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The frequency-dependent magnetic susceptibility describing the magnetic resonance of spin impurities
in a metal is investigated theoretically. , using thermodynamic Green functions and the Abrikosov diagram
technique for spin operators. The single-particle pseudofermion propagator is shown to lead to formulas for
the impurity spin energy-level shifts and widths which are identical, to all orders in perturbation theory,
to those obtained in the standard quantum-mechanical theory of decaying states. The two-particle pseudo-
fermion propagator describing impurity magnetic-resonance experiments is discussed, and it is shown that
there are corrections to the interpretation of the magnetic resonance frequency shift and linewidth in terms
of the individual level shifts and widths mentioned above. A perturbative evaluation of some of the formulas
obtained shows that both the g shift and the linewidth of the impurity spin resonance exhibit Kondo-like
corrections depending on ln T when k T)5~0, or on lou() when k T&hcoo, coo being the impurity spin-resonance
frequency. The theory as developed is valid only when the conduction-electron spin-resonance frequency
co, is sufficiently different from coo, and it is shown that the contribution of the conduction-electron spin-
magnetic moment to the absorption becomes increasingly important when this is not the case.

I. INTRODUCTION given by'

~ lHE results of paramagnetic-resonance experiments.i. can be interpreted in terms of a frequency-depend-
ent magnetic susceptibility Lsee Eq. (1.1)$. This de-
scription is thought to be exact, provided the applied
radio-frequency Geld is sufficiently small, and the prob-
lem is thus to evaluate such expressions in terms of the
microscopic parameters contained in the Hamiltonian
describing the system of interest. The model system to
be discussed below consists of a low concentration of
statistically independent impurity spins intereacting
with a sea of conduction electrons in a metal; a localized
spin model for the impurities is assumed, and where
explicit calculations are performed, the interaction be-
tween the conduction electrons and the impurities is
taken to be the s-d interaction. ' In order to exploit
the methods of quantum Geld theory in the evaluation
ef the susceptibility, the spin operators associated with
the magnetic impurities are expressed in terms of
products of fictitious fermion operators, in a way
which has been described by Abrikosov. ' The bulk of
this paper will thus be concerned with the application
ef the Abrikosov diagram technique to the impurity
magnetic-resonance problem.

The power absorbed by a sample from an oscillating
Inagnetic field of frequency co polarized along the x
a,xis is proportional to the imaginary part of the fre-
quency-dependent magnetic susceptibility, which is

*This research was supported in part by a grant from the
National Research Council of Canada.' R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954).

~ T. Kasuya, in Magnetism, edited by G. T. Rado and H. Suhl
(Academic Press Inc. , New York, 1966), Vol. II B.' A. A. Abrikosov, Physics 2, 5 (1965); see aiso S. D. Siiverstein
and C. 3.Duke, Phys. Rev. 161, 456 (1967); 161, 470 (1967).
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7c"(to) ~ dt e~'(/M. (t), M,$),

where 3f, is the x component of the total (impurity
spin plus conduction-electron spin) magnetic moment.
The derivation of Eq. (1.1) assumes that the applied
oscillatory magnetic field is spatially uniform across the
sample, and all skin-depth problems are ignored.

%hen the paramagnetic impurities have a spin-only
magnetic moment, and thus have the same g value as
the conduction-electron spins, the total magnetic mo-
ment is proportional to the total spin. If one considers
only interactions between the conduction electrons and
impurity spins which are a result of electrostatic Cou-
lomb interactions (such as the s dexchange i-nteraction)
and which therefore commute with the total spin, it
is clear that the motion of the total spin is determined
entirely by the applied steady magnetic field (always
assumed to be in the s direction) and is no different
from what it would be if there were no interactions
whatsoever. Any contributions to the resonance line-
width or line shift which are ascribed to the interaction
of the conduction electrons with the impurities must
therefore be due to the presence of some other interac-
tion, such as the spin-orbit interaction, which does not
commute with the total spin. This is not the only
reason a microscopic theory of this particular case is
difficult. The necessity of talking M, in Eq. (1.1) to
be the total moment (instead of simply the impurity
spin moment) also adds to the complexity of the prob-
lem. Furthermore, when the conduction-electron spins
contribute significantly to the absorption, a realistic
assessment of the e8ects of skin depth and electron
432
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diffusion become necessary. 4 For these reasons, this
study will be devoted mainly to the simpler case dis-
cussed in the following paragraph.

When the conduction electrons and impurities have
different g values, the susceptibility t.Eq. (1.1)g can
be separated into two parts, assuming that the interac-
tion between the conduction electrons and impurities is
suKciently weak. This is easily seen by first assuming
that there is no interaction at all. The susceptibility
x"(co), for positive &u, is then simply a sum of two 3

functions, one at the impurity spin-resonance frequency
coo, and the other at the conduction-electron spin-
resonance frequency or,. The presence of the interaction
causes shifts of the resonance frequencies and a broad-
ening of the 8 functions into Lorentzians of nonzero
width, but each resonance line can be considered
separately provided they occur at sufficiently different
frequencies. Thus, to study the impurity spin-resonance
peak at o.o, it is sufficient to consider the formula for
x"(I) in which the total magnetic moment is replaced
by the magnetic moment of the impurity spins only.
A further simpli6cation is introduced by making the
assumption that the concentration of impurities is
sufficiently low that they can be considered statistically
independent. This means that

g(~;,(t) 3E;,)=1V(Ms. (t) Ms. ),

where i and j label the different impurity spins, E is
the total number of impurities, and ufo, is the x compo-
nent of the magnetic moment of any particular spin.
In future calculations, it will therefore be assumed that
the intensity of the impurity spin-resonance absorption
signal is proportional to the function

where the spin operators 5+ refer to a single impurity
spin, assumed to be at the origin of coordinates.

In Sec. V of this paper, corrections to the approxi-
mation (1.2) due to the incorporation of the conduc-
tion-electron spin moment in the formula for the sus-
ceptibility are treated, to lowest order in perturbation
theory, and are shown to become increasingly important
when coo is close to ~,. Also, at temperatures suKciently
far below the Kondo temperature, interactions between
the impurity spins and the conduction electrons become
exceptionally strong, s s and it is doubtful if (1.2) will
remain a good approximation for the total absorption
near eo.

