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signal and frequency conversion have been discussed
also. Here, intuitively expected results are studied by
the symmetrical formulation proposed.

The success of the symmetrical formalism depends
on the feasibility of evaluating (3) and (4) by means
of x ordering; it is intuitively plausible. The arguments
presented, although lacking mathematical rigor, have
demonstrated and justified the validity of this pro-
cedure in dealing with traveling waves propagating
along a unique forward direction. It is interesting to
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note that not only the parametric interactions con-
sidered here deal with waves traveling forward in a
unique dimension, but most experiments in coherent
nonlinear optics are in this situation.
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Estimates of the spin-lattice coupling constants of an Fe3* ion in the host crystal MgO have been made.
There are only two independent coupling constants Cy; and Cy in the simple case of a cubic lattice. Various
possible mechanisms contributing to the coupling constants in the point-charge model have been in-
vestigated. It has been shown that the Blume-Orbach mechanism is the dominant one among the mechanisms
considered. The next most important contribution arises from the spin-spin interaction mechanism proposed
by Pryce. The other mechanisms which we have considered are found to give an entirely negligible contribu-
tion to the coupling constants. The combined point-charge contributions arising from all the mechanisms
are, in units of 10718 cm/dyn, Cn (point-charge) = +-2.11 and Cy(point-charge) = —3.06, as compared with
the experimental results, in the same units, Cu(expt) =26 and Cu(expt) =—35.5, due to Feher. Also,
the estimated overlap contributions to Cy and Cy are found to be an order of magnitude less than the
point-charge contributions. Finally, some suggestions have been made in order to bring the theoretical
results into better agreement with the experimental results.

I. INTRODUCTION

T has been shown earlier'? that the zero-field split-
ting parameters D and E occurring in the spin
Hamiltonian

Hs=D[3S2—S(S+1)I+E(S2—S (1)

can be explained reasonably well in the case of Mn?t
contained in ZnF; and MnF,. The effects of the crystal
fields at the site of the paramagnetic ion Mn?** in the
host lattice and the overlap due to the ligand ion wave
functions were taken into account. It was concluded!
that the dominant contribution arose from the Blume-
Orbach® (BO) mechanism, which involves the first-
order matrix element of the axial and rhombic fields,
and second-order matrix elements of the spin-orbit
interaction between excited quartet states which have
been admixed into one another by the presence of the
cubic field. The next most important mechanism was
shown to be the spin-spin mechanism* (Pryce mecha-

1R. R. Sharma, T. P. Das, and R. Orbach, Phys. Rev. 149, 257
(1966), hereafter referred to as I.

2 R. R. Sharma, T. P. Das, and R. Orbach, Phys. Rev. 155, 338
(1967), hereafter referred to as IL.

3 M. Blume and R. Orbach, Phys. Rev. 127, 1587 (1962).

‘M. H. L. Pryce, Phys. Rev. 80, 1107 (1950); A. S.
Chakravarty, J. Chem. Phys. 39, 1004 (1963); R. Orbach, T. P.
Das, and R. R. Sharma, in Proceedings of the International

Conference on Magnetism, Notiingham, 1964 (The Institute of
Physics and the Physical Society, London, 1965), p. 330.

nism), linear in both spin-spin interaction and axial or
rhombic crystal fields. The Orbach-Das-Sharma mecha-
nism* (ODS) and the Watanabe mechanism!5 in the
presence of cubic field (WC) follow the spin-spin
mechanism in decreasing order of importance. The
overlap contributions were also investigated? and found
to be important.

The agreement between the theory and the experi-
mental results for Mn** has prompted the analysis of
the various mechanisms for Fe* present in different
crystal symmetries. In this paper, the example of Fe3+
situated in the host crystal MgO distorted by an uni-
axial stress is considered. The undistorted MgO crystal
has a cubic lattice, and therefore by symmetry both D
and E parameters vanish. However, one can create a
noncubic environment about the paramagnetic-ion
(Fe**) site by applying uniaxial stress, and therefore
obtain nonvanishing parameters D and E. When the
parameters D and E are expressed as linear functions
of the applied stress, there are only two independent
constants® of proportionality in the simple case of a
cubic crystal. These are spin-lattice constants Cy and
Cu. Experimental results are available for these con-

® H. Watanabe, Progr. Theoret. Phys. (Kyoto) 18, 405 (1957).

8 G. D. Watkins and E. Feher, Bull. Am. Phys. Soc. 7, 29
(1962); N. S. Shiren, ibid. 7, 29 (1962); E. Feher, Phys. Rev. 136,
Al145 (1964).
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stants in the case of MgO:Fe* under stress from the
studies of Watkins and Feher, Shiren, and Feher.®
Stresses along the [001] direction in order to compute
Cy and along the [1107] direction to compute Cy may
be considered. For these two cases the rleations between
Cn and Cy and the parameters D and E appearing in
Eq. (1) are given by Feher.® When the stress X’ is
applied along the [001] direction, the relations are

=3CuX’,
E=0;

and for the stress X’ along the [1107] direction, these

are
- %CHX ,7

—3CuX'.

Thus the parameters D and E for a known stress X’
can be used to obtain the spin-lattice constants Cy
and Cu.

As mentioned above, the first case (X’ along [001]
direction) may be used to determine D (or Cu) and
the second case (X’ along [110] direction) to determine
E (or Cu). Both the point-multipole and overlap
models are taken into account. The various mechanisms
(BO, spin-spin, ODS, and WC) which contribute to D
and E are analyzed. For purposes of calculation it is
assumed that the elastic constants around Fe*t are
the same as for the pure MgO lattice, and that the
distortion around the Fe*t ion due to the applied stress
is the same as in pure MgO under the same stress.

In the following section, the point-multipole contri-
butions to D and E are analyzed for MgO:Fe?*t under
stress. The overlap contributions are considered in Sec.
IT1. The last section is devoted to the discussion of our
results, and some suggestions are made in order to
improve the theoretical situation.

II. POINT-CHARGE CONTRIBUTIONS TO DAND E

General expressions for D and E for Blume-Orbach
(BO), spin-spin (Pryce), ODS, and Watanabe with
cubic field (WC) mechanisms in the presence of axial
and rhombic crystal fields have already been derived.!
However, for the sake of convenience, they are listed
in Appendix A. Since, from calculations, it is found that
the contributions Dops and Dwc are negligible, similar
contributions to £ should also be negligible. Hence,
the expressions for Eops and Ewc are not presented in
the Appendix here.

