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The quantum theory of three-wave optical parametric interactions in a crystal such as LiNb03 is
formulated in a symmetrical manner with respect to interaction time and distance. The formalism leads
to a unique treatment of parametric interactions of both cavity type and propagation type, in that the
resemblance between time in the cavity type and distance in the propagation type of interaction in the
classical description is preserved. Three-wave eGects of harmonic generation, parametric amplification
(including spontaneous emission), and frequency conversion are treated in a unique and symmetric manner.
Using Peynman s operator techniques, quantum states resulting from parametric interactions, previously
unavailable, are derived, from which characteristics of the processes are deduced.

I. INTRODUCTION

""N the past decade, two kinds of three-wave para-
„„metricinteractions at microwave frequencies have
been intensively investigated': cavity type and propa-
gation type. The cavity type of interaction treats
standing waves whose spatial distributions are de-
termined by the boundary conditions of the resonant
structure; the wave amplitudes develop in time. The
propagation type of interaction treats traveling waves
which are stationary in time; the wave amplitudes
develop as they propagate in a speci6c direction in
space. Recently, signihcant progress has been made
on parametric interactions at optical frequencies. 2

Classically, there exists a formal resemblance be-
tween the two types of interactions since time in one
case plays the role of distance in the other. This
resemblance, noticed by previous workers, ' is to be
expected, since the two types of parametric inter-
actions diGer only in their boundary conditions but
arise from the same physical process. The quantum
theory of parametric interactions due to Louisell et al.
and otherss uses the Schrodinger formulation (in either
Heisenberg picture or Schrodinger picture) under
which the dynamics of the system propagates in time,
and appears to be adequate for the cavity-type inter-
actions. Recent optical experiments by Harris et al.
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and Magde et al.' on spontaneous parametric emission
can only be explained as propagation-type eGects.
Plausibility arguments can be developed which ex-
plain the observed spontaneous emission as arising
from the ampli6cation of one noise quantum per idler
mode by a pump wave. ' This approach, although
useful, is confusing and leaves unanswered questions
about the meaning and origin of these noise photons,
and about the specification of the quantum states after
the parametric interaction. This paper attempts to
clarify these points by treating the problem in a united
manner.

In this paper, the quantum theory of three-wave
parametric interactions is formulated in a manner that
is symmetrical upon an interchange of time and
distance (divided by the propagation velocity) .
We assume that the pump is a traveling wave and that
the induced fields are either standing waves or traveling
waves corresponding to the interaction in a nonlinear
dielectric crystal with or without end coatings. The
interaction will be described as the simultaneous an-
nihilation of one photon and creation of two other
photons. Harmonic generation, v parametric ampli6ca-
tion, and frequency conversion' are included within the
single format. For these physical situations of interest,
we shall point out that the time-ordered transformation,
associated with the solution to the Schrodinger equation
(in the interaction picture) may be recast into a
distance-ordered form suitable for handling the propa-
gation type of interactions. It will be shown that the
classical resemblance between time in the cavity type
and distance in the propagation type of parametric
interactions is preserved in the present quantum
formulation of the theory. Using the operator tech-
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niques of Feynman, s properties of parametric inter-
actions and quantum states after the interaction are
analyzed in detail.

II. FORMULATION OF THE PROBLEM

To formulate a quantum-mechanical problem in the
interaction picture, one has to determine for the
process (1) an interaction Hamiltonian (or equiva-
lently Lagrangian) density operator, subject to a set of
commutation relations, and (2) a transformation law
which describes the evolution of the interacting system.

We are concerned with electromagnetic fields in a
dielectric medium, such as crystal KDP or Liwb03.
For parametric interactions, the medium undergoes a
virtual transition from ground state to ground state
(via intermediate states). The detailed dynamics of
the virtual transition is bypassed and its eGects on
electromagnetic fields are represented as usuaP4 by
macroscopic polarizations through frequency-depend-
ent susceptibilities. For our purpose, there are two
terms in the polarization that are of importance: A
linear term accounts for the change in index of re-
fraction from its vacuum value and a nonlinear term,
represented by susceptibility tensor x, serves as a
source for three-wave mixing. We quantize the electro-
magnetic waves in a space of volume V and expand the
6elds into the normal modes of Maxwell's equations
including the linear polarization of the medium to
accounts for anisotropy and dispersion of the system.
The electric 6eld can then be expressed in Gaussian
units as

E(«)= (4 )'"Z .-'(l& .)"'

