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An isotopic mixture of fermions and bosons has been investigated at a given pressure,
using the hard sphere diameter a as a perturbation parameter. The results agree with
those obtained before at a given density. To first order in a it is found that above a
critical pressure the mixture separates into two coexisting phases. The phase sepa. ration
curve has its top on the A. curve of the mixture. The phase separation remains incomplete
at T = 0 for a wide range of densities. The slopes at the top and the behavior near 7'. =0
of the phase separation curve have been computed. Also the osmotic pressure of dilute
solutions has been obtained.

I. INTRODUCTION

Motivated by Walters and Fairbank' s' experi-
mental discovery of the phase separation (p. s. )
in He'-He' mixtures, as well as by a remark of
Uhlenbecks' and by the success of Huang, Yang,
and Lee' in explaining qualitatively some of the
most striking properties of pure He4 on the basis
of a hard-sphere Bose gas, we investigated in
two previous publications the properties of iso-

topic hard-sphere Fervor. i-Bose mixtures. The
hope was that a study of such mixtures would lead
to a qualitative understanding of He mixtures. In
these papers, 4&' a first-order calculation in the
hard-sphere diameter a was carried out at fixed
density, which predicted (I) a phase separation
of the mixture, which remained incomplete at
T = 'K for He densities and (2) the top of the phase-
separation curve tobe on the X curve of the mix-
ture. These predictions were later confirmed for
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Here the pseudopotentials )IJ(r) are given by

(1.3a)

with

P~~= 2ma it'(m ~+m ') (f,J= F,B). (1.3b)

Although one could also easily consider the case
where the hard-sphere diameters (or scattering

He mixtures by Edwards et al. and Graf. Lee, and
Reppy, ' respectively.

In the second paper' a higher-order calculation
in a was carried out at &=0. This lead to the
prediction of the possibility of "superfluidity" of
the Fermi component in the Bose component. The
critical temperature for this to occur, however,
was extremely low.

Recently Bardeen, Baym, and Pines' discussed
the phase separation as well as the superfluidity
in dilute He mixtures in the neighborhood of T= 0
in a different fashion, by determining the effective
interaction between He' atoms in these dilute
solutions.

In this paper we present a modified and extended
version of the calculations made in the first publi-
cation': The mixture is studied now at a fixed
external pressure P instead of at a fixed density. '
Although the two treatments are different, they
lead to qualitatively identical results. This may
also be viewed as an a posteriori justification of
the earlier calculations at constant density, which
were simpler but involved unfamiliar coexistence
conditions. '

The model studied consists of a mixture of Ay
hard-sphere fermions with diameter a, mass my
and spin 2 obeying therefore Fermi statistics and
of Nghard-sphere bosons with diameter a, mass
my and spin 0, obeying therefore Bose statistics.
The total number of particles N=&Z+&g is fixed;
and if the volume is V then the total number
density n, the number densities ny and ng of the
Fermi, and the Bose component, respectively, and
the concentration x of the Fermi component are
given by

n=N/V, nF =NF/V, n =N /y, x=N /N.

The calculations are based on the pseudopotential
method of Huang, Yang, and Lee, ' which leads
most directly to expressions for the thermodynam-
ic quantities of the mixture to first order in a.

The Hamiltonian of the system is given by

lengths) of the three interactions $1~(I,J=F, B)
are different, we have restricted ourselves to the
case of equal a for all three types of the inter-
actions.

The possibility of an instability, leading to a
phase separation in the mixture, is investigated
by considering the Gibbs free energy Q, defined
by

Q =Ng(x, T,P) = F+P V

=N[xiLF(x, T,P)+ (1 x) pB(x-, T,p)J, (1.4)

where g is the Gibbs free energy per particle. It
proved convenient to calculate first the Helmboltz
free energy I' and then g from the chemical poten-
tials

Pf = (sF/sNf )y TO=F, B)'
jV

and the last relation of (1.4).
A phase separation of the mixture at given T

and P is then related to an instability domain in
which

s'g (x, T,p)/sx'& p

as a function of x. The concentrations x& and x&
of the two coexisting phases at a given P and T
are found in our calculations from a bitangent
construction to g(x, T, P) or equivalently from the
equality of the chemical potentials of the Fermi
and Bose components in the two phases, namely,

pF(x&(T,P), T,P) =I F( (T,P), T,P),

PB(x)(T,P), T,P) = PB(x (T,P), T,P). (1.6)

The p. s. curve at a given pressure P is the locus
of all coexisting points (xf, xa) for varying T, i.e. ,
of all solutions of the Eqs. (1.6), in the (x, T) plane.
The concentrations x) and x~ of the coexisting
phases will be computed as a function of the re-
duced temperature T*=T/Ty (Ty is the X tempera-
ture of the pure Bose component) and the reduced
pressure P*=2mnz a'h 'P, and the results dependB
only on the mass ratio v = m F/mB. As we will see,
this dependence is fairly weak in the neighborhood
of the value of interest, v= —,'. We will set v= —,

'
in all the calculations. P~ here plays the role
played by the reduced density in the earlier calcu-
lations. 4 '

W'e first discuss in Sec. 2 the thermodynamic
properties of the mixture at T= 0, which can all
be derived from the ground-state energy of the
mixture. In Sec. 3 the discussion is extended to
finite temperatures and the location of the top of
the p. s. curve is computed. In Sec. 4 further
details of the p. s. curve are given: the slopes of
the curve at the top and the behavior of the curve
in the neighborhood of T= Q.