A method of evaluating the expression (1.2) in a

4 F. J. Dyson, Phys. Rev. 98, 337 (1955).' J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).
H. Suhl, in Theory of Magnetism in the Transition Metals,

edited by W. Marshall (AcadeInic Press Inc. , New York, 1967).

certain approximation has been suggested by Kubo
and Tomita' in the section of their paper on motional
narrowing. The basic assumption in their work is
equivalent to assuming that the correlation function
([S (1), S+]) has a time dependence which is given
by

(LS-(t), S+j)= &LS-, S+j) exp(~ 1—«) (13)

They then calculated too (which differs from ~s because
of the interaction) and I' in terms of the microscopic
parameters appearing in the Hamiltonian by expanding
the left-hand side of (1.3) to second order in the inter-
action, and the right-hand side to first order in t, and
comparing the coefficients of the terms linear in t.
Such a procedure obviously depends very much on the
assumption (1.3) of an exponential decay. It is perhaps
possible to justify this assumption theoretically by
expanding the left-hand side of (1.3) to all orders in
the perturbation, and applying the Van Hove X't limit~
to pick out the dominant terms. Terweil and Mazur,
for example, have used Zwanzig's method' to solve a
related problem in the Van Hove X't limit. Even if one
couM justify fully the formulas of Kubo and Tomita
in this way, the results would be of limited usefulness
because they still apply only in the weak-interaction
limit. Moriya'0 has applied the Kubo-Tomita approach
to a particular nuclear-resonance problem, and Orbach
and Spencer" have applied Moriya's results to the
problem discussed in this paper. A fundamental paper
on magnetic resonance which should also be mentioned
is that of Wangsness and Bloch," in which the Bloch
equations" are derived; the assumptions made in this
paper appear closely related to those made by Kubo
and Tomita.

The purpose of this paper is to study a method of
evaluating the paramagnetic-resonance absorption line
shape which can in principle be applied even to strongly
interacting systems. It is now well known5 that the
problem of spin impurities in a metal can not be
attacked simply by applying lowest-order perturbation
theory, and this is the reason for attacking it with the
powerful Green-function techniques. These techniques
can also be applied to the study of paramagnetic reso-
nance in insulators; it is well known that the weak-
interaction limit is not applicable even in this case,
since a second-order process, namely the second-order
Raman phonon process, is often more important than
competing erst-order processes. The method to be
used below is to replace the spin operators by products

r L. Uan Hove, Physica 21, 517 (1955).
s R. H. Terwiel and P. Mazur, Physica 32, 1813 (1966).
s R. Zwanzig, Lectures Theoret. Phys. 3, 106 (1960).
rs T. Moriya, Progr. Theoret. Phys. (Kyoto) 28, 371 (1962);J. Phys. Soc. Japan 18, 516 (1963)."R. Orbach and H. J. Spencer, Phys. Letters 26A, 457 (1968),"R.K. Wangsness and F. Bloch, Phys. Rev. 102, 104 (1956).'s F. Bloch, Phys. Rev. 'N, 468 (1946).
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of fictitious fermion operators in a way suggested by
Abrikosov3 so that Wick's theorem and the standard
methods'4 of thermodynamic Green functions and dia-
gram techniques can be exploited.

The single-particle pseudofermion propagators of the
Abrikosov method can be interpreted as describing the
time evolution of a system which has the impurity spin
in a particular spin eigenstate (say S,=+-,') at the
initial instant. The proper self-energy of this propagator
thus describes the shift and width of this energy level
due to the interaction of the impurity spin with the
conduction electrons. The formulas obtained for the
spin energy-level's shift and width are shown to be
identical, to all orders of perturbation theory, to
analogous expressions which arise in the standard
quantum-mechanical theory" of the lifetime and decay
of virtual states.

Paramagnetic-resonance experiments are described
in terms of the two-particle pseudofermion propagator.
If the two-particle propagator is approximated by its
free part, it is found that the resonance line shape is
Lorentzian, and that the center frequency is equal to
the difference in energy between the shifted spin energy
levels, while the width is equal to the sum of the two
level widths (spin S=r~ is assumed); the individual
energy-level shifts and widths referred to here are those
mentioned in the preceding paragraph. It turns out,
however, that the bound part of the two-particle Green
function cannot be ignored, and when it is taken into
account, corrections to the simple description in terms of
the individual level shifts and linewidths are obtained.

Spencer and Doniach" have also recently studied the
magnetic-resonance problem using field-theoretic tech-
niques, but using Kenan's'~ drone fermion representa-
tion for the spin operators, rather than Arbikosov's'
technique. Although they explicitly carry out calcula-
tions only for the case coo=co„Spencer and Doniach
assume that the total absorption can be approximated
by the impurity spin contribution as calculated from
(1.2); this is a controversial point and certainly requires
further justification. Our results for the Kondo anomaly
in the g shift agree with theirs, if we assume our formulas
are valid when ~0=~,. Our explicit perturbative calcu-
lation of the single-particle propagator self-energy is
also carried out to third order, at which point the
Kondo-like contributions to the linewidth first appear;
these contributions tend to narrow the resonance line
below the Kondo temperature if the s—d exchange
interaction is ferromagnetic, and broaden it if the
interaction is antiferromagnetic. Also, our calculations

have been carried out in the temperature limit T((coo
as well as the limit T&)coo, and it turns out that the
results in the former limit can be obtained from those
in the latter simply by replacing T by coo. (Thus terms
proportional to lnT become proportional to 1ncoo. )

The application of the Abrikosov technique to the
theory of magnetic resonance in insulators, where the
dominant interaction is between the impurity spins and
phonons, is formally quite similar, as will be pointed out
below.

II. SPIN GREEN FUNCTIONS AND THE
ABRIKOSOV DIAGRAM TECHNIQUE

where S (u) =e"~S e ~, the spin operators are to be
treated as bosons with respect to the time-ordering
operation, and the primes have been incuded in G +'
and the ensemble average ( )' to distinguish them from
similar quantities to be introduced later; the ensemble
average of an operator 2 is defined as

where tr' indicates a trace over a complete set of states
describing the combined spin system and conduction-
electron system. G +'(u) can be expanded in a Fourier
series, the expression being

(2.2)

where

G +'(x„) = due*"G +'(u)
0

(2.3)

and x„=(2moi(P) (v=0, &I, ~ ~ ~ ). Now, define a new
function G ~'(x) of the continuous complex variable
x by the relation

A + (Co)
dM ) (2.4)

Thermodynamic Green functions" and the Abrikosov
diagram technique' will be used to evaluate Eq. (1.2)
for the paramagnetic-resonance absorption line shape.
In this section the necessary preliminary de6nitions
will be stated, and the notation established.

The temperature-dependent Green function G ~'(u)
is defined by

(2.1)

A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzialoshinski,
Methods of QNarttttet Field Theory irt Statistical Physics {Prentice-
Hall, Inc. , Englewood CliGs, N.J., 1963).

'«M. L. Goldberger and K. M. Watson, Collision 1heory
{John Wiley 4 Sons, Inc. , New York, 1964).

