
a system with a repulsive interaction at the surface,
such as for example the nuclear system, in the isospin=
1 channel.

We simply replace the Coulomb interaction in our
equations by the Yukawa force of strength g% and range
a. Thus now

fo(z) =2mg* exp[ — (¢+a?) | 2—2' |1/ (¢*+0) .

(45)
For long wavelengths ¢<<a and may be neglected. Thus
fo(38))—>(2ng?/a) e+, (46)

qla—->0

The above manipulations may be repeated, and at
high frequencies, Eq. (18) is simply replaced by

(me?a/2mg?) bp(gaw) = / dg'e—el=—2\

a? dny d

X [naa) (8- 375) deae) — T < solate |, 4
which is again equivalent to a differential equation.
The assumption of the sharp density profile (22)
(which may not be such a good approximation here
because ¢! the force range is of the same order as the
surface diffuseness) leads to a surface mode whose
spatial form g/a<1 is given by

z2>0
2<0.

Sp(gaw) =€,

=gtz (48)
The frequency of the mode is w?*=4mwgn,/3m. For the
nuclear system the 7'(isospin)=1 force has g2~50
MeV F, the inverse mass is m~1=41 MeV F?, and the
density is 7,~0.19 (particles) F3. Thus the energy of
the surface isospin wave should lie at around

w=[(4r/3) X50X41X0.197]2 MeVAr40 MeV  (49)

for a semi-infinite nuclear system and at very long
wavelength. For a spherical nucleus, for a finite surface
diffuseness and a finite wavelength of course we would
expect the above number to be modified. The dipole
resonance is experimentally observed in nuclei at
about 25 MeV.
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