One of the main differences between the hard
sphere and the He mixtures is that, because of
the large thermal expansion of the hard-sphere
mixture, the density of this mixture varies con-
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siderably with T at constant P, whereas that of He
mixtures stays practically constant. Therefore,
we have studied in Sec. 5 a hard-sphere mixture
under an external pressure P(T), which varies
with T in such a way that the density of the pure
Bose component remains for all T the same as it is
for T=O. In this way the density of the mixture
varies considerably less than when the external
pressure is kept constant.

In Sec. 6 a number of points a. o. the influence
of the excitation spectrum of the Bose component
on the results obtained, the osmotic pressure,
and the connection between the hard sphere and
the He mixtures are discussed.

F( 2 h ]

)
(„)g,3

&' )N N 7 ™F&')
B'

+[—+~2++ x(1-x)+ 2@B(l—x) ] n2. (2. 3)

To obtain the Gibbs free energy per particle, g, as
a function of x and p, one uses (l. 4) and (2. 2) and
solves for n as a function of x and p from (2. 3).

In order to investigate the stability of the mix-
ture at T=0, we compute 8'g(x, o, p)/Bx'. Using
the Gibbs-Duhem relation,

II. PHASE SEPARATION AT 1= 0 (2. 4)

At T=O all the thermodynamic properties of the
mixture can be derived from the ground-state
energy E, which equals then the Helmholtz free
energy I'.

The ground-state energy E of the mixture can
be obtained, to first order in &, by a direct gener-
alization of the existing calculations'~' for the
pure components, yielding the following expres-
sions for E (or F):

F(N,N, U, o) =E(N, N, U)
ggf

one has

s~(x, T, p)=~F(x, T, p)-V (x, Tp)
BX

d s2&(x T p) = 1 BPF(x, , T, p)
~X2 1 -X ~X

1 suB(x, T,p)
X BX

(2 5)

(2 8)

~E+~ +~ t' (2. la.) Calculating the derivatives on the right-hand side
of (2. 6) and using (2. 2) and (2. 3), one finds

where FF'=EF'-&N (g2/8~ )(3N /~U)»3 (2 lb) s'g(x, O,P)
~X

B B (2. lc)
i&2 BB

"j(4~ (3"xn) ~ "+F'4-+Bjl
+ 2PFBNF NB+ P BNB ). (2. ld)

+[,'y„~+y (l-x)]n, -

Here E~ is the ground-state energy of an ideal
Fermi gas, E~' is that of an ideal Bose gas, while
&int, the contribution to & of the hard-sphere
interaction, consists of three terms: viz. the
contribution due to Fermi- Fermi, Fermi-Bose,
and Bose-Bose interactions, respectively. The
different numerical factors in front of the three
interaction terms are due to different statistics.

All thermodynamic functions of interest can be
derived from (2. la) by differentiation. In partic-
ular, one finds for the chemical potentials p~ and
p, ~, respectively,

2/3

=8-t'sF 'I I r3..)
F)NB, U, T F k )

~4
—

(3 2 )~1~+2 FF +2IFFBx(1-x)+QB(1-x

2nav (7r/24xna ) ~3 —2(v y v ~)

(rr/24xna')'~'x'+ 2x-x2+ 2v(1 —x)
(2. 7)

Thus one sees that the mixture will be unstable
when

xna'&3@(v + v ') ', v = mF/~ (2. 8)

since for such densities and concentrations
8'g(x, 0,p)/sx'&0. To see the implications of
this condition in the (x,P) plane one needs n as a
function of x and P. For P =0, the condition (2. 8)
cannot be fulfilled, since n(x, 0, 0) =0 for any x
between 0 and 1. As it follows from (2. 3), that
xn(x, O,p) is an increasing function of both x and
p, upon increasing p a critical value p~ of p will
be reached for x=1, for which

&sFI =[0 ~+0 (1- )],
BlNF, V, T

while the pressure p is given by

(2. 2)

n(1, 0,p )a' = 3v(v+ v ') (2. 9)

For P&Pc there will be a domain of values xf «x
«I for which (2. 8) is satisfied, where x; is the
lowest value of x for which (2. 8) is satisfied. The
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value of Pe can be found by substituting n(1, 0,Pc)
from (2. 9) for n in (2. 3). One obtains

1.0 I .0

/g2 h' 4p 1+-', (v+v ')
2pm a5 c 27nr a 3v (v+v ) 0.8— —0.8

For v = ~ one has p =0. 02012, which corresponds
to P~ ——1.91 atm if one takes a = 2. 556 A and
m~ = IHe.

As a consequence of this instability of the mix-
ture, a phase separation develops in the mixture
for P&P&, starting at the value x=1 for P =P~.