'6 H. J. Spencer and S. D. Doniach, Phys. Rev. Letters 18, 994
(1967).

'r R. P. Kenan, I. Appl. Phys. 3/, 1453 (1966).

where A +'(&o) is given by Eq. (1.2); G +'(x) can be
shown to be the analytic continuation of G +'(x„). It
will be shown below how G +'(x„) can be evaluated
using diagram techniques, and once G +'(x„) has been
determined, the resonance absorption intensity can be
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found using the formula

A +'((u) =i(G +'(co+i0+) —G +'(&o—i0+) j
= —2 ImG ''((s+i0+), (2.5)

which follows immediately from Eq. (2.4).
In order to make use of Wick's theorem to calculate

Green functions arising in problems in which spin

operators are involved, Abrikosov' introduced a repre-

sentation of the spin operators in terms of pseudofer-
mion operators as follows. Let

~
tn) be a complete set of

states describing the impurity; for example, m can be
taken to be an eigenvalue of S, and has the 2S+1
values —S, ~ ~ ~, S. For each state

~
m) introduce a pair

of pseudofermion creation and destruction operators
u t and u; these operators obey the usual fermion

anticommutation relations {a,a tI =8 .. The state
a t

~
0) in the vector space in which the pseudofermion

operators act is assumed to correspond to the state

~
m) in the space of the spin operators, and vice versa.

The vacuum state
~
0) and states containing more than

one pseudofermion are unphysical states with no

counterparts in the space of the spin operators. Any
operator f operating in the spin space can be written in

the form f= P-,„~m)f „(N~; the operators f'=
g„„f „a ta„and f obviously have the same matrix

elements between corresponding states and it is thus

possible to use the pseudofermion representation of the

spin operators in all calculations provided the un-

physical states play no part. With reference to the
calculation of the Green function (2.1), note that

tr'$e ~~T{S (I)S+)]=e~"tr$e &&"&+~'T{S (I)S+Ij,
(2.6)

where it is understood that the limit )~~ is to be

taken on the right-hand side of (2.6), Hi Xg a ta-—,

and tr' is a trace over all spin states and conduction-

electron states, whereas tr is a trace over all pseudo-

fermion states and conduction-electron states; further-

more, all spin operators occurring on the right-hand

side of (2.6) are to be written in the psuedofermion

representation. For spin S=~ impurities, the pseudo-

fermion representation of the spin operators is

5 =a~to t, S+=ut ta~,

S,=-', (at tat —ag"at). (2.7)

The simplest way to see that Eq. (2.6) is true is to
begin by writing it in the interaction representation.
Since all spin operators contain a pseudofermion

annihilation operator on the right, the vacuum state
automatically gives zero contribution to a trace taken
over a product of operators which contains spin
operators. Also, by virtue of the fact that the term Hz
has been included in the Hamiltonian, each pseudofer-

mion is given an additional energy ),, and the un-

physical states contianing two or more pseudofermions

will have a vanishingly small probability of being
thermally excited. By making use of (2.6) and the
definition (2.1), it can be shown that

try —P(Hg+K)

G- '(I) =e'"P'{S-( )S+t), , (2g)
tr'e —&K

where the brackets ( ) without the prime imply a
thermal average in the pseudofermion representation.
Since the factor tre ~&"&+~'/tr'e e" depends only on
temperature and not on the variable I, it is not neces-
sary to calculate it to determine the frequency depend-
ence of A +'(a&); this factor thus enters into the
interpretation of paramagnetic-resonance experiments
only in that it affects the integrated intensity of the
resonance line, which is not often measured. It is now
convenient to define a new Green function G +(I)
(without the prime) by

G +(I) =ee"I(1+e-e"o) '(T{S (u)S„I), (2.9)

where the normalizing factor has been chosen so that
the spectral function A +(&o) calculated from this
Green function using Eq. (2.5) is identical to A + (o&)

in the noninteracting limit, assuming spin S=~ im-
purities; Xt is defined following Eq. (2.10). The Green
function G +(I) and the spectral fuhction A +(co)
satisfy Eqs. (2.2)-(2.5), inclusive.

Although Abrikosov' did not mention it, the conduc-
tion-electron Green function as defined by him also
differs from the usual one by a factor of

tre «"+~»-/tr'e e~

The temperature dependence of this factor should be
taken into account when determining the temperature
dependence of the electrical resistivity. There is, of
course, no reason in principle why the pseudofermion
representation should not also be used to evaluate
factors such as tr'e &H.

The explicit form of the Hamiltonian to be used below
is, in the pseudofermion representation,

Hx+H +~am am+QEycy cy
m y

+ g Jmm'yy'am am~cp cy" (2 ~ 10)
mmfyp'

where if the states
~

m) have energy e, X wiH be ~+&
(for spin S=~, Xt='+-,'"0 and X~=X—'"o) c„t and c~
create and annihilate conduction electrons of mo-
mentum k and spin o, p=(k, o), and e„=e"+ace„
where 0 =+-', and c~ is measured relative to the Fermi
level. In explicit calculations J .» will be assumed
independent of k and k' and denoted by J ~,.; it will
also be assumed that the only nonvanishing values of
J ~ are, for impurity spin S=~,

't t t t =-~~&»=-'/2",
't«t=~~t t t= —'/", (2.11)

Q being the quantization volume; the usual isotropic
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where p;, r;, and s; are the momentum, position and
spin of the ith electron.

Finally, before going on to discuss the propagator
formalism in detail, it should be noted that the inte-
grated intensity is related to the expectation value of
the s component of the impurity spin by the formula

dpp A p'((o) =2m. (S.). (2.13)

The influence of the s-d exchange interaction on (S,)
has been calculated by Everts and Ganguly" to second
order in perturbation theory. When (S,) is written in
the form g,ps(S, ) =x,h, they 6nd

s-d exchange interaction is thus obtained when J' is
put equal to J. The Hamiltonian (2.10), with the
restrictions implied by (2.11) and J' =J, may look more
familiar if it is written in terms of the ordinary spin
operators as

8= g(p;s/2m) —2JS.Qs,b(r, )+pppS +(d gs,„
(2.12)

s component of the total spin, the oG-diagonal elements
are identically zero.

The zero-order propagators are given by

G ~P&(z) =(z —), )-~ (3.2)

The full Green function can be evaluated formally by
standard diagrammatic methods'4 and is given by

G (z„) =I z„—X —M (z,)g ', (3.3)
where 3f (z„) is the sum of all proper self-energy dia-
grams.

