Nuclear Magnetic Resonance in the Metal ReO₃: ¹⁸⁵Re and ¹⁸⁷Re Knight Shifts and Spin Relaxation Rates*

ALBERT NARATH AND D. C. BARHAM Sandia Laboratory, Albuquerque, New Mexico

(Received 9 August 1968)

The nuclear magnetic resonances (NMR) of 185 Re and 187 Re in ReO3 have been studied by pulsed-resonance techniques in the temperature range 1-4°K. The Knight shift, referred to aqueous NaReO4, is found to be $K = (-0.25 \pm 0.02)$ %. The spin-lattice relaxation rates are directly proportional to the absolute temperature, with $T_1T = 0.23 \pm 0.02$ sec °K for both isotopes. A comparison of these data with previous results for ¹⁸³W in the sodium tungsten bronzes Na_xWO_3 shows that the conduction-band states near the Fermi level are essentially identical in the two metals. The NMR results strongly support the view that these states are predominantly *d*-like.

I. INTRODUCTION

THE electronic properties of the transition-metal L oxide rhenium trioxide are very similar to those of the structurally related cubic tungsten bronzes.¹ All of these materials are metals with high electrical conductivities, which at room temperature are typically only one order of magnitude smaller than in copper. Since it is unusual for an oxide to be a good metal, many experimental and theoretical attempts have been made to elucidate the electronic structures of these metallic oxides. Although detailed information about the respective band structures is still lacking, the available evidence suggests that the conduction-band states at the Fermi level are derived principally from atomic d states of the transition element. In the case of the sodium tungsten bronzes (Na_xWO₃, where 0.4 < x < 1.0) this conclusion follows most directly from the results of detailed ²³Na and ¹⁸³W nuclear magnetic resonance (NMR) studies.²⁻⁵ These investigations have provided strong support for the tungsten $5d(t_{2q})$ conduction-band model first proposed by Sienko^{6,7} in which each sodium atom donates its single valence electron to a tungsten d band that is empty in the insulator WO₃. The sodium 3p band models of Mackintosh⁸ and Fuchs,⁹ on the other hand, were shown to be inconsistent with the NMR data. That the metallic character of Na_xWO_3 is not strongly dependent upon an admixture of sodium

- ² W. H. Jones, Jr., E. A. Garbaty, and R. G. Barnes, J. Chem. Phys. **36**, 494 (1962). ³ A. Narath and D. C. Wallace, Phys. Rev. 127, 724 (1962)
- ⁴ A. T. Fromhold, Jr., and A. Narath, Phys. Rev. 136, A487
- (1964). ⁵ A. T. Fromhold, Jr., and A. Narath, Phys. Rev. 152, 585 (1966).
- ⁶ M. J. Sienko, J. Am. Chem. Soc. 81, 5556 (1959); M. J. Sienko, in Nonstoichiometric Compounds, edited by R. F. Gould (American Chemical Society, Washington, D.C., 1963), Vol. 39,
- A. Ferretti, D. B. Rogers, and J. B. Goodenough, J. Phys.
 - ⁸ A. R. Mackintosh, J. Chem. Phys. **38**, 1991 (1963). ⁹ R. Fuchs, J. Chem. Phys. **42**, 3781 (1965).

states in the conduction-band states near the Fermi level was also demonstrated by the discovery that rhenium trioxide (ReO₃) is a good metallic conductor.⁷ Since rhenium has one more valence electron than tungsten, ReO3 is isoelectronic with Na_xWO3 in the limit $x \rightarrow 1$. The two crystal structures are also very similar, both being derived from the perovskite structure. The transition-metal cations are located at the centers of the cubic unit cells and the oxygen anions at the face centers. The sodium atoms in Na_xWO₃ are distributed over the corner positions which, of course, remain unoccupied in ReO3. The respective roomtemperature lattice constants are 3.86 Å ¹⁰ (x=1) and 3.75 Å.¹¹

