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The binding energy of liquid He is estimated by separate calculations of the two-body and

the three-body interaction energy. The two-body contribution is calculated by means of
Brueckner theory, using a modified Brueckner-Gammel method. The approximation of a
reference energy spectrum with an effective mass and quadratic momentum dependence is
used for the input single-particle energy spectrum. The intermediate-state potential energies
off the energy shell are chosen to be equal to zero, and the outer self-consistency require-
ment in the Brueckner method is neglected. A self-consistent solution is obtained, however,
by the requirement that the input and the output energy spectrum for particles on the energy
shell in the Fermi sea shall give the same two-body interaction energy.

The three-body contribution to the binding energy is estimated separately by methods orig-
inally developed for nuclear-matter calculations by Bethe and collaborators. Only the S-wave
is properly taken into account. Third-order diagrams are also estimated separately.

For the Yntema-Schneider potential given by Brueckner and Gammel, we obtain a total
binding energy for liquid He of -1,0 K per particle, which is in general agreement with

other calculations. For the Frost-Musulin potential given by Bruch and McGee, we get -2.0'K
per particle, which is closer to the experimental value.

Also, other low-temperature properties, such as the compressibility, the coefficient of
thermal expansion, and the magnetic susceptibility, are estimated, with results in fair
agreement with experimental values. The theoretical results are: 4. 3% per atmosphere for
the compressibility, -0.10T ('K) (T in 'K) for the coefficient of thermal expansion, and
= 10 for the magnetic susceptibility ratio. The quasiparticle effective mass, or equivalently
the linear term in the temperature dependence of the specific heat, cannot be estimated very
well with our methods.

I. INTRODUCTION

The first serious attempt to calculate properties
of liquid 'He at zero temperature by application of
a microscopic theory was made by Brueckner and
Gammel. ' The physical basis of the Brueckner
theory is the assumption that when two atoms in-
teract, they interact strongly, but at the same time
the liquid is so dilute that their interaction with
other particles can be treated in an average way.
Brueckner and others have developed a method to
handle the strong repulsion in the two-body poten-
tial. Starting from a perturbation expansion for
the energy, the expansion in terms of the large
matrix elements of the potential is rearranged and
replaced by an expansion in reaction matrix ele-
ments. This reaction matrix, G, is obtained by
solution of a two-body problem in the medium.

To include the effects of the Pauli exclusion prin-
ciple and single-particle energy spectrum, arising
from the average interaction of each atom with the
medium, Brueckner and Gammel use a Green's
function method to obtain a G-matrix propagator in
coordinate space. In the integral equation for the
G matrix, single-particle potentials given by sums
of diagonal G-matrix elements are included in the
energy denominator, which introduces a problem
of self-consistency. It seems, however, that
Brueckner and Gammel treated the single-particle
potential energies in intermediate states somewhat
arbitrarily in practice, and did not actually main-
tain the self-consistency of their theoretical pre-
scription. It is therefore important to redo the
calculations in a more consistent way. Also, the

method itself can be modified and simplified, and
supplemented by calculations of the three-body
contribution to the binding energy.

The quantitative agreement with experiment of
the results of Brueckner and Gammel' is not quite
satisfactory, especially for the binding energy and
the specific heat. They get a binding energy of
-0.96'K per particle at a saturation distance of
2. 60 A This equilibrium spacing is not so far
from the observed value of 2. 43 A, ' but the bind-
ing energy is less than 40% of the experimental
value of -2. 5'K per particle. ' The effective
mass or specific-heat ratio is estimated to be
1.84, while the experimental value is now taken to
be 3.08.4

The compressibility of liquid 'He is estimated to
be 5. 3% per atmosphere and the coefficient of
thermal expansion to be' —0. 076T ('K) '(T in 'K),
which are in semiquantitative agreement with ex-
perimental results, of which the most recent
values are' 3. 8% per atmosphere and —0. 14T
('K) . The magnetic susceptibility, which is in-
versely proportional to the energy required to po-
larize the spins, is calculated, as a ratio to the
spin polarization energy of the ideal Fermi gas,
to be 12. This is fairly close to the experimental
value of 9.7

However, as we shall see, we have specific crit-
icisms and modifications to make, so it seems
important to redo all the above calculations and
estimates in a more consistent way to get a better
check on the theory or the potential. The two-body
interaction energy contribution to the binding ener-
gy of liquid 'He has been calculated by the author in
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an earlier paper. ' Later the three-body potential
energy contribution to the binding energy was cal-
culated' by methods originally developed by Bethe
and collaborators for nuclear-matter calculations.
Here we will give a summary of calculations of the
binding energy, and also try to estimate other
properties at zero temperature.