The evaluation of the contributions from the BO,
ODS, and WC mechanisms [[as evident from the expres-
sions (A1), (A2), (A13), and (A16)] requires the
knowledge of the coefficients e, B;, vi, and the eigen-
values A;. These are determined by diagonalizing the
4T’y matrix in the presence of the cubic field.! For Fe3t,
taking the energy values” E(‘G) =0.320X 10°, E(*P) =

7 Charlotte E. Moore, Natl. Bur. Std. (U.S.) Circ. 467 (1949).
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0.351X105, and E(*F)=0.521X10% in units of cm™
relative to the 8§ level, the values of a;, 8, vi, and A;
for 10Dg=16 000, 17 000, and 18 000 cm™ are listed in
Table I.

Using Table I, the parameters pua, pos, and pay
defined in (AS) can now be calculated. The calculated
values for 10Dg=18 000 cm™ are found to be

Paa=3.749X 10~5 cm,
Pap=—0.303X 10~ cm,
bay=1.963X 105 cm. (2)

The expressions from spin-spin and ODS mechanisms
[Egs. (A6)-(A9), (A11), (A13), and (A14)] involve
the integrals g™, han™, and (e | 7% | 4ai®),
and these require the perturbatlon functions #g,,®,

2-aY, and #4,,%. These functions are obtained by
employing Numerov’s method® and Watson’s Hartree-
Fock solution® #4° of the 3d wave function for Fe**+ and
integrating the differential equations (A12) numeri-
cally. The numerical solutions for #4.,?, z.40, and
#a»,"V so obtained are plotted in Fig. 1. The values of
ga-™t3 and kgt for required values of # and 7
are, then, calculated and listed in Table II. The values
obtained for other integrals (u|7?|us.,®), are in
atomic units,

(ud | 7| 4gss® )=1.5557,
(| 7| t12.4®)=0.4960,

(ud" I 7 i u.z.,,,(l)>=0.4520. (3)

TasiE I. The values of az, 8;, vi, and A; for the Fe3* jon.

4A; (em™)
. measured
¢ a; Bi v from 85
10Dg=16 000 cm™
1 0.706 0.506 —0.494 45 116
0.640 —0.159 0.752 18 297
0.302 —0.847 —0.437 55 787
10Dg=17 000 cm™
1 0.692 0.545 —0.473 45 494
0.641 —0.164 0.750 17 328
0.331 —0.822 —0.463 56 378
10Dg=18 000 cm™!
0.678 0.580 —0.452 45 828
0.642 —0.168 0.748 16 358
0.358 —0.797 —0.487 57 014

8D. R. Hartree, The Calculation of Atomic Structure (John
Wiley & Sons, Inc., New York, 1957), p. 71.

‘R. E. Watson, Massachusetts Institute of Technology
Technical Report No. 12, SSMT Group (unpublished).
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TasirE II. The quantities gg.»"** and &q."*3. Integrals not required are not given.

n g d_”'n.n+3 h d_”n,n+3 Zd dn,n—Hi h d dn,n+3 g d_'”n.n-Hi h d-»g"’"+3
0 o —0.18537 —0.15985 —0.09987 0.04236
2 —0.13035 —0.08457 —0.06499 0.00912 0.01824
4 0.01093

The various contributions to D and E (in units of cm™) for Fe*" in terms of the crystal-field components can

be written as follows:
Dyo=4.6578(By)’,
Dgg(d—s) =—0.0131BY,
Dgs(d—d) =—0.1261BY,
Dgs(d—g) =—0.0213B%,
Dss(total) =—0.1605B5,
Dops=0.5312(Byr)?,
Dwo=—1.2090(B)2.

In deriving the above expressions, the following values
were used: =400 cm™, Apg=3.85X10* cm™ for the
energy’ of the %D level relative to the 6S state; the
values (2) for the parameters pua, pas, Pay, the integrals
ga»t"8 and kg, 13 from Table IT, and the calculated
values of (#2)=1.1500 and (7*)=2.7894 in atomic units.
The crystal fields (B#)’ and (B2) in (4) are in units
of €2/2a¢%, and By® and B.? are in units of €2/2a¢®, @, being
the Bohr radius.

When the stress is applied along [001] direction of
the crystal, E is zero by symmetry and D can be deter-
mined from (4) if one knows (B4£)’ and By. In evaluat-
ing (BY)’ and By® we assume that the elastic constants
around the paramagnetic impurity ion are the same as
in the pure host lattice, and that the distortion around

{1
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F1G. 1. Plot of #4.s®, %3.a®, and ug.,,® for Fest,
All quantities are in atomic units.

Ego=—17.6746B2,
Egs(d—s)=—0.0119B2,
Egs(d—d) =—0.00694B2,
Egs(d—g) =—0.0258B2,
Egg(total) = —0.0446B2.

(4)

it due to the applied stress is the same as in the pure
lattice. In other words, the lattice relaxation due to
the presence of the impurity ion has not been taken into
account.

For stress along the [001] direction, the strain com-
ponents €., ey, and e,, are given by )

_ C12X ’
(en—cw) (cut2cr) ’

Crx = Cyy =

o= (cutecw) X’
7 (en—ocuw) (cut-2cm)

where ¢ and ¢;2 are the two elastic constants for a cubic
crystal. For MgO lattice these arel

e11=29.54X 10" dyn/cm?,
c12=8.49X 10" dyn/cm?. (6)

It can be seen with the help of (5) and (6) that in
MgO, the stress X’ =600 kg/cm?=0.5886X 10° dyn/cm?
along [001] gives rise to the strain components

&)

e =6y, =—0.5103X 10~*
and

e,,=2.2859X 1074, ©)

The change in the dimensions of a unit cubic cell is
given by
Ax=Ay=ae,.=aey,
Az=ae,,,

(8

where ¢ is the dimension of original cubic cell, which in

the case of MgO is 4.203 A. Thus, the new cell dimen-

10 A. L. Schawlow, A. H. Piksis, and S. Sugano, Phys. Rev. 12
1469 (1961). ’ ' ¢ ve. Rev- 122,
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{100)

F1c. 2. Positions of the nearest-neighbor O2?~ jons around
Fe3+ jon for stress along [001] direction, and the disposition of the
crystal axes X, ¥, and Z.

sions, if denoted by @', &', and ¢, become
d=a(1+ey) =V,
d=a(1+e..). 9)

The crystal-field components can now be calculated
for this distorted lattice. The explicit expressions for
(BY) and (By)’ in units of €/2as® and ¢2/2a¢°, respec-
tively, are given by*

B20 = qu(s C052®j— 1>/R]3,
J
(B‘io),: (B40)nc_a(B44> ney (10)
with

(B no=122_¢;(35 cos'®;—30 cos?®,4-3) /R,
J
(Bif)no=3(70)123_g,[sin'®; cos(4®) I/ R,
3
o= (B40> c/ (B44) )

(B4°)c=:}2qj(35 c0s*®,;—30 cos’@,+3) /R®,
i

(Bt)o=}(70)123 q,[sin®; cos (48 RS, (1)

where R; is in units of ap, c stands for the cubic lattice,
and nc for the distorted (noncubic) lattice; and the
summation runs over all the external ions (constituting
the lattice) with charge ¢;| e| situated at (R;, ©;, ®;)
with respect to an origin at the site of the paramagnetic
ion.