In view of the above considerations one may argue that the band structures of Na_xWO₃ and ReO₃ should be essentially identical provided that the sodium atoms in the bronzes serve only as electron donors and have no appreciable effect on the lattice potential seen by the conduction electrons. Evidence for this conjecture has recently been provided by Feinleib et al.,1 who found that the optical properties of ReO₃ are quite similar to those of Na_xWO_3 . These authors were able to relate their ReO₃ reflectivity data to the SrTiO₃ band structure of Kahn and Lyendecker.¹² A qualitative fit to the experimental results was achieved by increasing both the width of the d bands as well as the strength of the spin-orbit coupling. These changes in the band parameters are consistent with the expected difference between bands derived from atomic 3d and 5d states. Because of the single conduction electron, the ReO₃ Fermi level is located in the $5d(t_{2g})$ manifold of the modified SrTiO₃ band structure.

The purpose of the present work was to carry out an independent comparison of ReO₃ and Na_xWO₃ based on NMR Knight shift and spin-lattice relaxation measurements. Our results for ¹⁸⁵Re and ¹⁸⁷Re in ReO₃ are

176 479

^{*} This work was supported by the U.S. Atomic Energy Commission.

¹ J. Feinleib, W. J. Scouler, and A. Ferretti, Phys. Rev. 165, 765 (1968).

¹⁰ W. R. Gardner and G. C. Danielson, Phys. Rev. 93, 46 (1954).

⁽¹⁾ K. Meisel, Z. Anorg. Chem. 207, 121 (1932); A. Magneli, Acta Chem. Scand. 11, 28 (1957).

¹² A. H. Kahn and A. J. Lyendecker, Phys. Rev. 135, A1321 (1964).

strikingly similar to our previous⁵ NMR results for ¹⁸³W in Na_xWO₃. Additional support is therefore provided for the view that the electronic energy bands in these metals are essentially identical and are predominantly *d*-like near the Fermi level.

II. EXPERIMENTAL METHODS

Two distinctly different samples¹³ of ReO₃ were investigated. One of these (henceforth referred to as sample A) was a powder of commercial origin and was known to be slightly nonstoichiometric. The second (sample B) consisted of small, mm-sized crystals that were grown by a vapor transport technique and that are believed to be quite stoichiometric. The crystals were reduced by crushing to a powder suitable for the NMR experiments (325 mesh). The room-temperature lattice constants of both samples, as determined by powder x-ray diffraction techniques,¹⁴ were found to be identical [a=3.7478(2)] Å, where the number in parentheses is the estimated uncertainty in the last quoted digit].

The NMR measurements were made on powdered samples in the temperature range 1-4°K by means of a phase-coherent crossed-coil transient spectrometer. Radio frequency excitation was provided by a 15-kW gated class-C amplifier. The experiments were carried out in the frequency range 30-40 MHz. After synchronous detection, the nuclear induction signals were usually stored in a Fabri-Tek Model-1062 1024-channel signal averager, which was used in conjunction with a Fabri-Tek Model-952 high-speed digitizer. This instrument vielded a 5-bit resolution of the signal amplitude at a maximum sweep speed of 1 channel/ μ sec. By utilizing a sufficiently large number of repetitive sweeps, the signalto-noise ratio could be improved sufficiently to make the experimental measurements insensitive to random errors. In some instances as, for example, in displays of resonance profiles as a function of external field strength, a PAR CW-1 boxcar integrator proved convenient.

Magnetic fields were produced by a compensated NbZr superconducting solenoid. Field strength determinations were based on NMR frequency measurements on ²⁷Al in aluminum metal at 4°K, for which the frequency-to-field (ν/H) ratio has been given as¹⁵

$$\nu^{(27)}(\text{metal})/H = 1.11120(2) \text{ kHz/Oe.}$$
 (2.1)

Knight shifts were obtained by comparing the experimental ν/H ratios of ¹⁸⁵Re and ¹⁸⁷Re in ReO₃ against published values¹⁶ for aqueous solutions of the reference compound NaReO₄. Resonance frequencies were determined from an analysis of the interference pattern produced by the nuclear and reference signals under off-resonance excitation. The zero-beat transmitter frequency was obtained from a linear interpolation of the interference versus reference-frequency data. This technique has the inherent advantage that the results are independent of the phase of the reference signal. The frequency measurements were carried out with the solenoid in the persistent current mode.