A special problem in our calculations is the two-
body potential. The potential chosen seems to have
a strong influence on the results of the calculations.
Potentials with different forms generally give dif-
ferent results, and the value obtained for the bind-
ing energy is extremely sensitive to changes in the
potential. In particular, the strongly repulsive
short-range part of the potential is still not well
known, and may cause relatively large errors in
the calculations. The attractive long-range part is
probably better determined. Vfe look into this prob-
lem by recalculating the binding energy, using a
more modern potential" than the one which Brueck-
ner and Gammel used.

ikE(~ ') 0.72 0.78 0.80

0.3
0.4

-0.'07

0.33
0.14
0,64

0.48
1.09

0.78
1.49

~, = f, (y,/k, )'dr= (2/w) Jk E,'(k)dk,

and Eo(k) is the Fourier transform of the partial
defect wave function rj or X0, i. e. ,

E,(k) = k, 'f8,(k, ) g, (k„)d, (2. 3)

or

TABLE I. Binding energy for liquid He in 'K. Only
two-body terms included. Yntema-Schneider potential.
k~ and & are varied. mp*=2.5.

2. BINDING ENERGY

W, = w, '(2/v) JE,'(k)W, (k)dk. (2. I)

Here ~0 is the volume of the correlation hole or the
convergence parameter defined in II as

Calculation of the two-body interaction energy
contribution to the binding energy has been explain-
ed in an earlier paper, ' which we ref er to as I.
The calculations were done for two different densi-
ties or Fermi momenta kF. Here we extend these
calculations to other densities because we want to
estimate the density-dependence of the binding en-
ergy. Then we can find the density at which the en-
ergy is a minimum, and can also estimate other
properties such as the compressibility, magnetic
susceptibility, and coefficient of thermal expansion.
Our two-body calculations proceed exactly as ex-
plained in I, and results are shown in Table I. The
corresponding Table X in I and Table IV in II (see
below) are wrong, mainly because of an error by a
factor of 2 in Eq. (2. I'I) in I if the definition (3. 3I)
in I is used.

Calculation of the three-body contribution to the
binding energy has been explained in a second pa-
per, ' which we refer to as II. We also extend
these calcu1ations to other densities, and results
are shown in Table II for the Kirson method as ex-
plained in II.

If, in our two-body calculations, we choose the
intermediate- state singl. e-particle potentials equal
to zero as in I, and require that the binding energy
calculated from our input hole-energy spectrum be
equal to the binding energy given by the output G-
matrix elements, we get self-consistent solutions
for a certain value of the input parameter 4 when
the other parameter m0* is fixed. The three-body
contribution for these parameter values can then
be obtained as explained in II, i.e. , by interpola-
tions and corrections, and weightings of the results
by Fourier transforms of the defect wave function,
integrated over intermediate-state momenta. We
find that

(2. 4)

where Q(P, k) is the Pauli exclusion operator.
Details about parameters and wave functions are
given in I.