Since the coexisting phases xf (T p) and x„(Tp)
lie outside the instability domain, it follows from
the above that xn(O, P) =1 for T=O. The other
phase xf (O,p) can then be found from the first
equation (1.6)":

)i 06—

Xs

x~(0)

0.4—

0.2—

—0.6

sr T~

—0.4

0.2

) E(xf (O,P), O,P) =) E(1,0,P). (2. 11)

The function xf(0, p) has been calculated with
(2. 2) and (2. 3) from (2. 11) as a, functipn pf p + and
is plotted in Fig. 1. We note that xf (0, p) &0 for
all p &pmax' so that the phase separation is in-
complete at T=O for such pressures.

The phase separation of the mixture at T=O for
P &P~ found in this section is primarily a conse-
quence of the interaction or more precisely of the
particular form of the interaction term due to the
statistics of the two components. " Although the
mass ratio appears in the formulas, the depen-

I

0 P+
C

0.05
I

0.10
I

O. I 5

dence of the results on v is weak as long as v

does not differ too much from 1.

FIG. 1 l (0),xz and T~/Tg as a function of p*
5 2= 2xmga h —p. Case (A), constant external pressure;

case (B), temperature-dependent external pressure
(Sec. 5). He densities correspond to 0. 10& P &0.».

iii. PHASE SEPARATiON FOR T & 0

At temperatures T &Othe computation of the thermodynamic quantities +g, etc. , of the mixture is com-
plicated by the A, phenomenon. To lowest order in a, the ~ temperature of the mixture as a function of x
and n is the same as that in an ideal Fermi-Bose mixture, so that the X curve of the hard-sphere mixture
is still determined by the ideal gas formulas. " We now summarize the relevant formulas for later use.

The unperturbed (i. e. , ideal ga, s) chemical potentia, ls pE and p~' a.re given in terms of the number den-
sity n and the concentration x by

xn=-2XE 'g, ( exppp 0),

(1-x)n=~~-'g. (exp' 0), T T (x,p).

(3.1)

(3.2)

Here A~ (f =E, B), the thermal wavelength of a particle, is given by

gl2-h&/2p~ j'pT (I =E,B).I (3.3)

The function g (z) is defined by the integral

0 (e) = [1/F(p)] f, dt's ze /(1 ze ). - (3.a)

The formula (3. 2) for yg' only holds for temperatures T above the A temperature T)„(x,P) of the mixture at
given x and P. The X curve of the mixture, T),(x, P), follows from the condition that pf)'=() for T=T),(x, p)
i.e., from the equation

(1-x)n[x, T (x,p),p] =y —'g, (1) =2. 612),
2

(3.5a)

Although the precise dependence of T), (x, p) on x and p is rather complicated, because n is a comp»cated
function of x, T, and P, 1'y(x, p) behaves roughly as Ty(x, p) =—T),(o, p)(1 —x)»&a,s in an ideal gas mixture at
constant density. For temperatures Tbelow T)t (x,p) the fraction t of the pose particles which occupy the
zero-momentum state becomes finite and (3. 2) has tp be replaced by
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(I-x)n(I-()=~B-'9, (1), T(7 (x, p) . (3.6b)

In the following it will be understood in formulas involving g or pBO that pBo= 0 for T( T&(x p) while ] —0
for T&Ty(x, P).

We are now in a position to write down the Helmholtz free energy & of the mixture to first order in a for
g )O3 ~15~16 ~

E(N, NB, V, T)=F o+F o+F.
int ' (S.6s,)

where FFO(NF, V, T) =N pFO+2VkZXF-3 Q, (-exp' o)
2

FB'(NB, V, T) =NBgB' —VkXX -'g, (expp~ 0)

(s.6b)

(3 ~ 6c)

F t(NF NB, V, T) = (1/2V)[ —,
' (f)FENF'+2QFBNFN +$ BN '(2-g')]. (3.6d)

Here Ep' is the free ener gy of an ideal Fermi gas, and E&' is that of an ideal Bose gas, while Pent is the
contribution of the hard-sphere interaction to the free energy. Equations (3.6c) and (3.6d) apply to both
regions T~Tg(x, p), provided that pB' and ( are taken as explained above.

The chemical potentials pF and pB follow from (3.6a)

(»
V T=pF +[—,'xpFF+(1 —x)Q ]n,F)NB»

=&B'+[ 4FB+ (1—)(2-h)4 ]
B)NF, V, T

while the pressure P is given by

(3.7)

PV]N N T F 2 E B'9,(- expPp. o) +kTA. -'Q, (expPp 0)

E, 8'

+ (4 0F~'+IF~(I x)+ BIBB-(1 x)'[1+ (I--()')jn'. (3.8)

To investigate the stability of the mixture we need the Gibbs free energy per particle g as a, function of
x, T, and P. This can be achieved in an analogous manner as in Sec. 2, with the help of the Eqs. (1.4),
(3.7), (3.8), (3.1), (3.2), and (3. 5b). For the second derivative S'g(x, T, P)/S x' one finds different expressions
depending on whether T&Q(x, p) or T&Ty(x, p), namely

fed '} (sPF

s g(„,T,P) &'"B &T &'"F &T
= fI

1-x 'Is -)