Spin-lattice relaxation times were determined in the usual way by observing the recovery of the nuclear induction signal following saturation by a comb of closely spaced rf pulses. Spin-spin relaxation times were based either on the free induction or spin-echo phasememory decays.

III. EXPERIMENTAL RESULTS

Transient NMR signals that could be attributed to ¹⁸⁵Re and ¹⁸⁷Re were detected in both samples of ReO₃. Identification of the observed resonances was based on the different natural abundances of ¹⁸⁵Re and ¹⁸⁷Re (37.1% and 62.9%, respectively), as well as the known ratio¹⁶ of the nuclear magnetic dipole moments ($\mu^{(187)}/\mu^{(185)}=1.010$). The experimental observations were greatly facilitated by the relatively short spin-lattice relaxation times that are a characteristic of metals at low temperatures.

The principal distinguishing characteristic of the two ReO₃ samples was the NMR linewidth. Because of the large electric quadrupole moments of both isotopes $(Q^{(185)} \approx Q^{(187)} \approx 3b, I^{(185)} = I^{(187)} = \frac{5}{2})$, the linewidths are expected to be quite sensitive to lattice strains. This is demonstrated in Fig. 1, which shows a spin-echo spectrum for sample A. The nonstoichiometry of this sample is reflected in severe inhomogeneous broadening of the nuclear resonances. The two relatively narrow central resonances can be assigned to the $+\frac{1}{2} \leftrightarrow -\frac{1}{2}$ transitions of ¹⁸⁵Re and ¹⁸⁷Re. The broad background is due to the satellite transitions which are spread over a field range of greater than 3 kOe by first-order quadrupole effects. The electric field gradients presumably arise from lattice

FIG. 1. Spin-echo spectrum of ¹⁸⁵Re and ¹⁸⁷Re in ReO₈ (sample A). The echoes were produced by two equal-width (30- μ sec) rf pulses having a 40- μ sec time separation.

¹³ Sample A was obtained from Alfa Inorganics, Inc., Beverly, Mass. Sample B was prepared by A. Ferretti, Lincoln Laboratory, MIT (see Ref. 7)

¹⁴ We are indebted to R. A. Trudo for performing the x-ray measurements.

¹⁵ A. Narath and H. T. Weaver, Phys. Rev. 175, 373 (1968).

¹⁶ F. Alder and F. C. Yu, Phys. Rev. 82, 105 (1951).

vacancies. The echo phase-memory times of the central transitions in this sample were found to be $\sim 600 \ \mu sec$ for 187 Re and \sim 720 μ sec for 185 Re. These relaxation times were obtained with two 30-µsec-wide rf pulses in external fields near 40 kOe. Somewhat shorter phase-memory times, $\sim 450 \ \mu sec$ and $\sim 500 \ \mu sec$, respectively, were obtained with pulse widths of 5 μ sec.

In contrast to sample A, the contribution of quadrupole interactions to the NMR linewidths in sample B was small, as evidenced by the fact that application of a second rf pulse following the decay of the free-induction signal in a uniform external magnetic field did not lead to the formation of an echo. The free-induction decay shapes were nearly exponential. The corresponding spin-spin relaxation times at 4° K were ~ 38 μ sec for ¹⁸⁷Re and slightly shorter for ¹⁸⁵Re. The absence of appreciable quadrupole broadening in sample B was verified by boxcar integrator measurements of the freeinduction decay amplitude as a function of external magnetic field strength. Only a single narrow resonance was observed for each isotope. These results indicate that crystals of ReO₃ having a high degree of perfection can be prepared by the vapor transport process.

