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where Ep'(k, 0) are the initial values for the hydrodynamic equations. The prime is used to distinguish
these initial conditions from the physical conditions Ep(k, 0), since in general they differ'4 [see Eq. (A.3)].
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A quantum-mechanical formulation of the theory of Frenkel excitons in a simple liquid is
given with attention focused on the interaction of the exciton with the collective translational
excitations of the liquid. Using a Born-Oppenheimer approximation to define a basis, the
nonadiabatic term which describes the coupling of the exciton to the momentum density of the
liquid is treated as a perturbation. It is shown, by use of Green's-function methods, that
this coupling to the collective modes of the liquid is more important than is elastic scattering
arising from the disorder in the system. The energy shift, damping, and the line shape of
the Frenkel exciton are expressed in terms of the resonance interaction, the structure
function, the translational kinetic energy of the liquid, and the lifetime of translational
collective excitations.

I. INTRODUCTION

The description of the excited electronic states
of a liquid is complicated by (a) the lack of long-

range order in the liquid: (b) the short lifetime of
small-wavelength collective motions of the atoms
(molecules) constituting the liquid; and (c) lack of
detailed knowledge of the dynamics of molecular
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motion and of the possible forms of coupling be-
tween nuclear motion and electronic motion in the
liquid.

Consider, first, item (a). Nicolis and Rice
have shown that, when the coupling between elec-
tronic motion and nuclear motion is neglected, a
liquid can support collective electronic excitations
of the Frenkel type. The dispersion relation for
these excitations was derived and shown to depend
upon the structure of the liquid through the mole-
cular pair distribution function. Mor cover,
Nicolis and Rice showed that the disorder in the
liquid structure does lead to damping of the col-
lective excitations, but that that damping is small
relative to the damping arising from electron-
atom interaction. At the other extreme of the
conventional classification of electronic states,
Rice and Jortner' have shown that Wannier type
exeitons can exist in a simple liquid if the elec-
tron-atom interaction is not too strong. The two
studies citedclearly show, thatinthe absence of
electron-atom scattering disorder in the liquid is
not sufficient to destroy collective electronic ex-
citations.

There has been less progress on problems re-
lated to items (b) and (c). From model calcula-
tions Rice and Jortner, and also Rice, Nicolis,
and Jortner, ' give estimates of the effect of elec-

'
tron-atom scattering on the exciton spectrum. In
these analyses the motion of the molecules of the
liquid is described classically and by the use of
simplified models, e. g. , by the use of the small-
step diffusion or linear trajectory approximations.
The models used fail to describe collective trans-
lational motions in the liquid and do not provide a
systematic description of the variation of elec-
tronic-nuclear motion coupling with exciton wave
vector. However, the model calculations do pro-
vide predictions concerning the exciton line shape
which may be tested against experiment, an
achievement not exhibited by the more exact but
formal analysis of Popielawski and Rice. 4

Recent work by Rahman' and by Zwanzig ~
' pro-

vides us with the information necessary for a more in-
cisive description of exciton damping in a simple
liquid. Zwanzig has shown how, by the use of a
variational principle and a simple relaxation time
ansatz, a spectrum of collective translational ex-
citations can be deduced for a simple liquid.
These collective translational excitations are
short-lived (-10 "-10 "sec) when the wave-
length is of the order of magnitude of the average
intermolecular separation; they are long-lived
when the wavelength is large relative to the average
intermolecular separation. The revelant time
scale on which long and short are defined is, in
this case, the time scale defined by translational
relaxation as in diffusion, i. e. , 10 "see. Now,
from an analysis of a computer experiment Rahman
has deduced the spectrum and lifetimes of collec-
tive translational exeitations for a pair potential
model of liquid Ar. It is found that the predictions
of the Zwanzig analysis are in excellent agree-
ment with the results of the computer experiment.
It may therefore be concluded that the Zwanzig
formalism leads to a very good zero-order de-
scription of collective translational excitations in

a simple liquid.
In this paper we undertake the following tasks:

(i) A reformulation of the description of the ex-
cited states of a simple liquid in the Frenkel limit
using quantum mechanics instead of classical
mechanics; (ii) inclusion in the description of the
system the coupling between collective electronic
excitations and collective translational excitations;
and (iii) explicit demonstration of the relationship
between the collective translational excitations of
the liquid, their lifetimes, and the transition line
shape in the liquid.