(»B' l
2 ~FF (en ) ~BB pn ) ~FF~BB ~FB

t'ag o)
+x'I s, +2&]&F~'+2/ x(1-x)+2/ (1-x)'

T & T~ (x,p), (3.9)

s'g (x, T,P)
~X

(sPF'~
&BB~(en )

" &FF~BB ~FBF T

(s4'F' }
x'I I + —'

Q x'+ 2$ x(1-x)+ Q (1-x)
enF)T 2 FF FB BB

T&T (xP). (s.10)

Here (epg/snF)T and (spB'/BnB) T follow from (3. 1) and (3. 2) and are given by

/ p, 0s) g3 (Bp. ) A.

i,snF jT 2f5gi( ex-p pp, o)-' I,sn jT pg, (exppiL 0)
'

2 2

(3.11)

We ~~~~rk that the two expressions (3.9) and (3. 10) for 8'g/sx' do not become equal at T= T~(x, p) as the
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X transition in the hard-sphere mixture is in our approximation a second-order phase transition.
For a discussion of the sign of (S'g/»') T p, we remark that the denominators of (3. 9) and (3. 10) are

always positive, so that the behavior of (ag'F/enF)T is of crucial importance. Using the fact that
(8py'/8nF )T is for fixed f an increasing function of T and a decreasing function of x, so that it assumes
its minimum at &=0, one finds

(8PF' )
(Bn j (Bn ) 4mF(3m'xn} '~' (3.12)

With (3. 12) one can rule out an instability of the mixture for T& T~(x, p). For, since (BpB /&nB)T&0 a
necessary condition that (8'&/Bx2) T p & 0 for» Ty(x, p) is

&ZB &BB&-FF ~'l"F '

2P (SnF /T 4mF (3m'xn) '~'
I'B

(3.13)

or with (1.3)

xna' & (8m/3)v-'(I-& ') (3.14)

For a mass ratio y = ~ the right-hand side of (3. 14) is of the order of 15 000, so that for T&Ty(x, p) an
instability can only occur at densities many times greater than the close packing density, For that reason
an instability of the mixture in the region T& Tg(x, P) can be disregarded for the densities in which we are
interested.

For T& T~(x, p), (3. 12) leads to the instability condition (2. 8) obtained before. Therefore, for p &Pc one
finds for the hard-sphere mixture an instability domain in the (x, T) plane, which is bordered on the upper
side (i. e. , large x) by the A. curve of the mixture [as follows from (3. 14)] and on the lower side (i. e. ,
small x) by the solution of the equation

~F ~FB ' ~FF~BB

n )T ~BB

ah'

4m' (v+ v ')
(3.15)

as follows from (3. 10) and (1.3).
Since (BpF /Bn ) T increases with T and decreases with x at fixed P, the curve xf (T p), representing the

solution of (3. 15, will with increasing x bend towards the A. curve of the mixture. The point xs, Ts where
the two curves meet is the top of the phase-separation curve (cf. Fig. 2). We have computed the location
of the top of the p. s. curve as a function of the reduced pressure from the Eq. (3.15) and the Eq. (3. 5a)
for the X curve. In the computation of the top it is convenient to use ppF as an auxiliary-independent
variable. Wethereforecomputed Ts, xs, n~ =n(xs, Ts, p) and p from (3. 15), (3. 5a), (3. 1), and (3. 8), re-
spectively, as a function of ppF' using the McDougall and Stoner tables of Fermi functions. " In Fig. 1
we have plotted (case A) xz and Tz

"—
Tz/T~ as a function of P*.

IV. THE PHASE-SEPARATION CURVE NEAR
T=OAND T= Ts

The phase-separation curve and, in particular,
the behavior of its two branches xf (T, p) and
x„(T,P) near T= 0 and T= Ts follow from the basic
equations (1.6).

We have computed (A) the slopes of the p. s.
curve at the top and (B) the behavior of the p. s.
curve in the immediate neighborhood of 7'= 0.

(A) The sloPes dxf (Ts, P)/de and de(Ts, P)/de
of the p. s. curve at the top can be found from
(1.6), or more conveniently from the equivalent
equations (A. 1) for g, given in Appendix A, using
that x„(T,p) runs above an, d xf(T, p) runs below the
~ curve. .

The calculations are carried out in Appendix A
and are somewhat complicated by the fact that
8'g(xs, Tz, P)/Bx~' =0 when the top is approached
along the lower branch of the p. s. curve. The

results are as follows:
(1) The slope of the upper branch equals the

slope of the ~ curve at the top of the p. s. curve
and is given by

dx, (T, , P) dx (T, , P)
dT d7.s s

3(1-x ) x +v(2-xJ
8,2'I I+ vs

where 5 =S(x, T,P), defined by

(4. 1)

S=I--(T / )(sn/ST n)
S

(4. 2)

has to be computed with the equation of state (3. 8)
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l,o

008

[x,n(x, , 0, P)-n(1, 0, P)]

+y (1-xf )n(xf, 0,P)j. (4. 6)

0.6

0.4

Here n(1, 0, P) and n(0, T~, P) are the density of the
mixture at x =1 and X=0 and at x =0 and
r espe ctively.