XL~g exp( —~gt)&~(r) —~d exp(i~~t)&~*(r) j, (1)

where 4q(r) s are normal distributions polarized with
respect to the principal axes of the crystal; et&(r) =
eq exp(i' r)/QV for propagation modes and ttq(r) =
e~I exp(i' r) —exp( —ikq r) j/i(2V) '~' for cavity
modes. m), is the index of refraction which depends on
polarization as well as frequency. The creation and
annihilation operators uz~ and az obey the usual
commutation relations Laq, u„tg=8q„.

Parametric interactions arise from the nonlinear
term in the polarization mentioned above. The eBect,
represented phenomenologically by nonlinear sus-

ceptibility x, may be described by a free energy term"
which corresponds to the following Hamiltonian
density for three-wave processes:

where 5&u=a&„+M,—raq. The three waves are char-
acterized by wave vectors k&, k„,k, and frequencies
co)„~„,co„they are polarized in directions" which
give nonzero x, corresponding to experimental situ-
ations. The solution to the quantum-mechanical
problem, involving the interaction described by (2),
which transforms the state before,

I fb), to the state
after the interaction

I P,), may be expressed" as

l k.)= Z ( q ) (~ ') '
Qp Qp

d Vgdtg ~ dV„dt„I'

=X(I)X(II); ty) tg, Xg) X2

X(II)X(I)+LX(I),X(II)$; 4) t2, x2) xg

&& IX(r, t ) " X(r-, t-) } I A&, (3)

where I' ( I is the Dyson chronological product and the
operators are to be evaluated according to their time
order. The limit of integrations (00, 0) cover the space-
time region of the interaction: The entire volume
V=/, t„t, and time interval t=(—2T, —', T) for the
cavity type, and all values of y, z, t, and x= (—~~L, —,'L)
for the propagation type of interactions. In practice,
the choice of propagation direction x depends on the
crystal used, the interaction time T is finite, and the
interaction length I.corresponding to the length of the
dielectric crystal is much shorter than / .

The time-ordered expression of (3) is just what is
needed for solving the cavity-type problems, and will

give results identical to those obtained previously. 4

In order to handle the propagation-type problems and
demonstrate the kind of symmetry of interest to this

paper, we recall that there is a classical analogy be-
tween time in a cavity of the problem of coherent
scattering and distance in a problem of steady-state
propagation, and we assume that the same analogy
holds in the quantum theory. This can be realized
simply by evaluating (3) a,ccording to their distance
order in the direction of propagation x. Although a
rigorous mathematical derivation is outside the scope
of this paper, the plausibility of using this procedure is
intuitively evident. The condition under which (3)
may be evaluated according to x ordering can be seen

by examining the integrand of the third term in (3).
I.et (r~, t~) and (r, , t2) be abbreviated by (I) and (II),
we may write out the time-ordered product of X(r~, t~)

and X(r2, t2) as

PIX(1)X(II) }

(fuogSo)„fur.) '"X=i' 27r 'I'x),~
SgÃpRy

X(11)X(1);

X(I)X(»)+LX(»),X(I)3;

t2&ty) x2) xy

t2&tg, xj)x2.

&& f~„a„ta.tv~-'a, (r)u„*(r)tt.*(r)

—a)ta a e '~"'8),*(r)tt„(r)8.(r)], (2)

8 R. P. Feynman, Phys. Rev. 84, 108 (19S1).
' P. S. Pershan, Phys. Rev. 130, 919 I,'1963).

This suggests that the t ordering can be replaced by the
x ordering if the commutators in the above expression