In the analysis to follow we use a semi-classical
representation of the translational spectrum of
the liquid while retaining a full quantum-mechan-
ical representation of the Frenkel exciton spec-
trum. The Hamiltonian operator contains terms
corr esponding to uncoupled electronic excitations,
uncoupled translational excitations, and an inter-
action represented by the coupling of Born-Oppen-
heimer states. This approach has the advantage
that the nonadiabatic term which describes the
coupling can be written so as to display explicitly
the collective coordinates of the liquid. The
Hamiltonian used herein resembles the correspond-
ing Hamiltonian describing the electronic states of
a crystalline solid, except that in our case the
Born-Oppenheimer states are approximate and
because of the disorder in the system are not
orthogonal. To actually determine the properties
of the liquid described by the Hamiltonian men-
tioned, a closed equation for the Green' s function
of the system is developed by breaking the high-
est-order correlations between the exciton and
the translational motion of the liquid in the heir-
archy equation of motion for the Green' s func-
tion. From this approximate Green' s function
are derived the spectral function and the damping
and energy shift of the exciton spectrum.

II. THE HAMILTONIAN OF THE LIQUID

We begin our analysis by representing the
Hamiltonian of the liquid in the form

H=H +Hf +8.
e f int

where He describes the internal degrees of free-
dom of the isolated molecules, Hf is the Hamil-
tonian describing translational motion of the fluid
molecules, and Hint is the interaction term. I et
us consider only one electronic excited state and
the electronic ground state (two-state molecule).
Then, if 'az ~ and 'az ~ create an electron in the
excited and in the ground state, respectively, the
corresponding wave functions read

p '='a ~ lQ),
n n

and p '='a t l&),
n n

where I 0) is the state vector of the vacuum cor-
responding to our system. Denoting the energy
corresponding to pz' by &, (relative to the ground
state energy), the first term in (1) may be written
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in the form (Bose operators) and anticommute for n= n' (Fermi
oper ator s):

e Nn=0 e Nn 1 n n
(3) [c,c, ]=(1-2c c )6n' n' n nn'

The second term in (1) has the form

Hf =N n
+N Z V(n, m) .

when the interaction between molecules is ade-
quately represented as a sum of pair potentials,
V(n, m). For all of the general part of the analysis
we need not specify the form of V(n, m). As usual,
Pn and M are the linear momentum and mass of
the nt" molecule.

The third term in (1) contains all contributions
which depend on both the molecular and the elec-
tronic coordinates. One example of such contri-
butions is the resonance interaction. Now, again
using the second quantisation representation,
Hint assumes the form

H. =- Z ~,W(n, m)int Nn, m o, o', P, P' ' ~'pp'

p gp'
'n 'n '~ 'm'

where o, n', p, p' refer to the ground or the ex-
cited state of the molecule. The interaction energy
W(n, m) depends upon the distance between the pair
of molecules n, m and on the specific electronic
states in which the molecules exist.

When the overlap between molecules is very
sma. ll in the electronic ground state a.nd in the
electronic excited state (Frenkel limit), the elec-
tronic ground-state wave function is, in first
approximation,

|C = II y ' =-II 'a
0 n n n n

and a nonstationary localized excited electronic
state wave function is

II V '-=c„f~) .
"m~n

In the next approximation one would like to include
molecular (and possibly electronic) correlation
effects in the wave function. This can be done by
use of a. correction factor in (t) of the Jastrow
type, ' which factor includes in an approximate but
accurate form the effects of the short- range re-
pulsion between the molecules. However, inclu-
sion of short-range correlations in the wave func-
tion forces us to use approximations which we wish
to avoid at first. Our first goal is to stress the
main features of the coupling between the elec-
tronic and the translational excitations of the
liquid; the effects arising from short-range re-
pulsions between the molecules are discussed in
Appendix A. In (7), the operators cn 4 and cn are
of the Pauli type, i.e. , they commute for n w n'