(2) Using (4. 4), one finds for the behavior of the
lower branch xi (T, P) of the p. s. curve near T= 0:

0,2
xf (T, p)= xf(0,p)+o.T', (4 't)

0,2 0,4 0,6 0.8 I.O

and is found to be of order 1.
The equality (4. 1) of the slopes of the upper

branch and of the ~ curve at the top of the p. s.
curve is a direct consequence of the fact that the
X transition in the mixture is a second-order
transition in our approximation. "

(2) The slope of the lower branch of the p. s.
curve at the top is

dx&(T, p) dx (T, p)

6T QTs s

1
3x

X ——+
2 1-xs 3S g, g, j 2~

2 2

(4. 3)

For a wide range of values of P&P~, the ratio of
the two slopes is of the order 1.5.

(B) The slopes of the p. s. curve at T=0 are
infinite, in agreement with the third law of
thermodynamics, which hoMs for this model.
The behavior of the p. s. curve near &=0 can be
found from the Eq. (1.6).

The calculations are carried out in Appendix
B and are complicated by the singular behavior
of the upper branch x„(T,p) near T=O.

FIG. 2. Instability domain (shaded area) and A, curve
in the (x, T) plane. On the upper side the instability
domain is bounded by the A. curve, on the lower side by
the solution xi (~, P) of the Eq. (3. 15). ~he lower
branch xE(&, P) and upper branch xz(T, p) of the p. s.
curve run outside the instability domain.

n(o, T p(T)) =n(o, o, p(o)). (5. 1)

where the expression for z is rather involved.
is of the order of 1.5T~ '. We remark that the 7.

'

dependence in (4. 7) is due to the fa,ct that both
p, ~'(x, T, P) and n(x, T, P) have such a Tdependence.
We also remark that the low-temperature behav-
ior (4. 7) of xf (T, P) is determined by the first of
the equations (1.6) only.

V. TEMPERATURE-DEPENDENT EXTERNAL
PRESSURE p{T)

As mentioned already in the introduction, the
hard-sphere mixture exhibits a rather large
thermal expansion at constant pressure in con-
trast to helium mixtures. Thus if one chooses,
e. g. , an external pressure P such that at &=0
and x= 0 the hard-sphere mixture has a density
of the order of that of a helium mixture at &=0
and x = 0, the density of the hard-sphere mixture
would have decreased by about 40% at T= Tp at
the same P and x, while the density of a helium
mixture under similar conditions changes only by
about 1 ~/(, .

The decrease in density can be compensated by
a corresponding increase in external pressure.
Within the model, there is no unique way of
choosing such a compensating pressure P . In
order to investigate the effect of an adjusted
pressure on the phase separation of the mixture,
we consider in this section the case that the
external pressure P only depends on the tempera-
ture, i. e. , P =P(T) and the function P(T) is chosen
in such a way that the density of the pure Bose
component remains the same for all T. "
As we shall see below, with this choice one can
use all the formulas of the preceding section
with the only modification that P is replaced by
p(T).

The functionP(T) follows from the condition:

(1) One finds for the upper branch

x (TP)=l yT'i' exP-&IT,
Q

where

(4. 4)

This condition clearly leaves P(0), or equivalently
n[0, 0, p(0)], still a free parameter. p(T) can be
solved from (5. 1) by using the equation of state
(3. 8), which gives P as functions of x, T, and n
Thus

n(0, T,p) 1~

n(l, 0, p) 2. 612
(4- 5)

P(T) = P[o, T, n(o, T P (T))]

= P [0, T, n(0, 0, P (0))] (5. 2)
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which, with (3. 8) and (3. 5b), leads to the equation

P(T) = k D '1.342+-,'g [n'(0, 0, P(0))

+(2. 612)'x ', ), T( T

dx (T,P )
xf (0) =0. 064, = 5. 38T

A.

flgul e.
Characteristics of the helium p. s. curve are '

for P(T). As the pressure P enters into the
formulas of the phase separation only through the
density n(x, T, P) it suffices to determine now
n(x, T, P(T)},which is determined by the equation

P(T) = —2kTA+ 'Q, (-exp Pp 0)
2

dx (T,P )
x (0) =0. 669, —— „'T =1.54T,-';

S

T dx (T, p )
=0. 405, ~T

——0. 84T~

(5. 6)

+kTA —~ g, (exp'&o)
2

+ ( —,
' Q~x'+ QF~x(1 x)+ —,

' -$~(I —x)'

~ [ I+(I-&)'])"(x,T P(T)), (5. 4)

dxf (T,p(T ))
x (0)=0. 125, dT

' =2. »T~-';

dx (T,P(T ))
x (0) =0. 602, dT

=1.28T~

T dx (T,p(T ))

T ' dT
~ =0 492 =1

S

(5. 5)

where P(T) is given by (5. 3) and where the Eqs.
(3. 1) and (3. 2) [or (3. 5b)] relate yF' and p o

(or $) to n(x, T, P(T)).
Thus, all the formulas of the previous sections

remain valid for this case (case B), if one replaces
everywhere P by P(T) of (5. 3). We remark that
when we now consider n(x, T, P(T)} as a function of
x, T and the free para, meter P(0), we obtain of
course a function which is different from the
function n =n(x, T, P) considered in the previous
section.