Measurements of the ¹⁸⁵Re and ¹⁸⁷Re ν/H ratios yielded essentially identical results for the two samples as shown in Table I. The experimental values correspond to

$$\nu^{(187)}/\nu^{(185)} = 1.01007(5),$$
 (3.1)

which compares with the literature value¹⁶ of 1.01026(8). The small discrepancy may, at least in part, be due to a hyperfine structure anomaly in ReO₃. Also listed in Table I are resonance shifts K derived from the present data together with the known¹⁶ ν/H ratios in aqueous NaReO₄.

Because it was anticipated that it would be difficult to saturate the nuclear resonances in sample A, spinlattice relaxation measurements were only attempted for sample B. In the range 1-4°K the relaxation rates were found to be directly proportional to the absolute temperature with

$$T_1T = 0.23(2) \sec {}^{\circ}K.$$
 (3.2)

No significant differences between the T_1T values for the two isotopes were detected. For a magnetic hyperfine mechanism the relaxation rates are proportional to

TABLE I. Summary of Knight-shift data for ¹⁸⁵Re and ¹⁸⁷Re in ReO3. Values in square brackets are for sample A and refer to the central transitions; all other values are for sample B.

	v(metal)/H (kHz/Oe)	v(reference)/H (kHz/Oe)	K(%)
¹⁸⁵ Re	0.95615(4) [0.9563(4)]	0.95846(9)ª	-0.24(1) [-0.23(2)]
¹⁸⁷ Re	0.96578(2) [0.9660(2)]	0.96829(9)ª	$\begin{bmatrix} -0.26(1) \\ [-0.24(2)] \end{bmatrix}$

⁸ Reference 16.

		K(%)	$\gamma_n^2 T_1 T$ (10 ⁶ sec ⁻¹ °K Oe ⁻²)
Na _z WO ₃ ,	$ \begin{array}{c} x = 0.56 \\ 0.65 \\ 0.73 \\ 0.81 \\ 0.89 \end{array} $	$\begin{array}{c} -0.16(2)^{a} \\ -0.18(2) \\ -0.18(2) \\ -0.19(1) \\ -0.20(1) \end{array}$	$18.9(9)^{b}$ 16.8(8) 12.4(6) 9.0(4) 8.4(4)
ReO ₃		-0.25(2)	8.4(7)

^a Reference 3.

^b Reference 5.

the square of the respective gyromagnetic ratios, $\gamma_n =$ $\mu/I\hbar$. These differ by only $\sim 1\%$ for the rhenium isotopes and the relaxation rates are therefore expected to be indistinguishable within the indicated experimental uncertainty.

IV. DISCUSSION

The observation of linearly increasing spin-lattice relaxation rates with increasing temperature provides evidence that the observed 185 Re and 187 Re resonance shifts and spin-lattice relaxation rates are dominated by magnetic hyperfine interactions with the ReO₃ conduction electrons. Electric quadrupole interactions with the conduction electrons are not expected to contribute significantly to the relaxation rates because the ratio Q/μ is insufficiently large.¹⁷ Quadrupolar interactions cannot contribute to the resonance shifts because of the cubic symmetry of the rhenium sites in ReO₃.

The present results for K and $\gamma_n^2 T_1 T$ appear to be essentially identical to our earlier results^{4,5} for the cubic sodium tungsten bronzes. This is demonstrated in Table II. It is clear that any reasonable extrapolation of the tungsten data to x=1 gives a normalized spinlattice relaxation rate which differs only slightly from the rhenium relaxation rate.