H =N '+ (g ~H~g )cT' nm n m n m

=N ~Z E c c +N 'Z D(n)cn 1n n n n n

+N-'Z F(n, m)c c +H
np pl

where the matrix elements D(n) and F(n, m) are

D(n)=N-~Z W(n, m)„-N 'Z W(n, ~)

F(n, m)= W(n, m) „ (10)

The term D(n) plays the same role in the liquid as
does the term usually denoted D in the Frenkel-
Davydov theory of the electronic states of molecu-
lar crystals. ' This interaction leads to a shift of
the entire electronic manifold relative to the spec-
trum of the free molecule. The term F(n, m) de-
scribes excitation exchange between the molecules
n and m.

In a liquid all molecules are equivalent, and
therefore D(n) does not depend on the molecule in-
dex n. Let the Fourier transform of the excitation
exchange-interaction energy be defined by

F(k) = (2~) ' fdRF(R) e (11)

with the inverse transform

F(n —m)= (2m) fdkF(k) e
'

n m (12)

Correspondingly, consider the new operators

ik R„ (13)

1 —zk H
a.nd c =N M e "c~n n (14)

The operators defined by (13) and (14) satisfy the
commutation relation

—Ig i(k —k') Rnn'

The fact that the cn have Fermi character for n = n'
reflects the observation that only one excitation is
allowed at a given molecule at a given time. If
we consider only weakly excited states of the liquid
the occupation number (cn ~ c„)will be small com-
pared to unity, and the system behaves as if it had
pure Bose excitations. This limit will describe
the system when E1))p&T. Corrections to the
Bose approximation can expressed in terms of
short-ranged dynamical interactions between the
excitons (see Appendix B).

Now we shall assume that the set of the functions
(gn) is complete, so that the true exciton wave
function may be expressed in terms of the Qn).
In this approximation, the Hamiltonian operator
may be represented as
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It is now recognized that the right-hand side of
(15) is the (k —k')th Fourier component of the den-
sity fluctuations in the liquid, i. e. ,

~- 1 g i(k —k') Rn (16)n'

where St =& ~ncn~cn is the number operator

and

g —p +g)

Using (13)—(15) the Hamiltonian displayed in (9)
may be rewritten in the form

H = $0&+(2m) '+fdkF(k)ck tck+H, (17)

Although the Hamiltonian operator (17) is diagonal
in k, the energy F (k) cannot be interpreted as the
energy of an elementary excitation because the
operators c and c ~ are not canonical operators.k

III. THE BORN-OPPENHEIMER APPROXIMATION

The operators defined by Eqs. (13) and (14) clearly depend upon the instantaneous positions of the mole-
cules and do not commute with the translational kinetic-energy operator. We can use this property of
ck f and ck to expand the right-hand side of (17) in a form suitable for the application of perturbation
theory. For our purposes a convenient representation is obtained by use of the Born-Oppenheimer separa-
tion. " That is, we propose to fix the molecular positions and to determine the corresponding electronic
eigenfunctions and eigenvalues, and then to couple the states so defined by the molecular translational
kinetic- energy operator.

The first step in our analysis is the demonstration that the function

!!C!-)= c~ & I & ) (19)

is an approximate Born-Oppenheimer eigenfunction. Consider the equation

[$0&+ (27!) '~'f dk'F (k')ck, ck,] I!I!k)= $(k)

leak)

. (20)

Using (13)-(15)for the product of operators ck~ t ck' we now rewrite the left-hand side of (20) in the form
[using (19) and (16)]

$ &+ (27!) ~ fdk~F(k')c, ~ c-,c-~
I 0) = [$ c-~+ (2m) ' 'f dk'F(k')p- -,c-,~]!0)0 'k kk — ok