It can be shown that a self-energy diagram containing
e pseudofermion closed loops is of order exp( —nP)),
and therefore all diagrams containing one or more closed
pseudofermion loops can be ignored. Consider, for
example, the diagram shown in Fig. 1, which is actually
part of a larger self-energy diagram. The closed pseudo-
fermion loop contributes a factor

"=~ 'ZG-"'(zp) G- "'(zp+zx —zs).
&0

(3.4)

The sum over so can be performed by converting it to a
contour integral; thus

—'~P ——'(~P)'»I —
I

.3k' g; g; k&i

(2 14)

d8oP= —(2~i)-' (z,—) „)-~(z,yz, —z, —) „,)-~
& &szp+1 fS

(3 5)
It should be noted that the total area under the curve
A +'(pp) is composed of a contribution from the
resonance peak, and a contribution from the wings of
the resonance curve. The experimentally observed
resonance intensity depends, however, only on the area
under the resonance peak, and thus the relation of the
observed intensity to (S,) is not well de6ned.

III. SINGLE-PARTICLE PROPAGATORS

The single-particle pseudofermion propagators are
defined by

(3.1)

and the functions G (z) and A (M) are de6ned, , by
relations identical to (2.2)—(2.5) with the exception
that x„=2zi „/P is replaced by z„= (2v+ 1)zi/P; this
distinction between the meaning of x„and s„will be re-
tained throughout. For completeness, the Green func-
tions G (I)= —(TIu (m)a ."I), mmmm', should also
be introduced, but the diagonal elements G (z) are
much larger than the off-diagonal elements G .(z),
mmmm' when z is close to a resonance of G(z), provided
the energy levels nz are nondegenerate. Future calcula-
tions will only make use of the value of G(z) when z is
near a resonance, so the oG-diagonal elements will be
ignored. Furthermore, if the interaction is assumed to be
simply the s-d exchange interaction, which conserves the

. U. Ever&a and B.N. Ganguly, Phys. Rev. 1N, 594 (1968).
{This paper also contains references to earlier calculations of
(~s) )

ZpI

V p»(

V

m'

zo+zl z2

Fxo. 1. A diagram contauung a closed
pseudofermion loop; the dashed (full)
lines represent conduction-electron (pseu-
dofermion) propagators.

where C is a contour which runs up the right-hand side
and down the left-hand side of the imaginary axis. The
contour running up the right-hand side of the imaginary
axis can be closed at infinity in the right half-plane and
can thus be considered to enclose the entire right half-
plane; similarly, the contour running down the left-
hand side of the imaginary axis can be considered to
enclose the entire left-hand plane. The integrand in
(3.5) has two poles in the right half-plane and the
residue to each is proportional to e &". In general,
associated with each closed pseudofermion loop is an
independent energy variable (such as zp in the above
example) which appears in the argument of each
pseudofermion Green function associated with the loop,
and nowhere else; the sum over this energy variable
can be performed giving a contribution proportional to
e t'" as above. Thus all diagrams containing closed
pseudofermion loops can be neglected.

The rules for calculating the contributions of the
various self-energy diagrams will now be stated ex-
plicitly. Examples of such diagrams are shown in Fig. 2
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where all 6rst-, second-, and third-order diagrams are
displayed. The full lines representing the pseudofermion
propagators are always connected to the various vertices
so as to form a single line running straight up (that is,
without kinks); since in the eth order, there are m!

other ways connecting these lines, each of which gives
an identical contribution to the self-energy, the pro-
cedure of considering only the diagrams indicated can-
cels out the factor (e!) ' appearing in the expansion of
the S matrix. The contributions of the self-energy
diagrams are calculated as follows:

(1) With each eth-order diagram associate a factor
(—1)"+~P, where f is the number of closed conduc-
tion-electron loops.

(2) With each vertex associate a factor J» as
indicated in Fig. 2(a).

(3) With each (dashed) conduction-electron line
labeled by z„, p associate a factor g„&'&(z„) = (z„—e„)
if the line leaves and enters the same vertex, a factor
exp(«„0+) should be included.

(4) With each (full) pseudofermion line labeled by
z„,m associate a factor G @'(«„)= (z„—)I,„)—'.

(5) Restrict the number of independent z's by put-
ting the total s in lines leaving the interaction equal to
the total s in lines entering the interaction.

(6) Sum over all p's, internal m's, and independent
z s.

giving

M &'&(z„) = Q j J„„„,. ~'
m~yy~

XG- "'(z.+en —en )f+(su)f (ep ), (3.7)
where

The sums over the z's can be performed for a general
diagram with no greater difhculty if the following points
are noted. The variables 2' associated with each conduc-
tion-electron line Pz~ and zs in the example (3.6) $ can
be chosen independently as can the variable associated
with the external pseudofermion line (z„ in the above
example) and this choice completely determines the
s variables associated with the internal pseudofermion
lines. It is convenient to label all electron lines (here-
after the term electron line refers to an upward directed
line) by a positive z variable Le.g. , +zq as in (3.6)j
and all hole lines by a negative z variable fe.g., —zs
as in (3.6)); all z variables in the arguments of pseudo-
fermion Green functions are then prefixed by a positive
sign. The sums over the s variables are now performed
using the relations

As an example, the second-order self-energy corre-
sponding to the diagram of Fig. 2(c) is given by

c1eg m~yy~ f ('r)F( e~) (3 8)

XG "'(.+ + )g "'( )g "'(—) (36)

The sums over s& and z2 may be performed by contour
integration as was done in going from (3.4) to (3.5),

P

fAlYl pp

(a) (b) (c)

il ]

/

/

(0 V

/
ee P

(e)

FIG. 2. Illustrating (a) the labeling oi the interaction vertex;
and (b) the erst-order, (c) the second-order, and (d) and (e) the
third-order pseudofermion proper self-energy diagrams.

where C is the contour referred to following Eq. (3.5)
and F(z) is a product of all G~'s whose arguments
contain the variable s associated with the particular
electron or hole line under consideration. Because s
occurs with a positive sign in the arguments of all of
the G 's, the poles of F(z) will be in the right half-plane
and at a distance of the order 'A from the imaginary
axis, and can thus be ignored in performing the contour
integration since their residues will be of order e ~".

In the quasiparticle approximation for G (z) as given
by Eq. (3.3), 3f (z) is replaced by 3II (X +i0+) when
z is in the upper half-plane LG in the lower half-plane
can be determined by noting that G*(z) =G(z*) and
~*(z) =~(z*)j. Following the above arguments
through to their logical conclusion leads to a convenient
set of rules for the calculation of 3E (X +i0+), which
will be simply called 3f from now on. The contribution
of a particular diagram to M is thus found by asso-
ciating a factor (—1) with each closed electron hole
loop, a factor f (e„) with each electron line, a factor
(—1)f+(e~) with each hole line (conduction-electron
lines leaving and entering the same vertex are to be
treated as hole lines in this respect), a factor J„.».
with each vertex as shown in Fig. 2(a), and a factor
6 ~ with each pseudofermion line. The factors 6 ") are
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/

m"ep ~p"iO

is that the system is assumed to be in thermal equilib-
brium at a nonzero temperature, a condition which
means that a thermal average over the conduction-
electron states must be taken, as in (3.9) .