A comparison of the Knight-shift data must be carried out with greater caution than is necessary for the relaxation data because of possible uncertainties in the magnitudes of the tungsten and rhenium nuclear moments. The accepted values of these moments were obtained from NMR measurements on suitable "nonmagnetic" compounds. Unfortunately, the NMR technique often leads to overestimates of nuclear moments because of paramagnetic shielding effects associated with temperature-independent (Van Vleck) orbital paramagnetism. For example, it was demonstrated recently,¹⁸ on the basis of ENDOR experiments on the $Mn^{2+}(^{6}S)$ ion in various host crystals, that the ^{55}Mn moment is $\sim 0.5\%$ smaller than obtained previously from NMR measurements on permanganate ions. The

¹⁷ Y. Obata, J. Phys. Soc. Japan **19**, 2348 (1964). ¹⁸ W. B. Mims, G. E. Devlin, S. Geschwind, and V. Jaccarino, Phys. Letters **24A**, 481 (1967).

Van Vleck susceptibility of the MnO₄⁻ complex ion responsible for this large paramagnetic shielding correction was estimated to be $\chi_{VV} \sim +70 \times 10^{-6}$ emu/mole. (This was obtained by subtracting a diamagnetic core contribution, $\chi_{dia} \sim -50 \times 10^{-6}$ emu/mole, from the experimental magnetic susceptibility of KMnO₄, χ_{expt} ~ $+20\times10^{-6}$ emu/mole.) Since rhenium belongs to the same group of the periodic table as does manganese, the magnetic properties of the ReO_4^- ion are expected to be similar to those of the MnO_4^- ion. The magnetic susceptibility of KReO₄ has been reported¹⁹ to be $\sim -30 \times 10^{-6}$ emu/mole. Combining this value with an estimated core contribution of $\sim -70 \times 10^{-6}$ emu/mole yields $\chi_{\rm VV} \sim$ $+40 \times 10^{-6}$ emu/mole for the perrhenate ion, which is approximately half as large as the corresponding term in the permanganate susceptibility. On the other hand, the effective orbital hyperfine coupling constant which relates the paramagnetic shielding constant to χ_{yy} may be twice as large for ReO_4^- as for MnO_4^- . It follows that the ¹⁸⁵Re and ¹⁸⁷Re nuclear moments may be in error by the same amount as was found for ⁵⁵Mn. The ReO₃ Knight shift may therefore be positive. Although its correct value cannot be determined from the available information it seems certain that it falls in the range $-0.25 < K(\%) \leq +0.3.$

The probable error in the ¹⁸³W moment is somewhat smaller. The measured magnetic susceptibility²⁰ of the WF₆ reference compound,²¹ $\chi_{expt} \sim -53 \times 10^{-6}$ emu/ mole, gives evidence that the Van Vleck susceptibility is not as large for this complex as was inferred above for the ReO₄⁻ ion. The fact that the paramagnetic shielding correction for WF_6 is relatively unimportant can also be seen from the trend in the 183W Knight shifts4 in Na_xWO_3 with increasing x value. The observed change in |K| is in the same direction as that of the electronic specific heat.²² The Na_xWO_3 shifts are therefore most likely negative.

Despite the uncertainties in the actual Knight shifts, the similarities between the NMR results for Na_xWO_3 and ReO₃ remain. Both metals are characterized by rather rapid nuclear spin-lattice relaxation rates and relatively small Knight shifts. The arguments that were used previously⁵ in support of a d-band model for Na_xWO_3 would therefore seem to apply also to ReO_3 . However, because of the possibility that the rhenium Knight shift might be positive, it is important to consider alternative conduction-band models for ReO₃. For example, it might be argued that an s-p band model is most realistic for rhenium trioxide in view of the fact that the effective mass ratio inferred¹ from the optical

data is near unity. As shown below, however, such a conclusion is inconsistent with the NMR data.