—3 / 3

=[$ +(2v) ~ fdk'F(k') Z e ~ m ]c-~in)=[$ +(2v) ' fdk'F(k')g(k-k')]lq-). (21)

The expectation value of S(k —k') is the structure function of the liquid. It then follows, using (20), that

$(k) = $, ~(2~)-31' fdk'F(k')S (k —k') (22)

is the eigenvalue corresponding to the eigenfunction gk.
When the right-hand side of (17) is expanded. using the Born-Oppenheimer separation, further analysis

requires consideration of those operators that create or destroy excitons formed from the Born-Qppen-
heimer states. We denote these operators by bk1 and bk, respectively. Note that ck~ and ck depend upon
the instantaneous positions of the molecules and do not commute with the translational kinetic-energy
operator, whereas bk~ and bk do commute with the translational kinetic-energy operator. The difference
in behavior arises because b 1 and bk are defined to create or destroy exciton states on the Born-Oppen-k
heimer basis, and in that basis the molecular coordinates are regarded as parameters.

In the Born-Qppenheimer basis the exciton part of the system Hamiltonian is, by definition,

H ' = $31+(2~)-'~' fdkF(k)b„- b„-,

whilst the interaction term is

—1, 1 8, 8 - 1- 1, 1 s'
t ( )&

fWfdk 22M k Qk bk bk, (2 )&Nf" f"'~ 2~ &k ~ b b
27) 3X

n &R 8%~ ~R k

Since we know the explicit form of the wave function we can evaluate the matrix elements easily;
(24)
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7 —i(k —k') ' R„=ike b, 2 —i(k —k') 'Q
BR '

n

(25)

The substitution of (25) and the Fourier-transformed momentum density

J =x Z e'q' '&(s/sic )
q n

into (24) leads to the following expression for the interaction contribution to the Hamiltonian in the Born-
Oppenheimer basis:

H;,t =2iif(2, )= fdkfdqqbk bk, q q+4M(2, )3 f~ f '(~'+b ')pk (26)

The relative wave vector q is defined as k' —k. The first term in Eq. (26) corresponds to the exciton
lattice coupling in a molecular crystal. " In Appendix C we show that the coupling constant has the same
structure as the one derived by Davydov. " Our result, on the other hand, does not depend on the existence
of a crystal lattice but only on the use of the Born-Oppenheimer separation. The second term is, essen-
tially, the kinetic energy the exciton has in common with the molecules. Our final Hamiltonian now reads

77 =d, k7+ k'„fdkfdk'(k(k)((kk, + ~ Pk, k (k bk, —
k 7', , fdkfdklbk kk -d-. (77)

The appearance of z q in Eq. (27) is particularly significant, because Zwanzig' has shown how an ansatz
relating to the time rate of change of f q may be used to generate an approximation to the spectrum of the
collective translational excitations. Zwanzig assumes that the time rate of change of j follows the equa-
tion of a damped harmonic oscillator q

d2, 1d
dt' q q q ~ dt q

, Z =-co '~ ———Z (28)

with the lifetime ~ determined by the frequency-dependent shear and bulk viscosities (q, (t7) and the
infinite-frequency shear and bulk moduli (G and K ). In fact, Zwanzig shows that under the assumption
that 7 is independent of the wavenumber

„=gq+ y)/(&G„+a„) (28)

while a variational ansatz leads to the spectrum

(I +2e e- )q' ——fdFig(R)(cosy R —1) e
~

V(R)
q~ sR/

with g(R) the pair correlation function, and &q~, eq8 orthogonal unit vectors, e q2 lying along q, i. e. ,
eq8=q/tqt. The normal coordinates, whose time variation is described by the sPectrum &uq are just J
y (i/(d&)(d/dt)Jq. As mentioned, the predictions of this simple analysis are in good agreement with the
resul(s of Rahman's computer experiments, ' even for short wavelength collective excitations. The
ansatz displayed in Eq. (28) seems accura'te over a much larger range of excitation wavelength than might
have been anticipated. (In a recent paper Zwanzig has justified the use of Eq. (28) from an analysis based
on generalized hydrodynamic considerations. ')