As a consequence of the above, all results
obtained in the previous sections remain qualita-
tively the same while those at 7=0 are not affected
at all.

In Fig. 1 we have drawn the curves for x~ and
Ts/T& as a, function of P*=P*(0) (case B). In Fig.
3 we have drawn the p. s. curve (solid line) as cal-
culated on the basis of (5. 2) and (5. 3) for P*=O. 13
and v= ~. The value P~=O. 13 corresponds to a
value n(0, 0, P(0))a' =0. 365, which is the reduced
density of He4 at &= 0, when one takes for the
hard-sphere diameter a, the value 2.556 A, which
equals the value of a of the 12-6 Lennard-Jones
potential for helium, as determined by de Boer
and Michels

Characteristics of this hard-sphere p. s. curve
are

+= 3 24&' ' y=345r '~' v=0327& .
A. ' A.

'

We remark that the choice u = 2.556 A has no
theoretical basis and was only made to obtain a
value of P* of the correct order of magnitude.
Changes of about 10% in a lead to values of
xf (0), xs, and Ts/Ty identical with those found in
He mixtures. It should be remarked, however,
that these 10 /0 changes in a are not consistent,
as a has to be increased to give the helium value
of xi(0), but decreased to obtain the helium
values of xs and TsPA

Vf. DISCUSSION

With respect to the results obtained in the
previous sections, we would like to make the
following remarks:

(1) The phase separation is not a true low-
density property of the hard-sphere mixture
(i. e. , it does not persist in the limit na -(I).
but only appears at (reduced) densities of the
order of w/24. Whether it is a true property
of a dense hard-sphere mixture can only be
decided by taking into account terms of higher
order in the interaction a than have been con-
sidered in this paper. That phase separation
might well be a property of a dense hard-sphere
mixture is perhaps indicated by a preliminary
investigation carried out at T = 0, which showed
that the inclusion of higher-order interaction
terms in the calculation encourages phase separa-
tion in the mixture. '

(2) In the approximation used here, the exci-
tation spectrum of the condensed Bose com-
ponent exhibits a. gap, while it has been shown
that a condensed Bose system of hard spheres
has phonon- like excitations instead. ~"' We
have therefore investigated what the effect on
the phase separation of the mixture would be if
an excitation spectrum for the Bose component
is considered, which takes due account of the
phononlike character of its low-lying excitations.
In particular, we have studied the properties of
the mixture on the basis of the following ex-
pression for the free energy'"'.

o.=1.50T, y =0. 429T "', 6 =0. 120T

For comparison we have also drawn the p. s.
curve for He mixtures (dashed line) in the same

F(fV~, , N, V T) = E O (N, V T)

+AT g ln(1 —exp —Phw )
k~0
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(6. 1)

Here E+' is again given by (3.6b), while &c the
phononenergy is given by

= (P/2~)k [0'+ 16man (1-x)$] '~' . (6. 2)

The value of $, the fra. ction of the Bose particles
with zero momentum, is given by

(I-x)(1-() =—
V p& 0 [n'+ 16man (1-x)(]"'

x exp( P»„-)/(I exp -P» )-. (6. 3)

We note that for T = 0, when no phonons a,re pre-
sent, (6. 1) reduces to (2. 1). The main differ-
ence between (6. 1) and (3.6a) is that the pure
Bose contribution to Fin (6. 1) behaves for
small Tas T', whereas it behaves as T'" [be-
cause of the (2- $') term] in (3.63). »

Computation of the low-temperature properties
of the mixture [i.e. , for T(( Ty( xP)J on the
basis of (6. 1) instead of (3.6a) does not reveal any
significant change either qualitatively or quantita-
tively in the phase-separation curve. In parti-
cular, the low-temperature behavior of the p. s.
curve, as given by the Eqs. (4. 4) and (4. 7), is
not changed and the constants o. , &, 6 are not
affected by the replacement of (3.6a) by (6.1).

(3) The dependence of the p. s. curve on the
external pressure —or equivalently on the density
of the mixture —leads to the prediction that xf(o)
decreases, while Ts/T~ increases slightly with
increasing pressure in the hard-sphere mixture.

Vf, (x, T, P) = p~(0, T,p-11) . (6.4)

Using (3. 7) and (5. 4) one can develop Il in a power
series in the concentration x for low concentra-
tions".'

(4) Figure 3 andthe Equations (5.2) and(5. 3)
indicate that the phase separation found in the
hard-sphere mixture is qualitatively similar and
quantitatively close to that found in He mixtures.
An exception seems to be the continuity of the
slopes of the ~ curve and the upper branch of the
p. s. curve found in the hard-sphere mixture
which does not seem to be present in He mix-
tures. ' As this continuity of slopes is a direct
consequence of the fact that the X transition is a
second-order transition in the hard-sphere mix-
ture, this would indicate that the ~ transition is
not a second-order transition in He mixtures, at
least at the top of the p. s. curve.