'p See, for example, F. Mandl, Introduction to Quantum FieLd
Theory (Interscience Publishers, Inc. , New Pork, 1959), Chap. 12.
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vanish for problems in question. Physically, the
parametric interactions of three traveling waves deal
with events propagating forward along the unique
direction x specified by Ak, and thus it is only necessary
to demonstrate that the above commutators, for the
traveling waves so propagated, vanish. A direct mathe-
matical proof should be possible, but we cannot con-
sider it here. That LK(I), K(II) j=0 can be visualized
from the generally accepted fact that the commutator
of two operators vanishes if observation of one does not
eGect observation of the other. With the forward
propagation assumption, the effect of observing
K(II), when ti) t~ can be felt at (I) only if xi is located
ahead of x2, i.e., xi&x, . Thus, PC(I), K(II)(=0
if x2&x~ and t~&t2, the same is true if x~&x~ and
t2) t&. This justification, although not mathematically
rigorous, can be easily extended to deal with the
nth term of (3); therefore, (3) may be evaluated ac-
cording to x ordering when dealing with waves traveling
forward along a unique direction.

When (3) is evaluated by the x ordering, the states
before and after the interaction may be associated with
the ordering parameter x= —-',I and x=~1.. This is
just what is needed to handle the propagation-type
problems in a symmetrical manner. One can then view
waves at one end of the crystal as "amplification"
of the waves coming in from the other end.

Since we may evaluate (3) by either t ordering or
x ordering, we shall rewrite (3) in the following form:

i
l
4.(D))=exp {

—— x(r, t)&&4
l A(D)), (4)

Qp

where 0 and Qo are ordering parameters, denoting the
order of operation and the states of interest. Equation
(4) is time ordered or distance ordered to handle the
cavity-type or the propagation-type problems, re-
spectively. It is thus evident that the kind of classical
resemblance between time and distance in the two
types of parametric interactions is preserved in the
present quantum description. It should be pointed out
that although the justification of x ordering in evaluat-
ing (3) and (4) makes a symmetrical theory, the
physics remains unchanged. The states before (initial)
and after (final) the interaction, although labeled by
x= —-,'I. and x=-;'I are still time-dependent states of
definite momenta. Our treatment is really equivalent
to that of a scattering problem between states at
t = — and at t= ~, except that, the x ordering has the
further advantages of making the coherence of the
problem and the effective interaction interval in time

( I/2e, I/2v) expli—cit." Very recently, spontaneous
parameteric emission of light has been treated as a
scattering problem by Giallorenzi et a/. 4 in a first-order
calculation.

"The velocity of propagation in the x direction, v, sets the pace
of interaction of traveling waves.

fl Qp

K(r, t)dVdt=
$/2

(~a),a„ta,te'~«'
—(/2

+z*a)ta„a.e ~«') d$', (5)
where"

~= (&/4/I') (2~)" f L(WA .W.) '"/~~~.. jS.„..„+..
In the expression, one notes that g=~e, $= T, t =x for
the cavity type, and that )7= k, $=I; &0=

I Irz —ir„—h',
I

and f =x/v, where u is the velocity of interaction""
in the x direction, for the propagation-type inter-
actions. Written in this way, the operators in (4) and

(5) are $ ordered, which may be regarded as either t

ordered or x ordered, and they operate according to
time or distance depending on the individual situation.

Since the pump wave is produced by a single-mode

laser, we may reasonably assume that it is initially in a
Glauber state"

I n))„and (4) becomes

I

-', p)),„,——exp —i~* a),ta„a,e '~«'d&'

Xexp —i~
—$/2

(6)

where the operators are f ordered. We may disentangle
the pump operators, i.e., aq and a),t, first by the tech-
niques of Feynman. s Using Eqs. (19) and (20) of Ref.
8, one can write (6) as

I 2k)~;= exp( ~P'a~')—

Xexp( —~pa), )Goo I ~)) I
—-,'(), I

——',()., (7)

"We have used the relations

ancl

e' 'dV=bpI,

r/2

lx ' lim e'"'dt=v ' lim
+~co /2 7~00 l ~ cG

(vr/t )bo „——v
—'e, ,„.