IV. THE EXCITON SPECTRUM

To determine the exciton spectrum including interactions between electronic and nuclear motion, we cal-
culate the poles of the one exciton Green's function defined by

+ 00

((b ;b-)) =
(2 )„, f dte (t) ( [bk (t), b ] ) e (81)

In Eq. (31) d(t) is the Heaviside unit step function, ( ~ ~ ~ )& refers to an average over the canonical ensemble
with full Hamiltonian H&, and bk j(t) is the Heisenberg operator corresponding to b k j:

$( )
iHTt - j' —iHTt

(32)k

Consider the equation of motion of bk (t); this is
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In the kinetic-energy term, which results from the coupling to the molecular motion, we neglected nondj. a-
gonal elements which lead to unimportant elastic-scattering contributions. %e now average both sides of
(33) with respect to a canonical ensemble and take the Fourier transform of the resulting equation. It is
found that

[8 (k) —c] ((b-;b )) = 1 +,/, Jdqq((b J;b )) (34)

with ST (k) =($(k)) T + 2», fdk'
4M S(k —k'), (»)

where S(k —k') is the structure function of the liquid. As a consequence of removing the expectation value
of 3(k —k') from the integral we have neglected higher-order correlations in the liquid. Corrections to this
factorization approximation result in elastic-scattering terms which are proportional to

&3'(k-k')) -S'(k-k')

and which can be neglected. Clearly, Eq. (34) defines a hierarchy of equations, since there appears on the
right-hand side of (34) a new Green's function. It is convenient to subdivide this new Green's function into

two parts;

« I'- - J-'h »='((Ik - &- 'I-&)+'((I'k-k+q q' k k+q q
' k k+q

IAI ~

where g
"=J ~ (i/~)(d/df) J

q q

'q 'r» {36)

is the normal coordinate related to the momentum density. The new Green s functions satisfy the follow-

ing equations of motion

[ST(k+q) —e+(o —2' ]«5k - & ';h-»
2g k+q q

' k

=m(2 '/ J'q"'«'- '-'r - - '-» 2 «'r - &- ~k&&
2M 2m''~' q q k-+q+q ' k 2z k+q q

[8 (k+q) —e-~ ——']«I-T,q 2v k+q q
' k

=2~(2w)/ ~dq'q (&&- J-'r - -' 'k&& 2 &&~r - &-

By combination of (38) and (39) we find for the Green' s function appearing in (32) the equation

(k+ q) —e—
QP~

l((f'g, q
Jq' I'k))

8 (k+q) -Z- I/~/T

7'CO~

// Jm J~ Q» ~ ~ Q~))
2~(2v)'/2 " q q' k+q+q" k" - " dt q q' k+q+q' '

hT(k+ q) —e i/v

Thus far we have used only the Born-Oppenheimer separation in our analysis. The use of the Born-
Oppenheimer separation is not an approximation so long as the coupling terms are kept. Consider now

the limiting case wherein the coupling between the collective electronic excitations and the collective
translational excitations is not strong. In this limit we can reduce the Green s function on the right-hand
side of (40) by breaking the higher-order correlations between the momentum density and the exciton. In

formal terms, we now introduce the weak coupling limit with the approximations

(( J J ib P &k)) =(J-J-~)((b ~ i;bk)) =MA T5~ ~((&k i &k))
q q k+q+q ~ k q q k+q+q ' k g q+q (41)
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(42)

The use of (44)-(46) in (38) gives for the original Green s function of interest

8 (e)(( b k,'
bk)) = 1,

(d 2 1
kBT q

where 8(e)=$ (k) —e+ ~~dq q' 8 (k+q) —e—
T 2M(2m)3i' „T e (k +q) —s —i/7'

(48)

(44)