For a nearly free-electron conduction band, which serves as a useful description for bands derived from atomic s and p states, the principal hyperfine coupling mechanism is the contact interaction. Its magnitude is proportional to the fractional s character or, more specifically, to the amplitude of the conduction-electron wave function at the nucleus, averaged over the Fermi surface. In the independent-electron approximation the contact Knight shift²³ and associated spin-lattice relaxation rate²⁴ are given, respectively, by

$$K = (2/|\gamma_e \hbar|) H_{\rm hfs}{}^{(s)}\chi, \qquad (4.1)$$

$$T_1^{-1} = 2hk_{\rm B}T\gamma_n^2 [N(0)H_{\rm hfs}^{(s)}]^2, \qquad (4.2)$$

where $H_{\rm hfs}^{(s)}$ is the effective contact hyperfine field per electron, χ is the conduction-electron spin susceptibility, $k_{\rm B}$ is Boltzmann's constant, and N(0) is the bareelectron density of states at the Fermi level. These expressions may be combined to yield the well-known Korringa relation²⁴

$$K^2 T_1 T = (\gamma_e / \gamma_n)^2 (\hbar / 4\pi k_B).$$
 (4.3)

It should also be noted that the contact shift is intrinsically positive. Combining the experimental spin-lattice relaxation time (3.2) with the Korringa relation (4.3)leads to a Knight-shift estimate of +0.47% which is larger than the upper limit estimate given above. The disparity becomes even larger when the effects of electron-electron interactions are taken into account, since these tend to increase the Korringa product K^2T_1T relative to the independent-particle prediction (4.3)^{25,15} In the alkali metals this product is enhanced by approximately 60%.15 The same factor applied to ReO₃ increases the predicted contact Knight shift to +0.60%.

The inconsistency of the s-p band model can also be demonstrated by a direct calculation of K and T_1 . As a crude estimate of the hyperfine field we take the atomic 6s hyperfine field of rhenium²⁶ and reduce it by $\sim 50\%$ to make allowance for the effects of wave-function distortion and reduced s character of the conduction-band states near the Fermi level. This yields $H_{\rm hfs}{}^{(s)} \sim +7 \times$ 10⁶ Oe. Furthermore, we assume a parabolic band occupied by one electron per atom having an effective mass equal to the free-electron mass, as suggested by the optical data. Combining the resulting values of χ and N(0) with the hyperfine-field estimate according to (4.1) and (4.2) yields K = +2.3% and $T_1T = 0.009$ sec °K. The disagreement between these predictions and our experimental results falls far outside the uncer-

- T. Moriya, J. Phys. Soc. Japan 18, 516 (1963).
 ²⁶ L. Armstrong, Jr., and R. Marrus, Phys. Rev. 138, B310 (1965).

¹⁹ C. M. Nelson, G. E. Boyd, and W. T. Smith, Jr., J. Am. Chem.

 ²⁰ H. Selig, F. A. Cafasso, D. M. Gruen, and J. G. Malm, J. Chem. Phys. 36, 3440 (1962).
 ²¹ M. P. Klein and J. Happy, Bull. Am. Phys. Soc. 6, 104

^{(1961).} ²² R. W. Vest, M. Griffel, and J. F. Smith, J. Chem. Phys. 28,

^{293 (1958).}

 ²³ C. H. Townes, C. Herring, and W. D. Knight, Phys. Rev. 77, 852 (1950).
 ²⁴ J. Korringa, Physica 16, 601 (1950).

tainties inherent in the analysis. Inclusion of possible electron-electron enhancement effects would again make the disparities worse. It should also be noted that ReO₃ undoubtedly has partial ionic character. The contact hyperfine field should therefore be larger than was assumed above. It is possible that p core-polarization contributions (if negative) could reduce the Knight shift by a small amount; the relaxation rate, however, can obviously not be reduced by the addition of noncontact hyperfine interactions. In order for the s-p band model to have any validity for ReO₃ the fractional rhenium s character would therefore have to be unreasonably small. Alternatively, the results might indicate a large admixture of oxygen states near the Fermi level. Although it cannot be rejected on the basis of our data, this possibility does not seem likely.