Recently, there has been some confusion (in applying™
the theory! to the zero-field splitting of Cd;V;O7: Mn*?)
as regards the sign of the quantity o and the accurate
determination of (Bg)’. Therefore, it is worthwhile
to give some details concerning the computation of «
and (B¢)’. Considering Fig. 2, which shows the nearest
neighbors disposed around the paramagnetic ion, if
the X and YV axes are rotated by w/4 about Z axis,
it can be seen that the quantity « changes sign since
(B#). changes sign, whereas (B{). does not. Also,

1 C, V. Stager, Can. J. Phys. 46, 807 (1968).
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under the same rotation, the component (By),. does
not change sign, while (B4*) . does change sign. Conse-
quently, (B®)’, as defined in (10), remains unchanged
in magnitude and sign under this rotation. So, even
though the quantity « changes sign, the quantity
(B4)’ remains unaltered. Therefore, it is essential that
all crystal-field components be evaluated with respect
to the same axis system. Otherwise, instead of the
subtractive unbalanced noncubic part (B,)’, an addi-
tive result of the components (Bf)n, and a(Bd)ne
would be obtained, and this is a large part.

In order to compute the crystal fields, a direct lattice
summation method can be adopted. In this method,
the crystal is divided into different spherical shells
about the impurity ion with the radii na’, where
n=1,2 3 -+ etc, and o’ is given by (9). Next a
neutral group consisting of four atoms of Mg?" and
four atoms of 0%~ is formed in each crystal cell. The
neutral group is assumed to contribute to a shell in
which the center of the group lies. Then, starting from
the smallest shell, the contributions to various By from
bigger shells are summed one by one until the contribu-
tion of the next shell becomes negligibly small. This
method is found to be very useful for computing By,
which is otherwise not very convergent. The calculated
values are

(BL)" = (BL)ne— (14/5)"2(B*) e
= (0.1501X 104) ¢2/2a,
B =(0.5299X 10~4) ¢&2/2a. (12)

The values in Eq. (12) were also checked with the help
of the Nijboer and de Wette’s method® to ensure the
accuracy of the calculated crystal fields.

The induced quadrupole and higher multipole
moments can give an additional contribution to these
crystal-field components. Since these are not currently
available, only the point-charge estimates (12) have
been used to compute Dgo, Dss, Dops, and Dwe from
the expressions (4). The calculated results (in units
of 10~* cm™) are

Dyo=0.70,

Dss(d—s) = —0.0069,
Dss(d—d) = —0.0668,
Dss(d—g) = —0.0113,
Dgg(total) = —0.0850,
Dops=-0.000016,
Dwc=—0.000034. (13)

Summing these, we get the total point-charge con-
tribution to D as
D(point-charge) =4-0.62X 107 cm™. (14)

12 B, R. A. Nijboer and F. W. de Wette, Physics 23, 309 (1957).
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This can be compared with the experimental result

D(expt) =7.65X10™* cm™! (15)

due to Feher.®

Though the total point-charge contribution to D
agrees in sign with the experimental result, it is an order
of magnitude less. The BO contribution is dominant
and is of the same sign as the experimental result. If
we compare the total spin-spin contribution and the
experimental result, the former is two orders of magni-
tude less than the latter and is opposite in sign. It is
worth noting that Dgg(d—s) is an order of magnitude
less than Dss(d—d), and about half of Dgs(d—g).
The contributions from Dops and Dwc are negligibly
small.

The reason for the point-charge contribution to D
being an order of magnitude smaller than the experi-
mental result is that (B£)’ is very sensitive to the local
distortion of the crystal in the neighborhood of the
paramagnetic ion. (BL)’ is mentioned because it is
involved in the computation of Do [Egs. (4) and
(13)7], which is the dominant contribution. (Bs)’ has
been estimated without taking into account the local
distortion due to the lattice relaxation in the presence
of the impurity. However, if one calculates (BJ)’
(and other crystal-field components) after allowing for
the lattice relaxation and thereby taking local distor-
tion around the impurity ion into account, the theo-
retical results may be improved.

Now, the case of a uniaxial stress along [110] direc-
tion may be considered to estimate E. If the applied
stress is represented by X', the dimensions of the dis-
torted unit cell by &”, b, ¢, it can be shown that

d'=a(14e) =a(1+4¢,) =b",

d’=a(l4-e.,), (16)
where
XI
Crp=Cyy= )
w 2l en+cre—2(c1?/en) ]
4
P * (17)

- 6_11 [611‘{‘612" 2 (6122/ Gu) ] ’

and the angle 2p between the X and ¥ axes of the
crystal is given by

cos2p=X"/2cu. (18)

The angle 2p is m/2 before the application of the stress,
as is clear from (18), since, when X'—0, 2p==/2.
The quantities ¢, ¢, and ¢y in (17) and (18) are
elastic stiffness coefficients, which for MgO lattice have
the values! given by (6) and
Caa=14.99X 10" dyn/cm?, (19)

For X’'=600 kg/cm? the strain coefficients e, €y,
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F16. 3. Positions of the nearest-neighbor 02~ jons around Fest
ion for stress along [110] direction, and the disposition of #’, ',
and 2’ axes.

and e,,, and cos2p assume the values
20 =64y, =0.887787X 104,
e..=—0.510313X 1074,

cos2p=0.196331X 1073, (20)

Now, the following expressions for the crystal fields
B¢ and By, in units of ¢2/2a,° and €2/2q4, respectively,
may be used:

B2=%(1/10) >_q;[sin?0;(7 cos’®;—1) cos(2®;) ]/RS,
7

B2=(V3/¥2) D_g,[sin’®; cos(2®;) I/ R}, (21)
J

where R; is in units of @, The summation for j runs
over all the external point charges ¢; | ¢| (constituting
the distorted lattice) situated at (R;, ®;, ®;) with
respect to an origin taken at the site of the paramag-
netic ion. The expressions (21) were evaluated employ-
ing the direct lattice summation method as described
earlier. The values are

B2=0.5143X 105,
Byt=—3.1487X 1075, (22)

in units of €2/2a¢® and €?/2a¢®, respectively. These results
have also been checked with the help of the method
due to Nijboer and de Wette.!? It should be noted that
the values By in (22) correspond to the axes system
(«', ¥, &), where the &’ and 2’ axes are taken along
[110] and [001] crystal directions of the distorted
lattice, respectively, with 9’ being properly defined to
correspond to the right-handed system (Fig. 3). B¢
and Bg* have been computed in the (x/, ¥, 5’) axis
system simply because the experimental results with
which we shall compare also correspond to this axis
system.