The zeros of the function 8(e) determine the elementary excitations of the system. Also provided in 8(s)
is information about the shift in excitation energy resulting from coupling of the excitons to the transla-
tional excitations, and about the line shapes of the transitions between the ground state and exciton states.
In the weak coupling limit it is convenient to solve the equation 8(e)= Oby iteration. The first-two orders
of iteration yield

e "'(k ) = 8 (k )T
8 (k+q)- 8 (k) —i/~

e&"(k) = ST(k) —
2M(2 )„, dq q'

[8 (k+q) —8 (k)] [8 (K+q) —8 (k) —i/r] —& 2

(45)

The damping is then given by the imaginary part of & ":
2[8 (k+q) —8 (k)]' —~ '

Imp"' k —
(2 )„, dq q'

([(8 (k+q) —8 (k)]' —(o ']'+[8 (k+q) —8 (k)]' T2
q

while the energy shift results from the real part of &"&:

(47)

T [8 (k +q). 8 (k)]([8 (k+q) —8 (k)] ' —~ ' —r 'j

([(ST(k+q) —ST(k)]' —&u '}'+[8 (k+q) —8 (k)] z
q

(48)

Finally we find for the line shape function, I'(s, k), as a function of the frequency s,

T7. ' 2[8 (k + q ) —g]' —(u '
2M(2~)' '

v' ([g (k yq) —g]2 —(g) 2j2+ [g (k +q) g]27 -2
T q 7

(48)

If we introduce in analogy to the Debye frequency a frequency u&D(-10 " sec ') and a, mean frequency &,
and if we further replace the integrand by a square pulse function around q values such that ST (k +q )
—h T (k) = eq, we arrive at the following simplified result for (4V) and (48):

Immit'&(k) =k T(k'/2M)'(v/~ )(~ r) "'
B D D

Res&'&(k) = 8 (k) —k T(k'/2M)'(T/4) )(m~) '((u &) ' '
T B D

From (50) and (51) we find that the ratio of the energy shift to the dampimg is of order unity.
In an absorption experiment we measure, essentially, the imaginary part of the dielectric constant

i(k, e), which can be expressed in terms of the one-particle Green's function

j(k, e)= RO(k, e) —(4@f01 $0p /a)k)((bk, bk)),

where f» is the oscillator strength corresponding to the transition from the ground to the excited state
singled out for study& and vo(k, e) contains the contributions to i(k, e) from all other transitions. The
imaginary part of K(k, e) is

Imk(k, e) = 1m&0(k, e) - (4vfOI'IO p „/&uk)I'(k, e)/([g T(k) —e] + I'(k, e )] .

(50)

(51)

(52)

(58)
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The frequency dependence is of the Lorentzian type if I'(k, e) is assumed to be constant. However 1"(k, e)
as shown in (49) is itself a, Lorentzian, so that we are dealing with a Lorentzian-modified Lorentzian.
Deviations from a simple Lorentzian of similar nature have also been predicted by Rice, Nicolis and
Jox'tnex' ln the Wannler llmlt.

V. DISCUSSION

In this paper we have developed a formalism
capable of describing the interaction between col-
lective electronic excitations of the Frenkel type
and collective translational excitations in a simple
liquid. The key element in our analysis is the use
of Born-Oppenheimer states for an instantaneous
configuration of molecular centers, together with
the coupling between the Born-Oppenheimer states
generated by the nuclear kinetic-energy operator.
The interaction term, arising from the nuclear
kinetic-energy operator, introduces in a natural
way the translational momentum density of the
liquid. In turn, using the spectrum of translation-
al excitations derived by Zwanzig' fox a simple
model of the relaxation of the translational momen-
tum density, the spectrum of coupled electronic-
translational excitations, the shift, and the damp-
ing of an excitation are all described in terms of
the liquid structure factor, the characteristic xe-
laxation time of the translational excitations, etc.
Detailed numerical calculations will require evalua-
tion of electronic interaction matrix elements
specific to a given system, and have not been con-
sidered in this paper. Our principle result is the
generation of a formalism capable of desex ibing
the mutual interaction and influence of electronic
resonance coupling between atoms and collective
translational motion of the atoms.