3f can be written in the form

3f =s.—zr. , (3.11)

Fxo. 3. Illustrating the determination of the energy denominators
in the expression for M .

determined in the same way as energy denominators
are in ordinary perturbation theory; a horizontal line
is drawn between two vertices and a line crossing it in
an upward direction contributes an energy +e, whereas
a line crossing it in the downward direction contributes
an energy —e, an example is given in Fig. 3.

The self-energy M can thus also be calculated from
the formula

where H is given by Eq. (2.10) with X=0 and the opera-
tors a ta ~ replaced by ~

m)(m'
~

since the operators in

(3.8) are meant to act in the original spin space, and
not the pseudofermion space; ) m) is an impurity spin
eigenstate of energy e,

~ f) is an eigenstate of the un-

perturbed conduction-electron system with energy E~,
and P&=e ~8~/g~e ~ r is the probability that the
state

~ f) is occupied if the conduction-electron system is
assumed to be in thermal equilibrium. It is a straight-
forward matter to construct a diagram technique to
evaluate the perturbation series implied by Eq. (3.9)
(the subscript P attached to the Anal ket means that
only proper self-energy diagrams are to be included)
and to show that the rules one obtains in this way are
identical to the rules for 3f discussed in the preceding
paragraph.

The result (3.9) can also be derived in the same way
for a spin interacting with a system of harmonic
phonons, ( f) being in this case an eigenstate of the
harmonic lattice Hamiltonian, and V being the spin-
phonon interaction.

Equation (3.9) is important because it establishes
contact between Abrikosov technique and ordinary
scattering theory. The matrix element appearing in
(3.9) is the diagonal matrix element of a matrix R
de6ned by

R-r;-r =(~f I y+y(a.+&~—&+i0+)-'y
I

my')&,

(3.10)

The definition (3.10) of R corresponds to that used. by
Goldberger and Watson" in their general quantum-
mechanical discussion of the lifetime and decay of
virtual states. The main diBerence between our dis-

cussion and ordinary quantum-mechanical discussions

where 6 and 1' are real. It is evident from (3.3) tha, t
corresponds to a shift of the energy level nz induced

by the interaction, and F corresponds to the level's
width. The expression

where

m/
(3.12)

is simply a statement of the optical theorem. " The
existence of the transition probability m ~ for m/m'
implies that the spin system will jump from state m
to state m' after a certain time and this gives rise to a
lifetime broadening of the level m. The term m

describes a broadening of the level m which does not
result from a decay process, but is due to the fact that
thermal Quctuations in the conduction-electron con-
centration near the impurity cause a modulation of the
phase of the precessional motion of the spin around
the external magnetic field.

Consider now a paramagnetic-resonance experiment
performed on a system of spin-~ impurities. In the
absence of the interaction the paramagnetic-resonance
line is a 5 function centered at the frequency ~0=&~ —e~.
Intuitively one might expect that the presence of the
interaction would shift the resonance frequency by an
amount 6 equal to the difference of the level shifts, i.e.,
h=ht —h~, and would give the line a width I' equal
to the sum of the two level widths, i.e., I' = I' t+ I'~.
There are corrections to this simple-minded picture, as
will be shown in the next section, but at the moment
5 and F as de6ned by

b, =Et —d, ~ and I'=I'&+I'& (3.14)

will be computed to second and third order in the
interaction, respectively, in order to exhibit the Kondo-
like divergences occurring in these quantities. In these
explicit calculations, the simplified interaction (2.11)
will be assumed. Also, it should be emphasized that the
following explicit calculations apply only to ions
characterized by an eGective spin ~; e.g., iron-group
or rare-earth ions having a Kramers doublet lying lowest
in energy.

The contributions of the various diagrams can easily
be written down using the general rules outlined above.
The self-energy of the spin-up level to 6rst order in the
interaction, is represented by Fig. 3(b) and is given by

~~"'=(~/211) ZLf+(~~~) —f'(~») j (3 15)
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Also Nit'&= —3ft'" The expression (3.14), and all
subsequent expressions will be evaluated assuming a
density of states per unit energy range per unit volume
which is a constant p in the interval —D(ck&D and
zero outside this interval. There is no contribution to
the linewidth in 6rst order, but the resonance is shifted
by an amount

6&') =Jpco, (3.16)

I'"i =or(J'p) oooo, (3.20)

Our result (3.17) reduces to that recently obtained by
Spencer and Doniach" when coo=~,. The interesting
feature of (3.17) is the Kondo-likes dependence on
ln(D/T) which will have the effect of reducing the
paramagnetic-resonance frequency when the tempera-
ture falls below the Kondo temperature Tk /defined by
Tk =D exp( —1/J—p) j. In the case of nuclear resonance,
where mo«~„ it is interesting that the logarithmic terms
in. (3.17) and (3.18) are completely negligible in com-
parison with the terms proportional to Rv and the sec-

a result which is valid both when T&)ay, and when
T«co,. This shift of the resonance frequency is a familiar
experimentally veritable effect in nuclear resonance in
metals, "where it is called the Knight shift.

The second-order contribution to the self-energy can
be obtained from (3.7) by letting s„=),„+z0+ and using
(2.11).At temperatures such that T))coo, the net level
shift d Lgiven by Eq. (3.13)$ is given by

hi@= —2(J'p) j TLI (D/T)+C) b 1 2I—, (3.17)

where C is a constant roughly equal to unity and Be=
cop —co . At temperatures such that T«coo, the shift is

6&z& = —2(J'p) z
I coot ln(D/coo) +1)—R& ln2I. (3.18)

The second-order contribution to the linewidth F
/given by Eq. (3.13)j is

rto& =zrL(Jp) z+2(J'p)')T, T»coo (3.19)

ond-order correction to the g shift is thus essentially
temperature-independent; this is of little practical
importance, as Jp is so small that the first-order correc-
tion (3.16) is by far the most important one. At high
tempera, tures, the linewidth LEq. (3.19)$ has contribu-
tions both from the lifetime broadening and the phase
modulation processes described following (3.12); these
are proportional to J" and J', respectively. As one
would expect, in the low-temperature limit, the lower
level remains perfectly sharp (i.e., I'ii@=0); the upper
level is, however, broadened by the spin making a
spontaneous transition to the lower level and emitting
an electron-hole pair.