The final results of our calculations are given
in Table III together with some corresponding
parameter values. The average kinetic energy
per pa,rticle is

(2. 5)

where the Fermi momentum k+ is related to the
density p by

(2. 6)

p '=&rim'.
3 0 (2. 7)

Figure 1 shows the total binding energy B as a
function of the mean radius x0. The potential we
have used is an Yntema-Schneider potential" de-
fined by Brueckner and Gammel as

TABLE II. Three-body energy terms for liquid He in
'K. Yntema-Schneider potential. kp = 0.55 k~ on the
energy shell. kp is varied off the energy shell. m()*= 2.5.

kp(A '3
mp 0.6

k 0/kE
0. 8 1.0

0,72

0.75

0.78

0.80

0.5
0.4
0.5
0.5
0.4
0.5
0.4

2.5
2.5
1.5
2.5
2.5
1.5
2.5

-1.19
-1.60
-1.51
-1.50
-1.96
-1.83
-2.23

103 1
-1.81
-1.71
-1.70
-2.29
-2.15
-2.51

-1.38
-1.76
-1.67
-1.66
-1.98
-1.85
-2.13

which gives the number of states in the Fermi sea.
We also define a mean interparticle spacing x0 by
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TABLE III. Binding energy for liquid He in 'K. Yntema-Schneider potential. W& is the interaction energy from the

N-body term, E& is the binding energy with only two-body terms included, and Sg is the total binding energy. mp+= 2.5.

k~(~ ') w, ( K) r( K) Ez('K) w, ( K) az( K)

0.72
0.75
0.78
n.eo

2.67
2.56
2.46
2.40

0.0126
0.0142
0.0160
0.0173

0.37
0.34
0.31
0.29

-2.45
-2.50
-2.55
-2.55

2.55
2.75
3.00
3.15

0.10
0.25
0.45
0.60

-].,00
-3..25
-]..45
-1.55

-0.90
-1.00
-1.00
-0.95

V S(r) = 7250(1200 e —l. 24/r' —l. 89/x'),
(2. 8)

in 'K, where x is measured in angstroms.
From Fig. 1 we get an energy minimum of -1.02 K

per particle for x, = 2. 51 A or ky = 0. 765 A '. The
corresponding experimental values are -2. 5'K
per particle' for the binding energy, and 2.43 A or
0. 79 A ' for the density parameters, obtained
from the molar volume. '~' " Other calculated
values for the binding energy are Beck's +1.51 K
per particle, "Brueckner and Gammel's —0.96 K
per particle, ' Beck and Sessler's —1.16'K per
particle, '4 Woo's -1.35'K per particle, "and
Schiff and Verlet's -1.35'K per particle. " Ac-
cording to Massey and Woo, "a second-order
perturbation correction can be added to the result
of Schiff and Verlet to give approximately -1.6'K
per particle.

3. THIRD-ORDER DIAGRAMS

A rearranged low-density expansion may be ex-
pected to converge fairly rapidly in nuclear mat-
ter, and perhaps also in liquid 'He. The approxi-
mate methods applied are based on a selective
summation of certain classes of terms in the gen-
eral perturbation expansion. The types of dia-
grams which are included are generally particle-
particle ladder diagrams with self-energy insertions.

In nuclear-matter calculations, ring diagrams
like Fig. 2 are usually not included because they
would give a relatively small correction to the
energy of the system. These ring diagrams are
probably more important for liquid 'He.

Additional cluster diagrams are generally not
included in the calculations. They represent dia-
grams topologically different from the ladder dia-
grams, self-energy insertions, and ring diagrams.
These diagrams represent effects of clusters of
more than two particles, which should be impor-
tant only in rather dense fluids. They can prob-
ably be neglected in calculations for nuclear mat-
ter, but for liquid 'He the validity of such a neglect
is not obvious. The diagrams with three hole
lines are, however, included in the three-body
calculations.

We can assume that diagrams involving diagonal
G-matrix elements are generally larger than those
involving off-diagonal ones. This assumption is
supported by the calculations of nondiagonal 6-
matrix elements in I. The usual diagonal form
occurs in bubble insertions. In principle, these
bubble-insertions can be included in the single-
particle energies, or they can be estimated by
separ ate calculations.