Substituting the values of B and By? in the expres-
sions for E [Eq. (4)], we get, in units of 10— cm™,

Epo=—0.909,

Ess(d—s) =-+0.004,
Egs(d—d) =+0.002,
Ess(d—g) =+0.008,

Egs(total) =-+40.014. (23)
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Combining these, one has
E(point-charge) = —0.90X 10~* cm™, (24)

which is in reasonable agreement with the experiment
result

E(expt) =—1.62X10~* cm™, (25)

due to Feher.®

It is interesting to notice that the BO contribution
is again the dominant mechanism. It has the same sign
as the experimental result and is more than 50%, larger
in magnitude. On the other hand, the spin-spin con-
tribution is opposite in sign and two orders of magnitude
less than the experimental result.

One may wonder why reasonable agreement with
experimental results can be obtained for £ but not
for D. To clarify this point, one may compare the
dominant parts of Dpo and Ego. The expressions for
Dpo and Epo [Eq. (4)] depend on the crystal-field
components (BfL)’ and B¢, respectively. The crystal
field (By)’ is the difference of two large and nearly
equal quantities (Bs)ne and (14/5)Y2(B*)ne, while this is
not true in case of B2 The result is that (BL)’ (but
not Bg2) is very sensitive to the local distortion of the
lattice around the impurity ion. If one takes into
account the distortion of the lattice due to lattice relaxa-
tion around the impurity, one expects to estimate a
realistic value of (B{)’ and thereby obtain a better
result for D. Such a calculation for B¢ is also expected
to give better agreement with experiment for E. Since
lattice-relaxation calculations have not yet been made
in this crystal, a simplified model, which assumes that
the distortion around the impurity ion is the same as in
the pure lattice, has been chosen.

III. OVERLAP CONTRIBUTIONS TO D AND E

In terms of the overlap and other two-center integrals,
and the pertinent charge-transfer parameters, the
expressions for D and E have been derived in II. These
expressions are listed in Appendix B for convenience.
Since the charge-transfer parameters are not known,
one is forced to neglect them and compute the contribu-
tions which arise from the overlap alone to D and E.

In Fig. 2, the six nearest neighbors of Fe3* are shown
when the stress is applied along [001] direction. The
O ions along the direction of the stress are referred
to as O,z while those on the equatorial plane as Oeq.
The oxygen ions Ogq lie on the vertices of a square with
Fedt at the center. The distance of the oxygen ions Oa.x
from Fed3* is ¢//2, while that of Qe from Fe’t is a//2,
where ¢/ and?a’ are given by (7) and (9). Since the
angle between the diagonals of the square in the
equatorial plane is /2, the spin Hamiltonian parameter
E vanishes in this case [see Egs. (B12), (B13), (B14),
(B23)-(B26)]. If the two distances Fe**~Oqx and
Fe3—0, are equal, the overlap and other two-center
integrals corresponding to these distances become equal
and consequently D vanishes. However, if the distances

SHARMA

176

Fe3t-0,x and Fe*t-0,, are unequal, D is nonzero. This
is clear from Egs. (B1), (B2), (B7), (BS), (B11),
(B15)-(B18), and (B21).

One can evaluate D starting from the expressions
(B1), (B2), (BT), (BS), (B11), (B15)-(B18), (B21) and
the relevant expressions for local, nonlocal, and distant
contributions arising from spin-spin and spin-orbit
mechanisms. To this end, one needs to calculate five
types of integrals, namely, S:(0;), ga.»™(0s),
ha,r™(01), §a2(0si), and §,,p as expressed by (BS),
(B9), (B10), (B19), and (B22), respectively. The
integrals S;(0;), ga,»™(02), ha,»™(04i), and $a,2(051)
arise from the two-center matrix elements between
orbitals of Fe** and 0>~. S;(0;) are the overlap integrals
between 3d orbitals of Fe3* and 2s and 2p orbitals of
0% ions. Here, j refers to the particular neighbor and
i to the 2s, 2p, and 2p, orbitals with (L=0, M =0),
(L=1, M=0), and (L=1, M==1), respectively. In
the same notation, the quantities gz;»™(0;i) and
ha,m™(Oyi) are the two-center double integrals between
3d orbitals of Fe** and 2s, 2p,, and 2p, orbitals of the
oxygen ion O;. The integral {;2(0;i) arises from the
matrix elements of the spin-orbit operator ¢(r) [Eq.
(B20)] between 3d orbitals of Fe*t and 2s, 2p,, and
2p. orbitals of the oxygen ion denoted by O;. The
quantity ¢, [Eq. (B22)] is the conventional spin-
orbit coupling constant for O>. For calculating {,.,
one requires the spin-orbit operator {(r) which refers
to the oxygen nucleus. This operator, defined in Eq.
(B20), can be obtained from the potential V(r) given
by

V(r) = (1/u”) (Puzy/dr?) — (2/7%).

In Eq. (26), s is 7 times the normalized 2p radial
wave function for 0%,

Similarly, for the integrals ¢42(0O) one is concerned
with the spin-orbit operator {(7) on the Fe3* ion, and
therefore

(26)

V(1) = (1/us) (@ud/dr*) — (6/1*) (27)

can be used. The functions a;(O;LM | aj7) needed for
Si(0;), ga,™(0j, ©), ha»™(0s), and §4,:(0s) are
the radial parts in the expansion of the wave functions
for oxygen about Fe** as a center. Explicitly, it is
defined as

&(OLM | RO®) = g_‘/—la(OLM [a) VM@0, ), (28)
-0

where (R, O, ®) are the polar coordinates of a point
with respect to the oxygen ion O, the polar axis being
taken as the line joining Fe** and the oxygen ion O
under consideration; (7, 6, ¢) represent the polar coordi-
nates with the same polar axis but Fe*t as origin. For
a general form of the « function and its evaluation one
may consult IT. The derivation of the general form has
been given elsewhere.’?

%R, R. Sharma, J. Math. Phys. 9, 505 (1968).
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TasLE ITI. Table of overlap and two-center spin-orbit integrals for stress along [001] direction.