As is shown in Appendix III, the same formalism,
applied to the description of a molecular crystal,
regenerates the Davydov theory of exciton-phonon
coupling. " Our theory should be applicable if the
exciton bandwidth given in the transition matrix
element +py]p is large compared to the fluctuation
of the band. We have neglected, for example, the
deviation of the energy from its mean value, when
we introduced the liquid structure function in (35).
If the fluctuation is of the same order of magnitude
as is the bandwidth the exciton will undergo inco-
herent diffusive motion instead of the coherent
motion we considered. The diffusive limit has
also been studied by Rice, Nicolis, and Jortner'
where the final line shape is of the Gaussian type.
In the other extreme, the Wannier limit corre-
sponding to a large bandwith, scattering due to
the disorder of the molecules is important. In
our case, the Frenkel limit, the main effect of

the disorder of the system is absorbed in the en-

ergy itself (Eq. 22) leaving the interaction with
the collective transverse excitations of the liquid
as a first-order effect.

We have, in all our considexations, neglected
the interaction between the liquid and the radiation
field. While such interaction does lead to level
broadening, that broadening will be small relative
to the interaction broadening we have studied.
Moreover, because of the disorder in the liquid,
and because of the allowed motion of the molecules,
momentum conservation on photon absorption is
easily accomplished and leads to no special fea-
tures in this system. That is, for typical values
of lkl -10 '(V/N)'", the momentum of the trans-
lational excitations is so much larger than Bk that
line broadening corresponding to momentum con-
servation may be neglected. It is clearly of in-
terest to carxy through a complete quantum-
mechanical description of the liquid and the cou-
pled radiation field. We hope to return to this
problem in a future publication. Finally, we mere-
ly comment that reduction of Eq. (49) to numerical
form depends upon knowledge of the electronic in-
teraction matrix elements and of the dispersion re-
lation for the translational excitations of the liquid.
At present very little is known concerning the line
shapes of exciton transitions in a liquid, or about
the lifetimes and spectrum of translational exci-
tations. Since the elastic scattering arising from
the disorder in the liquid system is negligible in
the Frenkel limit, we may, by inversion, use ex-
perimental information about the line shape to de-
termine the spectrum of the translational modes.
An interplay of theory and experiment is necessary
at this stage of development, since the theory can-
not be pushed much further without knowledge of
which interactions are important and in what direc-
tions the X-body problem may be simplified.
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APPENDIX A

Fox' the ground state and the first excited state of the exciton we have used, in the main text, a simple
Hartree product wave function. We can include the most important part of the molecular correlation in
the wave function if we introduce a, Jastrow-type wave function':

where p =q n ex[pZ. ~(n, j)]/(exp[Z. (u(n, j)]), (+=0, 1).
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Now &u(R) is approximately given in terms of the radial distribution function g(R) through the hypernetted-
chain relation"

3

(()(R) = ing(R) -g(R) +p (27)') ' Jdk [I —S(k)] e

The explicit dependence of (d(n, j) on the molecular coordinates leads to the following interaction:

(A-2)

&R BR
n n

) ( . p s~(m- j) it) (8 —i)) ))
2M(2m)' J

dk dq J i(I+ 1 —e
8R

(A-4)

The structure of our final expression is of the same type as the one used in E(I. (26) when (A-1) and (A-2)
are used in place of the Hartree product, we need merely replace the coupling constant iq by

s(u(m- j)(1 iq (R„,—K ))
m-j BK

and the energy (k "+b')/4M by

& "+&' q 9'(d(m- j) s(u(m- j)
~

'
4M 2M . BR

APPENDIX 8

(B-l)

with ao= 1; a = —2a I/(1+ v). If we expand these expressions in .x power series of the Bose operators0 ' v v —1

and introduce the result in the Hamiltonian, Eq. (9), we find terms w'sich describe the repulsion between
excitons on the same molecule. Since it may be assumed that the tra)&sition matrix element P(k) is small
compared to the local energy 8, we need consider only those interactii)ns which arise from this local
energy term. We then write the two-particle interaction as