The contribution of all three-body diagrams
can be evaluated by the methods applied in II.
These methods were developed for nuclear-matter
calculations, and are not necessarily so convincing
for liquid 'He, where not only the S-wave, but also
higher partial waves are potentially inportant.
Also, typical hole momenta are not so small com-
pared to the inverse range of the strong repulsion
in liquid 'He, as in nuclear matter. It would be
very complicated, however, to develop present
methods further to take this into account. Ac-
cording to Kirson, ' it is a very good approxi-
mation to include only S-wave terms. The main
justification for neglecting higher partial waves

2.4 2.5 2.6
FIG. 1. Binding energy 8 for liquid He as a function

of mean interparticle spacing wp. Yntema-Schneider
potential. mp*= 2.5. FIG 2 Third-order ring diagram
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is that averaging over hole momenta and integra-
tion over directions of momenta eliminates higher
partial waves and leaves only the S-wave parts.
We assume that the ratio between two S waves is
a good approximation for the ratio between total
wave functions; for instance, that the effective
interaction can be written as

g (~)=v(~)u (k„r)/g (k,~)

= v(~) u, (k„r)/8, (ky). (3. 1)

for all L. According to Figs. 7 and 8 in I, this
approximation should be fair enough for the lower
partial waves.

Nonetheless, one should try to check the final
results in II. The only diagonal matrix elements
in the three-body diagrams are the particle-bubble
and the hole-bubble diagrams, which are shown
in Fig. 3. These bubble diagrams are larger
than any three-body diagram involving an off-
diagonal matrix element. Thus, bubble diagrams
of third order with one interaction in the middle
should dominate the effects of the three-body
clusters.

We can estimate these diagrams crudely in the
following way. The effect of two (Q/e)g factors
can be expressed approximately by the pair ex-
citation probability ~ defined by

~=4~p[-.' + + —,
' Z j(2L+1)J ™(y/k, )'A.

even L odd L o L

(3. 2)= 77P

L

The three-body function E(r) defined by Eq. (3.19)
in II, should in fact approach asymptotically the
value

E(~) =4m„ (3. 3)

(3. 4)

where G is taken for some average momentum,
on the energy shell for the hole-bubble diagram.

where z, is defined by Eq. (2. 2), i.e. , by Eq. (3. 2)
for L=O.

Summing over hole states, and including exchange
terms, we get roughly

8'3=2KW, = —,'vpG,

FIG. 3. Third-order particle-bubble and hole-bubble
diagrams, i. e. , diagrams with diagonal G-matrix
elements.

W, = —,'[a,pG(0. 5k&)+ ~,pG(0. 8k&)], (3. 5)

which should reproduce the diagrams in Fig. 3. The
results are given in Table V.

In our general calculations, the single-particle
energies of the holes are chosen to cancel bubble
diagrams as indicated by Fig. 4, so we can forget
about the hole-bubble diagram in Fig. 3. The
particle-bubble diagram could be estimated by
means of Eq. (3.4) with G taken off the energy
shell, but the direct matrix elements are not the
only large ones. The corresponding exchanges

This approximation would probably be all right
as a rough estimate for the three-body energy,
except when all three particles are in relative S
waves. Then one must include rescattering effects
as in the calculations of II.

The results are shown in Table IV. The relative
momentum k, is chosen to be the same on and off
the energy shell and for all partial waves, and is
ko= 0. 55k'.

The bubble diagrams can also be estimated
roughly by treating each partial wave separately in
the expression for v. From the Tables XI and XII
in I, we see that most of the contribution to w

comes from the partial waves for L= 0 and L=1,
so we can neglect higher values of L.

The values of v are taken from the Tables XI
and XII in I for ko= 0. 55k~. The corresponding
6-matrix elements have to be taken at different
average momenta, since, as may be seen from
Figs. 9 and 10 in I, the Fourier transform Eo(k)
peaks at k =kF and F, (k) at k =1.6kF. The cor-
responding relative momenta are k, = 0. 5k' for
I.= 0 a,nd k, = 0. 8k' for L = 1. Equation (3. 4) can
then be written as

TABLE IV. Three-body energy contributions from hole-bubble and particle-bubble diagrams, defined by Eq. (3.4).
Yntema-Schneider potential. G (on) or G (off) are diagonal matrix elements in A, calculated on or off the energy shell.
S~ is the energy contribution in 'K. 4 and mo* are varied.

ko/kF uF (A-') m*
0 G (on) G(off)