J Ss(05) S+(05) S=(05) £a.2(0;5s) $a.2(0jo) $a2(0jm)
eq —0.037392 —0.057666 0.036594 —0.323993 —0.838693 0.437913
ax —0.037345 —0.057631 0.036556 —0.323504 —0.838284 0.436702

As regards the choice of the wave function for O*-
employed for the calculation, we use 2p wave function
as used by Yamashita and Kojima in their calculation
on MgO. This wave function is expressed as the sum
of two exponentials given by

a0 =6.87272(72974-0.15¢ 1) (29)

The 2s wave functions for O%* are not available to
this time and therefore the 2s Hartree-Fock wave func-
tion (as calculated by Hartree, Hartree, and Swirles?®)
for O~ has been used. There will be some variation in
the radial wave function in going from O~ to O
However, this variation is expected to cause only a
small change in the final overlap contributions to D
and E from the 2s orbital relative to the dominating
contribution from the 2p orbital.

Utilizing these wave functions, one can calculate the
integrals Si(0;), ga,"™(04), hai»™(0s), $a.2(0s),
and {,, The values of the integrals S;(0;) and
¢a2(0j) are listed in Table III. The integrals
24,7 (Oeqt) and kg,™(Oeqt) are presented in Table
IV, and g4,»™(Oaxi) and ha,»™(Ouxi) are given in
Table V. The calculated value of ¢, is found to be
67 cm™L. It is worth remarking here that if {44, the
spin-orbit coupling constant for 3d electron of Fe®t,
defined by

Saa=(ud| § (r)ud),
is evaluated using Egs. (B20) and (27), we obtain
$2,4=397.13 cm™., The calculated value of {44 is thus

close to the value of {=400 cm™ used in Sec. II. The
same value (400 cm™) for the coupling constant shall

be used in this section for evaluating overlap contribu-
tions. Knowing the required integrals the local, non-
local, and distant contributions to D which are listed in
Table VI have been estimated. Thus, the combined
overlap contribution is

D(overlap) = —0.05X 10~ cm™, (30)
which is opposite in sign and two orders of magnitude
less than the experimental result [Eq. (15)7]. It is also
opposite in sign and an order of magnitude less than
the point-charge contribution [Eq. (14)].

For the evaluation of the parameter E due to overlap,
the procedure used is identical to that used for D. For
uniaxial stress along the [110] direction, the nearest-
neighbor environment is shown in Fig. 3. In this case
the distances Fe*~Ocq and Fe**—0,, are given by a'’/2
and ¢”/2, respectively, where ¢’ and ¢’ can be obtained
from (16) and (20). The angle subtended by adjacent
Oeq ions at Fe*+ (Fig. 3) is 2p, which is defined by (18)
and (20). One can now use the expressions (B12)-
(B14) and (B23)-(B26) in order to estimate local,
nonlocal, and distant contributions to E. However,
these expressions require the values of the overlap and
other two-center integrals corresponding to the distance
Fe3t—0eq. Since the parameter E is sensitive to cos2p
and is relatively independent of the small difference
between Fe*t—0q and a/2, we can set #(Fe*—04y)
r(Fe**—Oqux)>a/2 when calculating the overlap and
two-center integrals. This situation is quite different
from the situation for D where the difference between
the two distances Fe?*-0Ogq and Fe3*-0, is responsible

TasLE IV. The quantities ga,»"*3(0eqz) and kg3 (Oeq) for stress along [001] direction. Integrals not required are not given.

L 8d,1°%(Ocqt) ha,1*2(Oeqt) 84,125 (Oeqt) ha,i?5(Oeqt) ha, " (Oeqt)
0,s —0.011264 —0.003553
2,s —0.000856 —0.004535 —0.000557 —0.001541 ooe
4,s eee —0.001241 —0.000058 —0.000309 —0.000143
0,0 —0.061568 —0.022582 oo
2,0 —0.002395 —0.010180 —0.001547 —0.003813 oo
4,0 .es —0.001704 —0.000140 —0.000491 —0.000249
2, 0.001222 0.005480 0.000791 0.001998 oo
4, w oo 0.001327 0.000078 0.000344 0.000163

14 J. Yamashita and M. Kojima, J. Phys. Soc. Japan 7, 261 (1952).
1D, R. Hartree, W. Hartree, and B. Swirles, Phil. Trans. Roy. Soc. London A238, 229 (1939).
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TaBLE V. The quantities ga,;®"*3(0axi) and ka,»73(0axt) for stress along [001] direction. Integrals not required are not given.

I3 84, (Oaxt) ha,0#(0axt) 84,2 (Oaxt) b4 15(Oaxt) a2 (Oaxd)
0, s —0.011247 —0.003548 e

2,5 —0.000854 —0.004528 —0.000556 —0.001538 oo
4,s o —0.001238 —0.000057 —0.000308 —0.000142
0,0 —0.061513 —0.022560

2,0 —0.002393 —0.010171 —0.001546 —0.003810
4,0 eee —0.001692 —0.000128 —0.000483 —0.000242
2, 0.001220 0.005474 0.000790 0.001995
4, eee 0.001319 0.000047 0.000336 0.000155

for determining the value of D. In Table VII, the local,
nonlocal, and distant contributions to E arising from
spin-spin and spin-orbit interactions are listed. Com-
bining the various contributions,

E(overlap) =0.06X10~* cm™, (31)

which is about 27 times smaller than the experimental
result [Eq. (25)] and also differs in sign. It also differs
in sign from point-charge contribution [Eq. (24)] and
is about 15 times smaller in magnitude.

IV. RESULTS AND DISCUSSION

In the case of MgO:Fe*t, the estimates of the point-
charge and overlap contributions to (i) D for the stress
along the [001] direction and (ii) E for the stress
along the [110] direction have been made and these
are sufficient to determine the two independent spin-
lattice constants Cyy and Cy with the help of the rela-
tions given in Sec. I. The expressions (14), (24), (30),
and (31) for D and E correspond to the following point-
charge and overlap contributions to Cu and Cy (in
units of 10~ ¢cm/dyn):

Cu(point-charge) =-42.11,
Cu(point-charge) = —3.06,

Cu(overlap) = —0.15,

Cu(overlap) =+0.21. (32)

These are comparable to the experimental results® (in
units of 10~ cm/dyn) of

Cu (expt) =--26,

It is interesting to note that the point-charge contri-
butions [Eqs. (32)7] predict the same sign of Cy and
Cu as experiments [Eq. (33)]. However, while the
point-charge contribution to Cy is about an order of
magnitude less than the experimental value, the point-
charge contribution to Cy is in reasonable agreement
with experiment. The overlap contributions to Cy and
Cy are opposite in sign and about 160 and 27 times,
respectively, smaller than the corresponding experi-
mental values. Therefore, the effect of overlap cannot
improve the point-charge results for Cyy and Cyu. One
might be tempted to attribute this to the neglect of
charge transfer covalency. However, it is evident from
the expressions (Appendix B) for D and E due to over-
lap and charge-transfer effects that a reasonable amount
of charge-transfer covalency cannot improve the results.