It is in third order that logarithmic terms erst appear
in the expression for the linewidth. The third-order
terms )Figs. 3(d) and 3(e)j can be divided into two
classes, those which contain the spin-Rip interaction
J' and those which do not. The contribution of the
terms in which J' does not appear to the spin-up self-
energy is

M, =2(J/2fl)z P (—1)»z-
k1kgkezr

(ekg ekz+z0 ) («z oks+z0 )
whereas their contribution to the spin-down self-energy
is M~= —Mt. Since Mt = —M~, these terms cannot
contribute to the linewidth. They will therefore be
ignored, as we intend to evaluate only the linewidth,
and not the shift, in third order.

The assumption that the density of states is an even
function of energy (energy is measured relative to the
Fermi surface) will often be used to simplify expressions
from here on, and in fact has already been used in
writing (3.20) .

The terms in third-order perturbation theory con-
taining spin-Qip processes give contributions to the
self-energies of

and.

f'( ~ )f'( ~ )f ( )
&0 j 0 k, k,k, (ok, —ok,+R)+i0") («, ek,+i0+—)

f"( .O)kf'i( «i)f («st)
O kykskz (Okr Oks+~~+Z ) («s Oks+~OO+Z )

(3.22)

~(,) 2/J~ J ~ f (",i)f (ek, ~)f ("., )
M~ =2( —I—

&0) 0 k, k, k, («,—«,+i0+) («, «, ate+—i0+—)

The evaluation of I' using (3.13), (3.22), and (3.23)
gives

I'"' =—12zrJ zJp'Lln (D/T) +CjT, T»ce (3.24)
and

4zrJ'zJps[in (D/~o) +1)coo, T&«oo (3 25)

where C is the same constant as appeared in (3.17).
'o A. Abragam, PrinciPles of Nuclear Magnetism {Clarendon

Press, Oxford, 1961).

(
f'(« t)f"(«.t)f (Oksi)

0 0 k, k,k, (ek, ok, 4)+—z0+—) (ek, ek, 8co—+z0+—)
(3.23)

Notice that the correction (3.24) to the linewidth
tends to narrow the line below the Kondo temperature
if the s-d exchange interaction is ferromagnetic and
broaden it if the interaction is antiferromagnetic; thus
an experimental measurement of the linewidth as the
temperature is lowered below the Kondo temperature
allows the sign of the exchange integral to be determined.
Also, a detailed study of the individual level widths in
the low-temperature limit shows that the lower level
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G +(X)= R

il il

iR I

il &

(a)

(c)

(b)

ii

I I

r

il ii

(4)

PIG. 4. The full two-pa, rticle correlation function is represented
by (a) plus (b); the Bethe-Salpeter equation (c) determines the
reducible particle-hole interaction E in terms of the irreducible
interaction I; the second-order irreducible interaction is shown in
(d).

remains perfectly sharp, and that the broadening of the
upper level is a purely lifetime broadening which is a
result of the spin making a spontaneous transition from
the upper level to the lower one.

It is an interesting fact Lsee Eqs. (3.17)—(3.19), and
(3.25)j that results which are applicable in the limit
T(Q(a)p are obtained from those applicable in the limit
T))cog simply by replacing T by ~0."'I'urther inspection
of the above results shows that at temperatures greater
.than the Kondo temperature Tl„ the higher-order
corrections to the perturbation series appear to be
getting smaller; this is also the case if the magnetic
Geld is strong enough that ~p& TI,. lf ~0& TI, and Tg Tg„
however, a nonperturbative approach to the problem is
required. This situation is to be expected, as it is
analogous to the one which arises in the study of the
electrical resistivity'' and many other properties of
dilute magnetic alloys.

Note a&ed ie proof. Y. I. Wang and D. J. Scalapino {un-
published). These authors have derived similar formulas for the
Jine shag @nQ linewidth in the zero-temperature high-Geld limit.

IV. TWO-PARTICLE PROPAGATOR

A rigorous theory of paramagnetic resonance should
not be based on the intuitive speculations concerning
the significance of M which were presented in the
previous section, but should be based on a study of the
two-particle propagator with the aim of evaluating

+(co) $cf. Eq. (1.2) j. In this section, the impurity
will be assumed to have a spin 5=—,', and the propagator
to be studied is G +(I) which is defined by Eqs. (2.9)
and (2.7). The function G ~(x„) is related to G +(I)
by Eq. (2.3) and can be evaluated diagrammatically;
A +(&o) is then obtained from G ~(x„) by using (2.5).

and
(4.2)

F„(zs) =Gt (zs)Gl(zs —x„). (4,3)

As a first step in the evaluation of G +(x„),consider
only the free part, G +~(x„), which is given by the
first term on the right-hand side of Eq. (4.1), together
with Eq. (4.3) . The sum over zr can be carried out most
easily by making use of the spectral representation (2.4)
of the 6 's, with the result that

—co —m 2' 2' xp lo+cg

(4 4)

where the factor e &"'—e which had appeared under
the double integral sign in Eq. (4.4) has been replaced
by e &i~(1—e z"'). The spectral functions are deter-
mined using (2.5) and (3.3) and are found to be

A„((u) =21' P(co—X —d )'+I' '] ', (4.5)

where F and 6 are functions of ~ determined from
the self-energy by the relations M (co&i0+) =A (&o) W
iI" (M). Since the major contributions to the double
integral over cu and &o' in Eq. (4.4) come from the

The full Green function, represented diagrammati-
cally in Fig. 4, is a sum of two terms, the free part
LFig. 4(a) j and the bound part LFig. 4(b) j.The rules
for evaluating G +(x„) are the same as the rules for
evaluating G (x„) except that an extra factor
e&l(1+e ~"&) 'p ' must be added; also, double solid
lines are used to represent the full pseudofermion Green
function G„(z„). The wiggly lines at the top and bottom
of each diagram are associated with the external micro-
wave Geld and labeled by x„; this is merely to ensure
the proper energy conservation relations between the
s variables associated with the pseudofermion propa-
gators and there are no additional factors associated
with these wiggly lines or the uppermost and lowermost
vertices. All pseudofermion lines shown in Figs. 4(a),
4(b), and 4(c) directed upwards (downwards) are asso-
ciated with spin-up (-down) propagators; other
labelings may be possible, but their corresponding con-
tributions to G ~(x) near x=cos will be negligible if the
spin energy levels are nondegenerate. The bound part
of G +(x„) illustrated in Fig. 4(b) is a product of four
single-particle propagators and the reducible particle-
hole interaction R which is given in terms of the irre-
ducible interaction / by the Bethe-Salpeter equation
illustrated in Fig. 4(c). Thus G +(x„) is given by

e-~"l(1+e Z"')G (x) =P 'QF (z)
Zj.