"R.J. Glauber, Phys. Rev. 131, 2766 (1963);W. H. Louisell,
Radiation and Noise in Qguntlm Electronics (McGraw-Hill Book
Co., New York, 1964).

nr. STXVES oz THE DtDUCED WA.VES

We are interested in optical phenomena produced by
a coherent laser beam, and we assume that the pump
wave, denoted by index X, is a traveling wave and that
the induced waves, denoted by indices p and 0-, are
either standing waves or traveling waves. The integra-
tion of the Hamiltonian density over y, s, and x for
one case and. t for the other in the exponent of (4) can
be carried out directly; it gives obviously the conser-

vation law of the process in question. The remaining
one-dimensional integration with respect to the ordering
parameter t or x specifies the order for operators.
The exponent of (4) may now be written as



where

and

—g/2

a u e 'spt'dp'
where

«s~= —(j/5+V) (2s )sist sl (~1)(~p)2) 1/s/~)s~Q

X~X ~~, ,2~~.
2

0/2

Gpp= exp — K ail,

target/

"~ d
—$/2

Equation (9) is readily disentangled and it results in

I sS&=exp( —iP.*as') exp( —iPsus) I
—k8)e "i (1o)g+v)lid~i�

—i
—$(2

Equation (7) is position ordered'" with respect to
pump operators a)„a),t and is still P ordered with re-
spect to operators of the induced waves u„.u„t and
a, .a,".The operation on the pump state in (7) can be
carried out easily as one notices that

I n&), is an eigen-
state" of u), . The density operator (or matrix) for the
induced waves of interest can be expressed as

where

0/2

e
—issPdgi

—$/2

P/2

I,= I «s I' e'spp'dg' e jap)lid(ii—
piiie (k$) =»~II s$)&)i~ ))ia&s5 II

—$/2 —$/2

&~'
I st&&kk I

~'&d'~'
For second harmonic generation, the system is

initially in the vacuum state, i.e., I
—sg)=I0), and

(10) describing the state of second harmonics after the
interaction becomes

where
&«—l& I G( ') (8)

Gt(u, u') =exp(in'*Pt) exp( —inP) Gpp.

The result of (8) can be applied to evaluate proper-
ties of the induced waves, once given their initial
states

I

——',$)„.= I

——',$&„l——',P&., although the disen-

tangling of operator G(ix, n') is not very simple. The
physical situation corresponding to experiments carried
out so far" 7 uses not only a coherent pump, but also a
strong pump which cannot be depleted during the course
of the interaction. For these cases, one can describe the
pump as a classical traveling wave with a constant
amplitude, and the discussion may be greatly simplified.
In the following sections, we shall discuss the induced
harmonic generation, parametric ampli6cation (in-
cluding spontaneous emission), and. frequency conver-
sion by assuming that the pump wave may be treated
classically.

IV. INDUCED HARMONIC GENERATION

The interaction of a second harmonic with a classic-
ally describable primary may be dealt with by replacing
az by a2, a„=a,by 0.&, and correspondingly co, e, k in

(4) and (5). nq is a c number, denoting the classical
amplitude of the primary. Since only the second
harmonic is treated quantum mechanically, (4) be-
comes simply

f/2

I
—',g&= exp —i («s*aste 's~p'—

—$/2

+» ~"")~i }I—B), (i)''

=exp( —i@*a')
I 0)

It is a Glauber state corresponding to a Poisson distri-
bution in occupation space; it is a typical result of
forced excitation"'4 when the interaction is linear in
the quantized field. This implies that the second
harmonic generation under the present assumption is
really a very coherent process. The power How

(Poynting vector) of the generated second harmonics
can be obtained as

&s=s(~p/V) &s( I
as"as

I
—.()

where s=c/es. For the propagation-type interaction,
the above expression may be related to primary power
Qow Py as

!2~ ' e)s' t'c Ru~ )' sm-', (d,kl, ) )'
(c e,nP ),e, V &

—', (akL, ) ~

This expression has been experimentally veri6ed in
many materials and is essentially the classical ex-

pression used by many authors. '~ If the dispersion due
to linear polarization of the nonlinear material is such
that. kg=0, f=1 and one deals with a matched. . situ-
ation.