The present overlap contributions to Cy; and Cy are
much less than the experimental results. This is in
contrast with Kondo’s conclusions.!® Kondo'* computed
overlap contributions for Mn?* in MgO by fitting his
formula to the observed experimental results and deter-
mined a reasonable magnitude of the overlap parameter
for o-type binding neglecting charge-transfer covalency.
This led him to conclude that the overlap mechanism
could account for the coupling constants. This is in
contrast to the conclusion in the present study, where
the detailed calculations considering local, nonlocal, and
distant contributions show that the overlap contribu-
tions are much less than the experimental results and
also differ in sign. The main reasons why the present
conclusions differ from Kondo’s are that he (i) con-
sidered only the local contributions to the spin-lattice

C44(expt) =—5.5. (33) TaBLE VII. Various contributions to E in units of 104 cm™2.

TapLE VI. Various contributions to D in units of 10~ cm™. Mechanism Local Nonlocal Distant Total

Mechanism Local Nonlocal  Distant Total Spin-spin 0 0.059 oo 0.059

: : 0.027 0.111 0.084 Spin-orbit 0 0.001 0.003 0.004

Spin-spin . . . Total 0,063
Spin-orbit 0.047 —0.003 —0.009 +0.035
Total —0.049

16 J. Kondo, Progr. Theoret. Phys. (Kyoto) 28, 1026 (1962).
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coupling constants arising from o overlap alone, and
(i) approximated, as mentioned in II, the integrals
¢2,2(0j0) by £4,45,(0;), thereby making them about 20
times larger and giving large contributions to the cou-
pling constants. These points have been discussed in
detail in IT and therefore will not be elaborated here.

The reason why it has not been possible to predict a
satisfactory value for Cy is that the actual displacement
of the ions surrounding Fe** was not taken into account.
This displacement of the ions is due to two effects, the
first of which is the presence of the impurity. Not only
does Fe** (which replaces Mg?* at a lattice point) have
a different ionic radius than Mg?*t, but it is also more
positively charged by one unit than Mg?*. Therefore,
the external ions surrounding Fe’t see the effect of
this extra charge and move from their normal position
into a different equilibrium position. This effect is most
pronounced for the nearest-neighbor ions.

The second effect is due to the imposition of stress,
which brings about further changes in the equilibrium
position of the ions. In order to obtain the actual dis-
placement of the ions, one must consider both of these
effects simultaneously and allow the lattice to relax.
The main contribution to Cy (or D) from point-charge
model [Eq. (14)] is due to the BO mechanism [Eq.
(13)7], which depends on the unbalanced noncubic
crystal field (BL)’ [Eq. (10)]. The component (B{)’
is zero for a cubic environment [see Egs. (10) and
(11)]. It is very sensitive to the immediate neighbor-
hood of the impurity ion since it involves the difference
of two large and nearly equal parts, viz., (B{)n, and
a(Bi#)ne. If the actual displacement of the surrounding
ions, after including lattice relaxation effects, is taken
into account to calculate (B)’ (and also other required
crystal fields) a good agreement between theory and
experiment may be expected. Since the lattice relaxation
calculations have not yet been made in this case, one
has to choose a simplified model, viz., the displacement
of the surrounding ions due to the stress is the same
as in the pure lattice under the same stress.

It is possible to show that one can obtain a value of D
(or Cu) close to the experimental value if the nearest-
neighbor ions are displaced by a reasonable amount.
This displacement is considered to arise both from the
effect of the extra unit positive charge on Fe¥* com-
pared to Mg?t and from the size of Fe*t. To begin with,
consider that the stress along the [001] axis is present
and that the effects of the extra charge on Fe’t and
of the size of Fe** are absent (see Fig. 2). Then, as we
have seen in Sec. II, the ions O, are closer to Fe’t than
the ions O,x. Now, impose the effect of the extra charge
on Fe3*. All the oxygen ions, each having two units of
negative charge, are attracted by the extra charge on
Fedt, But the Qe ions, which are closer to Fe?t, are
influenced more than the O.x ions. Consequently, the
Oeq ions move farther toward the Fe** ion than the Oux
ions. The ions are not expected to move a large distance
since the large size of Fe¥* prevents their motion. It is
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reasonable to assume that the Qeq ions are displaced
towards the Fe** ion by 0.5%, and the O, ions by 0.19,
of their respective distances from the central ion in the
presence of the applied stress. In this case the calcu-
lated values of the Blume-Orbach contribution to D
comes out to be

Dgo=+8.06X 104 cm™,

The same displacements of the nearest-neighbor ions
change the value of Dss(total) by about 59, and
Dops and Dwc by much less than 19. The combined
contribution to D is thus nearly 8.06X 10~ cm™!, which
corresponds to the value C;; =27X 10~ cm/dyn. Thus,
it may be seen that a slight and reasonable change in
the position of the nearest-neighbor ions has brought
a large enhancement in the value of Cy;, and this brings
the theoretical result closer to the experimental value
[Egs. (33)]. So, it is clear that the actual displacement
of the ions surrounding Fe®*t| if considered in the calcu-
lation of the crystal fields, can explain the experimental
result for D. On the other hand, the contributions to E,
are sensitive to cos2p and a small change (of the size
mentioned above) in the position of the surrounding
ions does not affect the value of E by more than 59%,.

Since the Fe?* ion has one positive charge more than
Mg?*, one is led to think that there will be a negative
charge in the crystal to compensate for it. This negative
charge will produce an additional axial field on the Fe?+
ion even in the absence of external stress. Since the
terms D and E are found to be zero experimentally® in
the spin Hamiltonian in the limit of vanishing external
stress, it can be inferred that either the compensating
charge is too far off to distort Fe’t or its effect on D and
E is undetectable within the limits of experimental
error. Thus, the experimental values for D and E which
have been interpreted are solely due to the external
stress. Therefore, we cannot consider the effect of the
compensating charge on the measured value of D and

The other defects, of minor importance in our treat-
ment, are (1) the omission of quadrupolar contribu-
tions to crystal-field components, (2) inaccuracies in
the one-electron wave functions, (3) the neglect of
correlation effects, and (4) the deformation of the
radial wave functions in the crystal under stress,
especially for the loosely bound 0%,
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APPENDIX A

The expressions derived in I for D and E for various
mechanisms under the point-multipole approximation
are listed here. The contributions to D and E from



476 R. R.

the Blume-Orbach mechanism are given by the

Dpo = (5"/36) {r*)8*pay (2pea—Pas) (BL)" (A1)

and
Epo=— (V2/6) (r*)*puy(2paa— pas) B,

where (r*) is the expectation value of 74 for a 3d electron
of the paramagnetic ion (Fe**) under consideration,
and ¢ is the spin-orbit coupling constant for the electron
of this ion. (B&)’ and B¢ are the unbalanced axial
noncubic and the fourth-order rhombic crystal fields,
respectively. Explicitly, these are the coefficients in
the potential terms

Vi=—(B)'(4n/9)V23_r V(i)

(A2)

(A3)
and

Vié=—B(4n/9) 22 rf[V()+Vi%())]. (Ad)

The quantities paa, Pas, and pay in (A1) and (A2) are
defined by

3\ aey
Paa—g Az’ b
2, aif
Paﬁ—‘—;Ew
3 ;i
pa=2 00, (45)

where a;, 8;, and v; are the mixing parameters, and A;
are the eigenvalues obtained by diagonalizing the 4Ty
matrix in the presence of the cubic field.