+P 'QF. (zi)A(», »)F.(zs), (41)
Zl& Z2

where

~v(»y Zs) J~(zl) ZS) +p ply(sly ZS) Py(ZS) Ry(zs) ZS)
Z3
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regions of the maxima of At (cp) and A~(cp') at cp

and cp'~li~, and since the variation of the self-energy
with frequency is small over the width of the spectral
functions (this can be easily checked in the low orders
of perturbation theory), 6 (cp) and F (cp) can be
assumed constant and. equal to 6 (X ). The integra-
tions over the frequency variables in (4.4) are now
easily performed by contour integration, with the
result that

6 +(*)= tanh-,'(P~p) (x—~,+iF)-i, (4.6)

where cpip=cpp+6, b, and F are given by Eq. (3.13),
and x is assumed to be in the upper half-plane (the
tilde on 6 means that 6 is identical to G only when x
is in the upper half-plane). The spectral function asso-
ciated with (4.6) is

A ~~(cp) =tanh-', (Pcpp) 2FL(cp —cpii) P+FPj '. (4.7)

Thus, in this approximation, the absorption line is a
Lorentzian centered at the frequency cd ——a.p+6 and
having a half-intensity half-width equal to F, which
is just what was predicted on intuitive grounds in
the preceding section.

There are significant corrections to (4.7), however,
which come from the bound part of the two-particle
propagator. As a first step in attempting to estimate
these corrections, it is assumed that the irreducible
interaction I is given by its lowest-order contribution,
namely, the second-order contribution shown in Fig.
4(d). Furthermore, the simplified interaction (2.11)
will be assumed throughout this section. Explicitly, I
is given by

I(si&») = (I/2fl) (1/0) Z ~~wpgm(zp) gpp(sp+sp s&) ~

glg23

The sum over z3 is easily performed. An important
property of I(ei, ») is that it is a function of si—» only,
which allows it to be written in the form

I(si—») = (2s.)-' dcp I(cp) (si—sp —cp)
—

'& (4.9)

where

I(cp) = —(2p) (1—ee") (I/20)'

X ~a...f+(.„,)f(;.)~(~ ;-,+.„,) (—4.10).
PlP2

When Eq. (4.2) for E is iterated and substituted into
Eq. (4.1), it is found that the contribution to G +(x„)
of the term which is of the eth order in the irreducible
interaction is given by

G c~&(x ) =ee"c(1+e-e p)
—'p-&~+'&~F (z )I(s —s )

XF,(»)I(»—») ~ .F,(z,+i) . (4.11)

The introduction of the representation (4.9) of I(si, »)
makes it possible to do easily all but one of the sums

over the z variables, with the result that

e~'& " ( dcp; I(cp;) )G-.'"'(*,) =, ,„,ll I,

e n

X QF„(s+Qcpg) F„(s+Qcp;) ~ .F„(s+pp„) F„(s).
t=2

(4.12)

To proceed further, the approximate expression;

F.( ) = (*,—.+'F)-'I ( —,-l ~)-'-( -~t)-'3,
(4.13)

is used (the tilde again indicating that x„ is in the upper
half-plane). This can be derived by introducing the
spectral representation for the G 's into Eq. (4.3) and
proceeding in much the same way as was done in going
from (4.4) to (4.6).Equation (4.13) is now substituted
into (4.12) and the final sum over z is performed by
contour integration. %hen evaluating the residues, the
approximation

F„(Z&+x„P~)=F„(X&+~)=i~&(~) (x„—~,giF)-
(4.14)

will be used. In arriving at (4.14), x„has been put equal
to cpp+i0+ in the square bracket in (4.13), since when
the sum over s in (4.12) is performed, the square bracket
referred to gives a factor which is slowly varying near
x„ppp+i0. In the way just indicated, one finally
arrives at the expression

g oa) (x)

=tanh-,'(Pcpp) (I+1)(—iF' )"(x—cpip+iF)
—C"+'&, (4.15)

where

dcp 8(cd) =-', s (Jp) 'T, (4.16)
I(cd)

which is to be compared with Eqs. (3.19) and (3.20)
for F. The series defined. by (4.16) can be recognized
as the derivative of a geometric series which, when
summed, gives

6 +(x) = tanh-', (Pcpp) (x—cpip+iF) I x—cpip+i(F+ F') j—'.
(4.17)

The spectral function corresponding to (4.17) is

A ~(cp) = tanh-', (Pcpp)

2(F+2F') (~—~ )'+2F(F/F')P
I (cp —cpa)'+ (I'+ F') Pj'

where, to be consistent, ~~ and F should be calculated
only to second order in J. Equation (4.18) can be seen
to describe a line which is approximately Lorentzian in
shape and which has a half-intensity half-width roughly
equal to I'+I". The inclusion of the bound part of
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the two-particle propagator in the theory thus makes
little difference to the qualitative features of the reson-
ance line shape, but is necessary to obtain accurate
quantitative results.

It should be emphasized here that the mathematical
methods used above are somewhat lacking in rigor, and
a more thorough investigation of the behavior of Eq.
(4.1) is certainly necessary. A worrying feature of the
above work is that while the approximation (4.14)
appears to be a reasonable one to use when calculating
the individual terms of the perturbation series, the
presence of the b function is a crucial factor in deter-
mining the fact that (4.15) is simply the derivative of
a geometric series, which is the result that allows us to
sum the inhnite series explicitly. It would be more
satisfactory to have been able to effectively sum the
perturbation series before making any approximations,
but this appears to be much more dificult and we have
not succeeded in doing this so far. In spite of these
de6ciencies, however, there can be no doubt that the
magnitude of each individual term in the perturbation
series is estimated correctly by (4.15), and that to
obtain G +(x) when x is near ops requires a, study of
G +(x) to all orders in the irreducible interaction.

The theory of Kubo and Tomita' "assumes a Lorent-
zian line shape, for which they calculate a width which
is given by I'+21", where I' and I" are given by Eqs.
(3.19), (3.20), and (4.16) above. Our lowest-order
results agree approximately with Kubo and Tomita's
results, but a detailed comparison is not possible until a
rigorous solution of the Bethe-Salpeter equation is
obtained.