(5) In order to obtain 3, better quantitative
agreement with He mixtures, it is necessary to
include the effect of the attractive force in the
model calculations, in some way other than by a
temperature-dependent external pressure,
which keeps the hard-sphere mixture together.
Preliminary calculations based on a. model in
which an over-all negative potential is added to
the free energy such as to give the mixture a
zero pressure, have been carried out by T.T. %u
and one of the authors (E.G.D.C. ) and lead to
encouraging results.

(6) We would like to mention in conclusion that
the chemical potentials of the Bose component
p, ~(x, T, P) as computed in this paper also yield
the osmotic pressure Il of a mixture of concentra-
tion x in equilibrium with the pure Bose compon-
ents according to the relation

&.0
II= xnan T [ 1+q, (T,P)x + q, (T P)x'], (6. 5)

where for v= f, q, and q, are given by (ca.se B)

0.8

—i
—+ —Q +—iI,

y6 36 2b) '

J, 0,6

0,4

I nx '

q 2f)q~ 3 (6. 6)

0,2

0,4 0,6 0,8

FIG. 3. Reduced phase diagram for hard sphere
t solid line, case (8), v = 4, P* (0) = 0. 13)1 and for He
mixtures (dashed line) .

l,o

with n = n (0, T, p( T)) and 5 = an&
In Fig. 4 we have drawn curves for q, and q,

as a function of T*= 'i/T~ for p~ =0. 13, together
with the curve for q, based on the theory of
Bardeen, Baym, and Pines and some experimental
points derived from the data of gfjJ,son
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l2

IO-

and Tough" (the large error bars indicate the
difficulty toobtaina value for q, from the reported
data).

Note added in Pv oof: The curve q,@+I in Fig. 4
is drawn incorrectly and runs appreciably lower,
passing a. o. through the points 0 for T= 0.23T&
a,nd —0.25 for T=0.5Ty.
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APPENDIX A. CALCULATION OF THE SLOPES AT THE TOP OF THE PHASE-SEPARATION CURVE

In this appendix we shall derive the Eqs. (4. I), (4. 2), and (4. 3) for the slopes of the upper branch
xg(& p) and the lower branch xt(T, p) at the top xz, T~ of the p. s. curve. The argument p will be dropped
in this appendix.

It proves convenient to base the computation, instead of on Eq. (I. 6), on the equivalent set

(x, (q'), I') =g (,(&),&),

(x (T), r)-x (&)g '(x (&),&)=g (xt(7'), 7')-x (V')g (x (I'), I'). (A. I)

Here the subscript x means differentiation with respect to x, so thatgx= (&g/&x)Z. The superscripts + and
—refer to the expression for g above and below the & curve This .distinction is necessary as x„(T) runs
above the A. curve and xf (T) runs below the & curve. Expanding both sides of the Eqs. (A. I) around the top
(xz, Tz) and introducing for convenience the following additional abbreviations

x (I')-x =»,x (r)-x =~x, Z'-Z' =~V
u s u' l s l' s

(A. 2)

we obtain the equations:

O=~g +g z x -g ~x, +ng ~V+(I/2!)([g '(» )2 g (»)~]

T»,)»- W (»)']+ ~ ~

xxT u xxT l xTT

0= AT» (I/2')[ng»(»)'-g „(»„)'-g„„(»,)']
+ (I/3 l)[&g»T(&&)'-3[g» (&x„)'-g» (Axf)']AT 2[g (dx )'-g -(» ) ]) + ~ ~ . . (A. 4)

Since the ~ transition in the mixture is a second-order transition we have the following relations:

dg =Ag =0,

x =dx (T)/dz'= -ng /ng = -zg /Ag

(A. 5a.)

(A. 5b)
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TT A. TT X TTT (A.5c)

where x~ = dx&/d T is the slope of the A curve.
In order to derive the slopes of the two branches of the phase separation curve, we consider first the

leading terms in (A. 3) and (A. 4), using (A. 5a) and gxx =0(so that &gxx-g +):

rg «+kg AT= 0, bg («)2r g T(AT)'=0.xx u xT xx u (A. 6)

In view of (A. 5b), these two equations have the same solution for &xz.'

« /DT=-bg T/hg =x (T ) (A. 7)

so that

(T ) Iim hx hg

dT AT 0 AT hg X s'Q xT '
(T )

S xx

(A. 8)

Thus the slopes of the uppexbranch of the p. s. curve and that of the ~ curve are equal at the top of the p. s.
curve [first equality of Eq. (4. 1)].

In order to find the slope of the loaves branch at the top of the p. s. curve, we eliminate the leading
terms of (A. 3) and (A. 4), by multiplying (A. 3) by —,'(hx +x hT) and adding the result to (A. 4), and find

u

[g (2ax&+ «)+3g „aT](m -rx )(«-x r T)

=--,"g (« -«)'(&x -x &T)+ ag («)'(--'ax +gx aT)xxx u l u xxx u ~ u

+3' Trx x (aT)'+m ag («+x aT)(aT)'~~g (gT)&.
(A.. 9)

Inserting the first-order solution (A. 7) into (A. 9) and using (A. 5c), one finds that the right-hand side of
(A. 9) vanishes. Since b, xf &&x~ =x&&T we find

«/&T=- ,'nx /r T--; -g /gl u xx T xxx (A. 10)

so that

Iim "I
dT bT 0 &T 2 dT 2gS S xxx

(A. 11)