The above arguments lead to the immediate conclusion that the ReO₃ conduction-band states in the vicinity of the Fermi level have strong d character. A d-band model can account in a plausible way for the small s character which is required to explain the spinlattice relaxation data. Moreover, the core-polarization and orbital-interaction mechanisms introduced by the d admixture do not contribute as effectively to relaxation as does the contact mechanism because the relevant *d*-hyperfine fields are typically one order of magnitude smaller than the direct contact field. The d-spin and *d*-orbital relaxation processes are further inhibited by interference effects which arise from the orbital degeneracy of the d states.^{27,28}

The *d*-band model is also consistent with the small Knight shift observed in ReO₃. Qualitatively, the experimental value can be attributed to partial cancellation between positive s-contact plus d-orbital shifts and a negative d core-polarization shift. Such cancellation also explains the small magnitude of the Korringa product.

A quantitative partitioning of the shift and relaxation data is unfortunately not possible because the magnitudes of the various hyperfine coupling constants cannot be estimated with sufficient accuracy. It is nevertheless obvious that the NMR results are at least in qualitative agreement with the ReO₃ band structure proposed by Feinleib et al.¹

Finally, one may compare the measured values of T_2 with the predicted dipolar linewidths. The calculated dipolar second moments²⁹ of the ¹⁸⁵Re and ¹⁸⁷Re reso-

nances are 0.43 and 0.52 Oe², respectively. The corresponding free-induction decays should have nearly Gaussian shapes with relaxation times $T_2^{(185)} \sim 360 \ \mu \text{sec}$ and $T_2^{(187)} \sim 320 \,\mu \text{sec}$. The experimental spin-spin relaxation times for sample B are one order of magnitude shorter. In addition, the relative magnitudes for the two isotopes are reversed. The most obvious sources of the additional broadening are indirect (i.e., conductionelectron coupled) exchange interactions^{30,31} between unlike isotopes, and pseudodipolar interactions³¹ among like as well as unlike isotopes. The exchange contribution is larger for ¹⁸⁵Re because of the greater isotopic abundance of ¹⁸⁷Re. This may account for the observation that $T_2^{(185)} < T_2^{(187)}$. In sample A the severe inhomogeneous broadening produced by quadrupole interactions makes T_2 dependent on the amplitude of the rf driving field.³² In our experiments only the central transitions were irradiated. As a consequence, spin-spin interactions with the $m \neq \frac{1}{2}$ levels are not expected to affect strongly the phase-memory time of the $+\frac{1}{2}$ $-\frac{1}{2}$ spin echo. The experimental observations for sample A are clearly in accord with this prediction.

V. SUMMARY

The present study has yielded strong evidence that the conduction bands of the metals ReO_3 and Na_xWO_3 are very similar. The NMR data for both metals are distinguished by spin-lattice relaxation rates that are slower than predicted for a nearly free-electron s-pconduction band, but are faster than predicted from the observed Knight shifts using the Korringa relation. The small magnitude of the Knight shifts indicates the presence of a negative hyperfine term. It may be concluded, therefore, that the conduction-band states, at least near the Fermi level, possess strong d character. This conclusion is in full accord with the interpretation offered by Feinleib et al.1 for their ReO3 optical-reflection data.

ACKNOWLEDGMENTS

The authors wish to thank Dr. I. Feinleib for several stimulating and informative discussions. We are also indebted to him for providing us with the two samples used in our work. We are especially grateful to A. Ferretti for the preparation of the ReO₃ crystals (sample B).

²⁷ Y. Yafet and V. Jaccarino, Phys. Rev. 133, A1630 (1964).
²⁸ Y. Obata, J. Phys. Soc. Japan 18, 1020 (1963).
²⁹ J. H. Van Vleck, Phys. Rev. 74, 1168 (1948).

³⁰ M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954)

³¹ N. Bloembergen and T. J. Rowland, Phys. Rev. 97, 1679 (1955)³² B. G. Silbernagel, M. Weger, W. G. Clark, and J. H. Wernick,

Phys. Rev. 153, 535 (1967).