The case of subharmonic generation however is
quantum mechanically much more complicated. Even
with a classical pump, the interaction is quadratic in
subharmonic 6eld. The forced excitation, in this case,

'4 R. P. Feynman, Phys. Rev. 80, 440 (1950l.
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may not generate field describable by a coherent state. When this is done, we have
Although the problem can be handled in similar I, ) ~ I ) L- &( /2) t~(1/Q f)
manner, we shall not include it here. 2 = N i exp — i4i4

V. PARAMETRIC AMPLIFICATION AND
FREQUENCY CONVERSION

In this section, we consider interactions between a
strong pump wave to be treated classically, and a weak
signal wave and a weak idler wave which shall be
treated quantum mechanically. If the pump photon has
higher energy, the interaction gives rise to parametric
ampli6cation. For this case, we replace uz, u„,u, by
0.„,u„u;and, respectively, the indices of the parameters
of, t2, !r in (5) .n„is a c number, denoting classical pump
amplitude. Equation (4) describing the quantum
state for signal and idler waves becomes

—$/2

c—if gfII
dpi

/

-$/2

imp)IIId)III

J=—ze *
y

0!2
r(p) elk'qp—(jf)~

f/2 e
&&

—k„* u, te-'«'fe'"~'dP'
)
——',P).—$/2

= g I 22);e «f'f expL —I($/2) f2,tu, ](1/Qii!)

I
-'*f).;=ex@

I
—i

$/2

-f/2
(fi 8g tg. teikgP

+"~o.e "«')O'
I 2k)-—, (12)

—$/2

For spontaneous parametric emissions, we take
I
—-'2p), =

I 0), and the density operator for signal wave

p, invoked from (15) and
I
—-'2$), =l 0), may be cal-

culated. Knowing the trace of p, is unity, we obtain

where

Ky* ——(i/fi/V) (2tr) f iyl (elder, SM,SQ~)' /n t4s;)

(16)

%e shall limit our discussions to the following two cases
only: (1) spontaneous parametric emission for which
both signal and idler are assumed to be in vacuum
states initially, and (2) parametric amplification for
which the signal is in a Glauber state and the idler is in
the vacuum state initially. To deal with these situ-
ations, we use Feynman's techniques again and we
disentangle the idler operators first. Equation (12)
becomes

I 2k&-=exp( —
2f .t~")exp( —

2) .o')Goo"
I

—lk&-, (13)

where

g tgikyPdg&.

G00~= exp
5/2

u,e '~«'d]'
—5/2 -$/2

a,.~a'~ &"df"I

and the idler operators are position ordered and the
signal operators are $ ordered. Since the idler is initially
in the vacuum, operation on idler mode may be carried
out and (13) becomes

where
I ti); is the state containing N idler photons and

)
—$/2), is the initial state of the signal wave. Equation
(14) contains only g-ordered signal operators and they
can be further disentangled by the same techniques.

where

0/2

—$/2

&ikyPdp&

The density matrix (16) describes a Bose-Einstein
distribution, " and the emitted signal wave is thus
"noise" in nature. The properties of this distribution
have been discussed by Mollow and Glauber. 4 This is

significant since (16) tells us many properties of
spontaneous parametric emission including the emission
intensity given in previous works. '' The power per
unit area, spontaneously emitted as the result of in-
teraction between pump and one idler mode, may be
calculated as

where e= c/t4.

This may be regarded as ampli6cation of one noise
photon per mode and it is the output noise power of an
ideal ampliler. "" For optical experiments, E is
typically much less than unity and e~—1~X.This is in
fact the assumption of Giallorenzi et u/. 4 and Byer
et ul.6 as they put the anal idler waves in "one-photon"

» H. Heffner, Proc. IRK 50& 1604 (1962) ~
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eigenstates and the former used only the 6rst-order
scattering matrix in their calculation. For spontaneous
parametric emissions pumped by a laser in a crystal
such as LiNb03, one deals with a continuum of idler
modes with essentially the same momentum each
producing p, given in (17). When E'((1, the incre-
mental signal power Qow due to idler modes k; scattered
into a capturing solid angle dQ„~is

dP =p [V/(2+)'fkPdk'dQ-

=vL~, /(2~) &]ZkPdk, dn, .,

discussed above. The question of the possibility of
spontaneous emission deserves some discussion. Energy
conservation suggests that a pump photon in this case
does not have enough energy to "spontaneously split"
into one signal photon plus one idler photon. The
system should be left in the vacuum state after the
interaction takes place, if neither signal nor idler was
initially present. To see that this is true, we make
substitutions in (5) for frequency conversion. The
transformation which connects the states before and
after the interaction is