The operators cn~ and c„defined in Eq. (7) are Pauli operators. An exact transformation to Bose oper-
ators bn~ and b„can be found, for example, in the paper by Agronovitch, » who writes

c =(Zab b )'b, c =b (Za b b )'
n v vn n n' n n v vn. n

H, =N ' Z %, (n —m)d d
n rp7

(B-2)

where d is the number operator at the position 0
n n

d =b b
n n n

We again introduce a Fourier transformation
—ik' 0

k n'

(B-3)

and find for II,

H =(2&) ' ' fdkit(k)d-~d-
2 k k

with Z (k) = (2)i) 3&2 jdRe &(f) .

(B-5)

(B-6)
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The interaction energy can be approximated by

%(R) = 8, for tR( ( r„%(R)=0 for jR I )ro

with r, a molecular radius. The commutation relations between the operators dk, dk't and bkit, 5k' are

[d b, .] =N '~ b ~, [d b, ~]= —N-'~2bk' k' k+k' ' k' k' k' —k k —k'

We can now easily calculate the contribution of this interaction term to the exciton scattering. If we ne-
glect the effect of the dynamical interaction between excitons in the interaction with the translational exci-
tatioris of the liquid we need only know the commutators

[H, b ]=2N 'I'(2m) 'I' fdq~(q)d~b~2' k q k+q
and [H, d&k ] =2N ~~2(2m) &~2 fdq'%t(q')d d

We again break the correlation, in the Born approximation, to find

((Wd ib I q b )) (dM g)((bk g~ b0)) NS(q)p ((b ' b ))qq k+q+q ' 0 qq k+q+q' 0 ex (B-10)

If the density of excitons pex-e P~o is small, the term displayed in (B-10)can be neglected. The final
contribution, 8,(e ), to the denominator of the one particle Green s function 8(e) is then

8 (e) =4(2m) ~1' fdq )p(q)['8(q)p '/[$(k+q) —e],
while the contribution to the damping is

I & t»=(2/~)~~2 fdqt~(q) t2S(q)p 'b[S(k+q)-$(k)],

and the contribution to the energy shift is

Ree "& =4(2~) '"& fdic l&~(q)i'&(q)p '/[&(k+q) —&(k)l .

APPENDIX C

(B-11)

(B-12)

(s-Is)

In this Appendix we demonstrate the relation between our interaction Hamiltonian

int 2M(2m)' k - ~k' - k k' '
BR BR

n
' n

and the exciton-phonon interaction Hamiltonian as used by Davydov"

(c-1)

(D) N
int (2m)'

- p p BF(m-j) ik' (R~o —Rj')( iq (R~ -R~')
nk k+q '

m 2n m

(c-2)

As interaction we use the resonance from

H. =N ' Z F(n —m)c eint n m
n —m

First we express the matrix element in Eq. (C-1) in terms of the interaction (C-S)

(gk[B/BK

teak,

) =(wcjk [BH. t/BR (gk, )/[g(k') —$(k)],

(c-s)

(c-4)

and evaluate the matrix element

(
BH. ~

~
int ] 1 g —ik R +ik R I BF(m-m)

[b(R R ) b(Rk ~R
k' N BK n m n m'

n

We then introduce this result together with (C-4) in (C-1) and arrive at

H. '= N fdk fdq + g ik'( m
—Rn)

int (2m)' q „~n

(c-5)
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iq ~ (K —K ) I eF(n —m) iq Itn s
x I —e n) n) e n —

bk bk
[h(k) g(k +q)j SRn SR

(C-6)

If we now consider only first-order phonon processes the energy difference $(k) —$(k +f ) may be replaced
by the phonon frequency (dg. The final result is then in agreement with the Davydov expression (C-2) for
the solid. On the other hand, we can start from (C-6) and develop the expression for the coupling constant
given in Eq. (26) by use of partial integration and by introducing the expectation value

Z e I n ( —e en n)F(n —en)) =(ke) ' Jdk'F(k')[S(k —k') —S(ke|T—k')]~. m

= S(k) —$(k+ q).
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