As regards the contributions” to D and E arising
from spin-spin mechanism we write

Dss=Dsgs (d_)s) +Dss(d—"d) + Dss (d——)g) (A6)
with
Dss(d—s) = — (g%82By/20+/5a4%)
X [3.57771hgsd 3 —5.36656g4..25],
Dss(d—d) = — (g262B5"/20+/5a®) [—1.27775g4.4°
+5.11101%4.4°3—2.19043 (gosa® 5+ Hand®®) ],
Dss(d—g) = — (g282B5"/20n/50¢%) [9.199824,4.. .03
—0.10952¢4.,4%5—5.47608%4.42°—19.16629%,4.,,47],
(A7)
17 The expressions (52) and (60) of I corresponding to the
expressions (A7) and (A9) given here used the incorrect approx-
imation gg.i™™=/lka,™™=%fa.,™™, where fa,;™™ is given by Eq.
(48) of I for k=2. The corrected results for the cases considered
in I eliminating this approximation have been given elsewhere

[(:R. R).]Sharma, T. P. Das, and R. Orbach, Phys. Rev. 171, 378
1968) 1.
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and
Egs=Ess(d—s) + Ess(d—d) + Ess(d—g) (A8)
with

Ess(d—s) = — (g%6°B/40+/5a4?)
X [8.76356/4,,3—13.1453g4.,25],
Ess(d—d) = — (§8°B2/40v/5a¢f) [— 3.12984g,., 03
125194214 83— 5.36544 (gar S+ hani?®) ],
Ess(d—g) = — (£26°B22/40v/5a5°) [22.5344. 03
—0.26827g4,,*5—13.4136k4.>5—46.9476k4.,47].
(A9)

The parameters By and B;? are the axial and rhombic
crystalline fields occurring in the potential terms

Vo= —BY(4x/5) 1/2}:“21720(0
and
Vd=—B(4x/5) 3 r2[ V() + V(6] (A10)

The quantities gz»;»™ and kg, in (A7) and (A9)
denote the integrals

o ST m

g.z..z"'”‘=/ dh[Ld(m-LL/ 12" Ud"(2) tai® (2) dry
0 n 0

and

o nr
ha = [ drs
0

:2(,,,2) et (2) fo " rolud (1) Pdn,
(A11)

In the above expressions, #,® is 7 times the radial 34
wave function of the paramagnetic ion. The functions
#a1V (I=s, d, g) are the perturbations on %, due to
the axial and rhombic potentials V,? and V,? and are
the solutions of the differential equations

@ 6 1 [du
AR

d2 1 d2 0
[ + ( A )] Uasd® =1"u— (ud | * | uLud,

dr? ud" dr?

& 14
-5+

a7 ud

e p

1 dZ 0
+ ;d‘a ( (;:: )] M,z..a(l) =r2u,g°. (AIZ)

For the Orbach-Das-Sharma mechanism
Dops= (B20) 2 (51/2/ 1927") B_ 21711“/ (2Paa "'Paﬂ) ]

X (My—4M;3+-3M,), (A13)

where
Mu=(87/5) 2 @mi(ud | 7| 4ai®) (A14)
1=0,2,4
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with
Gn G G 0 4/49 3/49
a=| 6o 0 ou | = 0 1/49 6/49
Qoo Goz  Qos 1/5 4/49 36/245

(A15)
For the Wantanabe mechanism with cubic field,
Dwe=—75({r*)*/Aps) (BL)*[$* | paat (4/7) pas |1,

(A16)

where Apg is the energy of the D state above the 8§
level.

APPENDIX B

In this Appendix, we list the expressions derived in
II for D and E under the overlap and charge-transfer
model. The local, nonlocal, and distant contributions
arising from spin-spin and spin-orbit interactions are
written down separately. All the expressions contain
terms up to second order in overlap and charge-transfer
covalency.

The local contribution to D from spin-spin interaction
is given by

Dgg!=Dgs'(s) 4 Dss! () + Dss'(mr), (B1)
where
Dss'(s) = (6Do/7) {[S*(Oax) —7¥5*(Oax) ]
—[5:2(Ocq) =7:2(0eq) J} [ fa,82— (8/Nfaa*]. (B2)

The expression (B2) gives the contributions arising
from overlap and charge-transfer effects of 2s wave
functions of the ligand ions (O*~). Here

o= —g26%/20a¢®,

and Ss(0ax) and v,(0ax) are the overlap and charge-
transfer covalency parameters for thelligand ion
designated by O.x (see Figs. 2 and 3). S;(Oe) and
vs(0eq) carry similar meanings. The symbol fg4%™
represents the integrals

fagrm= / f ud(1)ud(2)
X (r<r/rs™) ul (1) u(2) dridrs.

The expressions for Dss?(o) and Dss! (), the contribu-
tions arising from 2p, and 2p, orbitals of the ligand ions,
can be obtained from (B2) on replacing s by o and m,
respectively. The overlap parameters S;(0;) (i=s, g, 7;
j=eq, ax) are the matrix elements

Si(0;) = (ud | 2(O;,LM | ayr) ) (BS)
with s corresponding to L=0, M =0, ¢ to L=1, M =0

(B3)

(B4)

COUPLING CONSTANTS OF Fe?t* IN MgO

477

and 7 to L=1, M =1, ¢; being the distance between
the central ion (Fe*t) and the ligand ion designated
by Oj;. The symbol a;(O;LM | a;r) denotes the a func-
tions mentioned in II. A derivation of a general expres-

sion for the « function is given elsewhere.’
The local contribution to E via spin-spin interaction
has been shown to vanish exactly, so that
Egs'=0. (B6)

As regards the nonlocal contribution® to D from
spin-spin interaction, we write

Dgs™ = Dgg™!(s) +Dss™(e) +Dss™(w)  (B7)

with
Dsg™(s) = —4Do[ ([S+(Oeq) +7:(Ocq) ]