For the propagation-type parametric emission with a
~

r&)=esp
(
—i

crystal of length I., we have

(2gr)' } x„i%a;5cu, c Bc',

(2gr) ' A' v'cmPN«2n„N„V
where

—$/2

+a,e,ra;e a«')g('j
)
—-,'g)

x, '
~

kpdk, dn... "*=(i/«V) (2~)"'f.{ (&~,k~'&~.)"/I ~~,g
—',(SkL) )

'

L' I' f(&k, L,) ~

—Shp; kpdk;dQ„„
I'~'

} x.)',
I ~e„e,~, ' '

En;

which is essentially Eq. (3) of Byer et a/. ' The total
spontaneous power may be obtained from (18) by a
simple integration. Since our aim is to obtain quantum
states like (16) and to justify expressions like (18),
we refer to Ref. 6 for further developments which are
derivable from (18).

For parametric amplification, we take
~

—~~$),=
g)g, =ex (pig's, )t} 0)g,a. Substituting this last form

into (15), one can show that the density matrix (16)
for this case is

p (—$) = g e x(}J }'e x) e px(in, *e '&I) 't)
} m)(m }

)&exp( —iu.e' "«'@").

The induced signal power flow after interaction may be
evaluated as

p,= (c/n, ) (Ro,/V) Tr{a,ta,p, (-', &) }

= (~/~. ) (~./V) }:(s —1)+I ~. I'~"3

= (c/e, ) (Sar,/V) (e —1)+I',ex.

This expression difFers from (17) by addition of a
signal term which describes amplification of input
signal with ampli6er gain e~. The noise introduced in
the output is additive with a power level equal to that
of an ideal ampli6er. "

If the pump photon has energy lower than that of
the signal or idler, one deals with frequency conversion.
The treatment is similar to, and the results are sorne-

what different from that of parametric amplification

Disentangling the idler operators and assuming that
idler is initially in vacuum, one can obtain the state
vector similar to (15) except that a, and a, t are inter-
changed, i.e.,

~

—',$)= g ~
e);expL —I($/2)a, tu, ](1/Qe!)

X {J~,}"
I

——;P).. (20)

If the signal is also in the vacuum state initially, i.e.,
~

—~$).=}0)„there is no signal photon to be an-
nihilated and (20) becomes

~

$/2)=~ 0); } 0)ga There
can be no spontaneous emission in frequency conversion
as expected.

VL. SUMMARY AND DISCUSSION

The quantum theory of three-wave optical parametric
processes with the interaction Hamiltonian density
given as usual, is proposed in a symmetrical manner
with respect to time and distance. The formalism gives
a unique treatment of both the cavity-type and the
propagation-type parametric interactions. Preserva-
tion of classical resemblance between time in the
former and distance in the latter is shown in the
quantum theory.

Feynman's operator techniques are used to discuss
states of waves induced by a strong and coherent
pump. The state of the generated second harmonics is
in a Glauber state corresponding to a very coherent
interaction. The state of spontaneous parametric
emission, however, gives a Bose-Einstein distribution in
occupation corresponding to "noise." Since the system
gain is typically very low at optical frequencies, the
more exact expression reduces to what was usually
assumed and to that previously arrived at from per-
turbation calculation. Parametric amplifi, cation of
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signal and frequency conversion have been discussed
also. Here, intuitively expected results are studied by
the symmetrical formulation proposed.