We now derive from (A. 8) and (A. 11) the expressions for dx~(T&)/dT& and dxf (Tz)/dT& given in Sec. 4.
The slope of the X curve can be computed from (3. 5a), and the result is

dx~(T) 3(I-x~) .2T /sn) I-x~ f»~
dT 2T 3n (8T) n px]T (A. 12)

From (3. 10) one obtains by differentiation with respect to x and T

('nz'l
xxT xxx & T Pn ] Sx (Bns F T s

S S

where with (3. 11) and (3. 1) it is found that

(A. 13)

3g,g, 2T
BT (em&j& 2I3 g 2T g ' 3n (BT ) }

S S X ~P

(A. 14)
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1 t'en&', ' -+-I —"-
sx pnF jT 2p pi gi' x n (&x ]S S p j '-S s 7 &pS 8

(A. 15)

The formulas (A. 12) and (A. 15) simplify at the top of the p. s. curve, as it follows from (3. 8) and (3. 15)
that

1 t'sn» aa ~F~
n(&x ]T . x pF +(1-x )g

S

(A. 16)

Inserting (A. 16) in (A. 12) for T= Ts yields the second equality of (4. 1) . Inserting (A. 16) in (A. 15) and
(A. 15) and (A. 14) in (A. 11) yields Eq. (4. 3).

APPENDIX B. THE BEHAVIOR OF THE PHASE SEPARATION CURVE NEAR T = 0

In this appendix we derive the expressions (4. 4)-(4. 7) for the behavior of the phase-separation curve
near T =0. The calculation is based on the coexistence Eqs. (1.6), which read explicitly with (3. 7)
(suppressing the argument P)

HALF'(x (T), T)+(-,' QF~ (T)+[1-x (T)]p ]n(x (T),T)

= i F'(x (T), T)+(-,' y x (T) + [1 - x (T)] y ]n(x (T), T)

'( (), )(4 ()+24 [1- ()]} ( (), )

(B.la)

= jQFBxf (T) + QB~[1-xf(T)][2-$ (xf(T), T)]]n(xf (T),T) . (B.1b)

We found already in Sec. 2 that x~(0) =1. The behavior of the upper branch of the p.s. curve near T =0 is
complicated by the peculiar behavior of pB'(x„(T), T) near x„(0)= 1 and T= 0, which makes n
= [1 —x„(T)]n(x„(T),T)XII' exponentia11y small for T-0. For nfl&g' and ALII' are related by 3.2)

n&~&'= g, (expo@&') (B 2)

Inverting this expression, one finds pg as the following series in terms of g

'=AT(ln n X '-n & '+~ 4-3,), -2„, ~ (n~A )'+ ~ ~ j.
)

(B.3)

The series (B.3) converges for T ~ Ty(x). Thus &g will tend to zero for T -0, unless nfl&B' becomes
exponentially small„such that k TlnnB~B' stays finite. This indeed has to occur along the upper
branch, since for T-O, the Eq. (B.lb) yields for p&' the finite result [using ( (x& (0), 0) =1]:

lim g&'(x. (T),T) =i Q& x&(0) + p&&[1-x&(0)]]n(x&(0), 0)-p&&n(1, 0) = -6k.TO' "
The parameter 5 depends on xi (0) and is found to be positive for the xf (0) obtained Sec. 2.

Therefore the finite limitof pg (x (T), T) for T-Oimplies that n&X&'decreases exponentially to
zero when T-O. This in turn determines the behavior of the upper branch x~(T) for T-O because
with (B.4) and (B. 3) we have

-M=iim p&'(x (T), T)= lim kTlnn X '= lim kTIn[1-x (T)]X 'n(x (T), T)
O

B g '
~ 0 B B g O u B u

(B.4)

(B.5)

so that x (T) behaves for T-0

x (T)=1 —yT3~2 exp —5/T (B.6)

with t given by (B.4) and 'Y given by

n(0, T~)

n(1, 0) A.&' T'~' 2. 612 n(1, 0) (B.V)
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We remark that the behavior of xz(T} near T= 0 as given by (B.6) is determined only by Eq. (B.1b)
and the value x& (0) obtained in Sec. 2.

The behavior of xf (T) near T = 0 can be found from Eq. (B.1a) by inserting (B. t) for x (T) and
neglecting exponentially small ter ms:

pF'(xf(T), T)+( ,'&F-~f(T)+ &F@[1-xf(T)])n(xf(T), T) = pF'(1, T)+-,' yF~(1,T). (B.6)

For T =0, (B.8) leads to the value xf (0) already determined in Sec. 2. All functions occurring in
(B.8) are regular around x=xf(0) and T =0. Expanding the various functions in powers ofxf (T)-xf (0)
and T, the leading terms are of order T'. Thus, x& (T}behaves for T-0 as

xf(T) =xf(0)+ aT', (B.9)

where aT) can be expressed for a given v in terms of xf (0), s(0, Tg), tt(x (0)~ 0), and 'n(1, 0).
For X=4 o'ne finds with xf (0) =0. 125, a=3.24' ', the value quoted in t e main text.
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