X { —1.7880%2,0(Ocqs) +2.6833g4,2%(Oeqs)
10.2857g39%(Ouqs) — 1.1429%3 93(Oras)
+0.4898[ 24,225 (Oeqs) + 44,225 (Oeqs) ]
—1.5333/4,0(Oeqs) +0.0183g4,25(Oegs)
4091275 25(Ougs) +3.1944/2 47 (Oces) } )

— (eq—ax)], (B8)

where (eq—ax) represents all the terms contamed in
the precedlng bracket ( ) with the replacement of‘eq
by ax in the integrals Si(Oeq), ga,/*™(Oeqt), and
ha,7™(Oeqt) . The integrals gg,7™(05) and kg, 7»™(0j2)
are defined by

g0, (050) fd "(1)]2

1
Xf 4 (2) ry"c (O;LM I air;)dr, (B9)
0

and
0
ha2m(Oi) f e ()al(OLMlaﬂ'g)
0 "
T2
X / [u(1) Prindr,  (B10)
0
with
i=s(L=0, M=0), o(L=1, M=0),
7(L=1, M=41); j=eq, ax.

The expression for Dgs™ (o) can be obtained simply

18 The expressions (58) and (69) of II corresponding to the
ex‘pressmns for Dss’ﬂ and Egg™ given here were based on the
incorrect approximation

ga»™(04i) = ha ™™ (0s1) = 3fa ™™ (0; LM),

where fz,;7™(0;LM) is defined by Eq. (51) of II. The corrected
results for the case considered in II without this approximation
have been given elsewhere (Ref. 17).
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by replacing s by 7 in (B8). As regards Dss™'(m) we have
Dgs™ () = —4Do ([.S+(Ocq) +7r(Oeq) ]

X {0.2857g4,09%(Oeqm) —1.1429%, 503 (Oeqr)
+0.4898[ g4,22%(Oeqmr) + 4,225 (Oeqm) ]
—2.7994%4 83 (Oeqm) +0.0333g4,43°(Oeq)
+1.6663%,25(0uqm) +5.8321h4,847(Ocqr) } )

— (eq—ax)], (B11)

where (eq—ax) represents the terms contained in the
preceding bracket () with the replacement of eq by ax.
It can be shown that the distant contribution via
spin-spin interaction gives rise to terms of order higher
than two in overlap and charge-transfer covalency
parameters. Thus, up to second order in overlap and
charge transfer, the distant contribution Dsg? is zero.
The nonlocal contribution to E from spin-spin mecha-
nism is
Ess™'=Ess™ (s) + Ess™ (o) + Ess™ (), (B12)

where
Egss™l(s) = —4Dy co82p[Ss(0eq) +vs(0eq) ]
X {5.3666/4,0°2( Ocqs) —8.0498¢4,6*°(Oeqs)
—0.8571g4,5"*(Oeqs) +3.4286/4,2" % ( Oeqs)
—1.4694[ g4 2>*(Oeq$) + 14,2 (Oeqs) ]
+4.5999/4,4°°3 (Oeqs) —0.0548g4,43°(Oeqs)
—2.7380h4,2°(0eqs) —9.5831%14,447(0cqs) }.  (B13)

For obtaining FEss™ (o) we simply replace s by ¢ in
the above expression. For Fgs"!(m) we have

Ess™ () = —4Dq c082p[Sr(Oeq) +7x(Ocq) ]
X { —0.8571g4203(Opqm) +3.42864 5"3(Oeqr)
—1.4694[ g4 5> (Oeqm) +ha 2 (Oeqr) ]
+8.3982714 £ 3(Oeqm) —0.1000g4,2( Oeqm)
—4.9990,25(Opqr) —17.4964h 47 (Oeqr) }.  (B14)

It can also be seen that, up to second order in overlap
and charge transfer, the distant contribution FEgg?
vanishes.

Now we list the local, nonlocal, and distant contribu-
tions to D and E arising from spin-orbit interaction.
The local contribution to D is

Dso'=Dso'(s) +Dso'(e) +Dso'(r),  (B15)
where
Dso'(s) =[(£4.)2/10AT{[S:2(0eq) —7¥5%(Oeq) ]
- ESSZ(OaX) _'Ys2(OEX)]} ) (B16)

where {a,q is the spin-orbit coupling constant for the
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electron on the paramagnetic ion (I'e**), and A is the
average energy denominator. The expressions for
Dgol(o) and Dgol(w) can be obtained from (B16)
simply by replacing s by ¢ and , respectively.

The nonlocal contributions to D via spin-orbit mecha-
nism

Dso“l=Dsonl(s)—I-Dson](U)-{-Dsonl(ﬂ') (B17)

with

Dso™(s) == ($a,4/54) {{a,2(Oeq8) [ S5 (Oeq) +75(Oeq) ]
"g'd,z(oa)&') [:Ss(oax) +73(Oax)]}) (Blg)

where
$a,(052) =/ud0g“(r)a;(OjLM [ar)dr (B19)

with
¢(r) =(eh/dm>ad) r[dV (v) /dr].  (B20)

V(r) in (B20) is the potential seen by the electron. The
potential V' (7) and the distance 7 are in units of ¢2/2a,
and ap, respectively. The quantities Dgo™ (o) and
Dso™ () in (B17) can be obtained by putting ¢ and
m for s in (B18), respectively. The distant contribution
to D from the spin-orbit interaction is

Dso?=— (2/15A) {a,a8 p.p{ [M*(Ocq) =M (Oax) ]

""\/SE}\v(Oeq) )\r(oeq) —)\I(Oﬂx) AW(O&X) :I} (le)
with
A:i(05) = S:(0;) 47v:i(0;)
for i=s, o, m; j=eq, ax. The parameter
o= <u21>0 [ $(r) | uap®) (B22)

is the spin-orbit coupling constant for the 2p electron
of the ligand ion (0*").

The local contribution to E from spin-orbit mecha-
nism exactly vanishes:

Eso!'=0. (B23)

The nonlocal contribution to E from spin-orbit interac-
tion is
Ego™= Ego”l(s) +Eso™(a) + Eso™(7), (B24)
where
Eso™(s) =% ($a,0/A) (c0s2p){a,2(Oecqs)
X[Ss(Oeq) +75(0eq) ]  (B25)

and Eso™(s) and Eso™(w) are obtained from (B2S5)
by substituting ¢ and = for s, respectively.

Lastly, the distant contribution to E via spin-orbit
mechanism is

Eso®=(2§a,0/58)$p.0(c082p) { [Sr(Oeq) +7x(Oeq) I
—V3[Sx(Ocq) +7¥x(Oeq) ILSe(Oeq) +75(0eq) 1}.  (B26)