The success of the symmetrical formalism depends
on the feasibility of evaluating (3) and (4) by means
of x ordering; it is intuitively plausible. The arguments
presented, although lacking mathematical rigor, have
demonstrated and justified the validity of this pro-
cedure in dealing with traveling waves propagating
along a unique forward direction. It is interesting to

note that not only the parametric interactions con-
sidered here deal with waves traveling forward in a
unique dimension, but most experiments in coherent
nonlinear optics are in this situation.
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Estimates of the spin-lattice coupling constants of an Fe'+ ion in the host crystal MgO have been made.
There are only two independent coupling constants C» and C44 in the simple case of a cubic lattice. Various
possible mechanisms contributing to the coupling constants in the point-charge model have been in-
vestigated. It has been shown that the Blume-Orbach mechanism is the dominant one among the mechanisms
considered. The next most important contribution arises from the spin-spin interaction mechanism proposed
by Pryce. The other mechanisms which we have considered are found to give an entirely negligible contribu-
tion to the coupling constants. The combined point-charge contributions arising from all the mechanisms
are, in units of 10 "cm/dyn, Cu(point-charge) =+2.11 and C44(point-charge} = —3.06, as compared with
the experimental results, in the same units, Cu(expt) =+26 and C4&(expt) = —5.5, due to Feher. Also,
the estimated overlap contributions to C1j. and C44 are found to be an order of magnitude less than the
point-charge contributions. Finally, some suggestions have been made in order to bring the theoretical
results into better agreement vrith the experimental results.

I. IÃTRODUCTIOK
"T has been shown earlier' ' that the zero-field split-

.. ting parameters D and E occurring in the spin
Hamiltonian

Btt =DE3S '—S(S+1)3+8(S '—S ') (1)
can be explained reasonably well in the case of Mn'+
contained in ZnF2 and MnF2. The eGects of the crystal
fields at the site of the paramagnetic ion Mn'+ in the
host lattice and the overlap due to the ligand ion wave
functions were taken into account. It was concluded'
that the dominant contribution arose from the Blume-
Orbach' (BO) mechanism, which involves the first-
order matrix element of the axial and rhombic fields,
and. second-order matrix elements of the spin-orbit
interaction between excited quartet sta, tes which have
been admixed into one another by the presence of the
cubic Geld. The next most important mechanism was
shown to be the spin-spin mechanism4 (Pryce mecha-

' R. R. Sharma, T. P. Das, and R. Orbach, Phys. Rev. 149, 257
(1966), hereafter referred to as I.' R. R. Sharma, T. P. Das, and R. Orbach, Phys. Rev. 155, 338
(1967), hereafter referred to as II.

3 M. Blume and R. Orbach, Phys. Rev. 127, 1587 {1962).' M. H. L. Pryce, Phys. Rev. 80, 1107 (1950); A.
Chakravarty, J. Chem. Phys. 39, 1004 (1963); R. Orbach, T. P,
Das, and R. R. Sharma, in I'roceedings of the International
Conference on Kagnetisrn, Eottingharn, 1964 (The Institute of
Physics and the Physical Society, London, 1965), p. 330.

nism), linear in both spin-spin interaction and axial or
rhombic crystal fields. The Orbach-Das-Sharma mecha-
nism4 (ODS) and the Watanabe mechanism's in the
presence of cubic field (WC) follow the spin-spin
mechanism in decreasing order of importance. The
overlap contributions were also investigated' and found
to be important.

The agreement between the theory and the experi-
mental results for Mn'+ has prompted the analysis of
the various mechanisms for Fe'+ present in diQerent
crystal symmetries. In this paper, the example of Fe'+
situated in the host crystal MgO distorted by an uni-
axial stress is considered. The undistorted MgO crystal
has a cubic lattice, and therefore by symmetry both D
and E parameters vanish. However, one can create a
noncubic environment about the paramagnetic-ion
(Fee+) site by applying uniaxial stress, and therefore
obtain nonvanishing pa, rameters D and E. When the
parameters D and E are expressed as linear functions
of the applied stress, there are only two independent
constants' of proportionality in the simple case of a
cubic crystal. These are spin-lattice constants C» and
C44. Experimental results are available for these con-

i H. Watanabe, Progr. Theoret. Phys. (Kyoto} 18, 405 (1957).'G. D. Watkins and E. Feher, Bull. Am. Phys. Soc. 7, 29
(1962);N. S. Shiren, ibid. '?, 29 (1962);E. Feher, Phys. Rev. 136,
A145 (1964).