V. EFFECT OF THE CONDUCTION-ELECTRON
MOMENTS

The lowest-order contribution of the conduction-
electron moments to the total susceptibility will be
calculated here to show that these terms become in-

creasingly important when the conduction-electron
spin-resonance frequency co, is sufEiciently close to the
spin-resonance frequency coo. This contribution can be
obtained from the propagator

Gx(u) =e&"&(1+e &"') '(TIS (u)s+}), (5.1)

where 0 is the total conduction-electron spin. Equation
(5.1) describes one of the cross terms which occurs in
the susceptibility tEq. (1.1)j when M, is taken to be
the moment of the impurity spin plus the total conduc-
tion-electron spin moment. The zero-order contribution
to (5.1) vanishes, and the first-order contribution,
illustrated in Fig. 5(a), gives

G„&'&(x„)= —(J'/0) tanh-', (P o) (x„—o~p) (x„—o~,)

(5 2)

when the sums over the internal s variables are per-
formed. The contribution of the other cross term can

be obtained from G(u) =es"~(1+e ~"') '(TIs (u) S~});
its lowest-order contribution is illustrated in Fig. 5 (b)
and turns out also to be given by Eq. (5.2). The absorp-
tion as calculated from (5.2) is

Ax'"(a&) = —27' p(c0/b&)

X tanhs (Pros) Lh (oi —cos) 8(o—i oi,)—j, (53)
where bcv=~o —co,. Absorption at the impurity spin-
resonance frequency is indicated by the 8 function
8(o&—

o&s) in (5.3), and its intensity can be seen to be a
factor J'p(co, /8~) weaker than that given in Eq. (4.6) .
This term becomes increasingly important as coo becomes
close to co„and when J'p(co, /bee) is suRiciently large,
contributions of the conduction-electron moments to
the total susceptibility can not be ignored. It appears
that this could be the case even when Ro is greater than
the width of either of the resonance lines.

These considerations dehne the limits of validity of
the work in the previous sections only at sufficiently
high temperatures. Below the Kondo temperature, the
interaction of the conduction electrons and impurity
spins is strong, ' and it is unlikely that a separation of
the susceptibility into parts will be meaningful even
if ben is relatively large.

In phenomenological studies of magnetic resonance
in dilute magnetic alloys using a modified Bloch equation
approach'~" the fact that the conduction-electron spin
motion and the impurity spin motion cannot be con-
sidered separately has Iong been recognized. There one
studies a set of coupled equations describing the motion
of the combined impurity —conduction-electron system.

VI. APPLICATION TO EXPERIMENT

The majority of impurity spin-resonance experiments
performed so far in metals have been performed on Gd,
Mn, or Ku impurities, ""and resonances corresponding
to g 2 are observed. The fact that g 2 is interpreted

(b)

I'zG. 5. Lowest-order diagrams contributing to the cross terms
(between conduction-eiectron spina and impurity spina) appearing
in the total susceptibility.

's H. Hasegawa, Progr. Theoret. Phys. (Kyoto) 21, 483 (1959)."D. L. Cowan, Phys. Rev. Letters 18, 770 (1967).
22 S. Shultz, M. R. Shanabarger, and P. M. Platzmann, Phys.

Rev. Letters 19, 749 (1967)."J.Owen, M. E. Browne, V. Arp, and A. F. Kip, J. Phys.
Chem. Solids 2, 85 (1957); D. Shaltiel and J.H. %ernick, Phys.
Rev. 136, 245 (1964);M. Peter, D. Shaltiel, J.H. Wernick, H. J.
Williams, J.B.Mack, and R. C. Sherwood, i'. 126, 1395 (1962),
and others.
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to mean that the impurity moment is essentially a
spin-only (no orbital contribution) magnetic moment.
As noted above, our theory does not apply to the g 2
case.

A few experiments have been performed on other
rare-earth impurities in metals'4 and g values differing
greatly from two (e.g. , g 3 to 9) have been observed.
Our theory applies directly to this case. In particular,
Burr and Orbach'4 have measured the linewidth of Er
impurities in Mg from 2 to O'K and found good agree-
ment with the lowest-order Kubo-Tomita' theory. The
Kondo temperature associated with Er impurities in Mg
is thus presumably lower than 2'K.

Since iron-group impurities are in general expected
to have higher Kondo temperatures than rare-earth
impurities, it would be interesting to study the reso-
nance of iron-group ions having g@2 at low tempera-
tures. For example, cobalt resonances at g 5 have been

observed" in ScCo2 and YCo~, but the linewidth in-

creases as the temperature is lowered due to the strong
Co-Co interactions. It would be interesting to try simi-
lar experiments on these compounds, but with all but a
small fraction of the cobalt atoms replaced by another
diamagnetic metallic atom. Also, other dilute alloys of
paramagnetic ions having g/2 will no doubt be found
in the near future; should these ions have Kondo tem-
peratures in a practically attainable temperature range,
they will serve as a good test of our theory of the Kondo-
like anomalies (3.17) and (3.24). It should also be
noted (Eqs. (3.18) and (3.25) j that when top) T,
increasing the magnetic field tends to suppress the
Kondo anomalies.
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The electron-spin-resonance spectra of molecular free radicals formed from the group-IV and group-V
hydrides at 4.2'K in the xenon matrix have been observed and compared with those observed in krypton
and other matrices. From these spectra, certain properties of the free radicals and certain matrix eGects
have been derived. Molecular free radicals formed by y irradiation of a matrix containing P or AsH3
are PH2 and AsH2, respectively. From analysis of the hyperfine structure, the P-bonding orbitals of PH2
were found to have 20.6% 3s character in the Xe matrix, compared with 19% in the Kr matrix. Because of
anisotropies in the coupling and in the g tensor the hyperfine structure of AsH2 could not be measured. In
the Xe matrix the average g is 2.0050 for PH2, and 2.034 for AsH2. No spectra could be observed for SbH2,
although evidence for dissociation of SbH2 was indicated by the strong H-atom lines observed for a
7-irradiated sample of SbH3 in the Xe matrix. Molecular free radicals formed by y irradiation of the group-IV
hydrides are CH3, SiH3, GeH3, and Sn~. The observed hyperfine structure caused by the isotopes "Si,
73Ge, and " '"Sn indicate that the radicals SiH3, GeH3, and SnH3 are not planar like CH3, but are pyramidal
in structure. Noticeable difference in the isotropic coupling of "Si for the Kr matrix, 240 G, and for the Xe
matrix, 190 G, indicates strong interaction of the matrix with the SiH3 radicals.

I. INTRODUCTION

~ENERGY absorbed from a y-ray source by a rare-
~ gas matrix at low temperature is efhciently trans-

ferred' to dissociate certain simple molecules trapped
in dilute solution in the matrix. This process provides an
eGective method for production of trapped atoms and
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simple molecular free radicals at isolated points in the
inert matrix which can then be studied effectively with
electron spin resonance (ESR) .' s For many substances
this method is simpler to apply than the method of
producing the free radicals in the gaseous state and
then trapping' them at low temperatures. From this
laboratory we have reported studies of radicals formed
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