W3
Hole bubble Particle Bubble

0.55

0,80

0.75

0.78

0.75

0.78

0.4
0.5
0 4
0.5
0.4
0.5
0.4
0.5

2.5
1.5
2.5
1.5
2.5
1.5
2.5
1.5

0.267
0.262
0.306
0.301
0.267
0.262
0.306
0.301

-44.5
-39.5
-37.5
-32.0
-24.5
-23.5
-13.5
-12.0

-22, 0
-10.0
-12.5

0.5
51.5
64.0
70,5
84.0

-1.38
-1.20
-1.50
-1.26
-0.76
-0.71
-0.54
-0.47

-0.68
-0.30
-0.50
0.02
1.59
1.94
2.82
3.30
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TABLE V. Three-body energy terms from bubble diagrams for liquid He, estimated according to Eq. (3.5). Yntema-
Schneider potential. G {ko) are diagonal matrix elements in A, and W3 is the three-body potential energy contribution
in 'K. & andmp*are varied.

0.75

p.78

0.4
0.5
0.4
0.5

mp

2.5
1.5
2.5
1.5

K)Kp G(0.5k )

(kp I G I kp) calculated on the

0.188 p.076 -44.6
0.185 p.p75 -39.1
0.212 p.p91 -38
0,208 0.090 -32.3

G (0.8k~)

energy shell

-24.5
-23.5
-13.5
-12.0

L=0

-0.97
-0.84
-1.06
-0.88

L= 1

-0.22
-0.20
-0.16
-0.14

Total

-1.19
-1.04

1 ~ 22
-1.02

(kp ) G ) kp) calculated off the energy shell

0.75

0.78

0.4
0.5
0.4
0.5

2.5
1.5
2.5
1.5

0.188
0.185
0.212
0.208

0. 076
0.075
0.091
0.090

-30.4
.-18.6
-22.6
-9.6

51.5
64.0
70.5
84.0

-0.66
-0.40
-0.63
-0.26

0.45
0.56
0.84'

0.99

-0.21
0.16
0.21
0.73

are also large. Hence we estimate the contribution
of several third-order diagrams in the following
way.

The direct diagrams in Fig. 5 have a particle-
hole interaction in the middle. The most impor-
tant difference between the bubble diagram and
the other third-order diagrams is that the bubble
interaction is diagonal, while the latter have
nondiagonal interactions in the middle. But in all
three diagrams in Fig. 5, the momentum is changed
only slightly or not at all by the middle interaction,
and the value of the matrix element is not affected
much by this small change. Therefore the three
diagrams are approximately equal, except for
the statistical weight factors, and their sum is
then approximately zero.

Similarly, the exchange diagrams in Fig. 6 all
involve large momentum change in the middle in-
teraction, and these momentum changes are about
equal. Then the sum of these diagrams, with
statistical weights included, is approximately
equal to zero.

In the same way, the third-order diagrams
shown in Figs. 7 and 8 roughly cancel each other.
These diagrams have an additional weight of ——,

'
relatively to the diagrams in Figs. 5 and 6. The
final conclusion is that it does not help anything
to estimate the third-order particle-bubble dia-
gram or ring diagram, because exchange diagrams
roughly cancel these diagrams. This should be
valid at least for the higher partial waves, i.e. ,
for 1.)1„for I.= 0 we have the exact calculations
by our Kirson method.

The hole-hole and hole-bubble interactions,
which are not considered above, can in principle

be absorbed in the hole potential energy as already
mentioned, and then the three-body energy con-
tribution may be rather small because of cancel-
ling statistical effects among the third-order dia-
grams. We will, however, estimate the third-
order hole-hole diagram which is shown in Fig 9,
since this diagram is not really included in our
earlier calculations. This diagram can be esti-
mated in the same way as the hole-bubble dia-
gram, i. e. , by Eq. (3. 4) with G taken on the en-
ergy shell. But because of extra limitations on
the hole momenta in the Fermi sea, and because
the diagram is symmetric, we get a total relative
weight of ~6 compared with the direct hole-bubble
diagram. Using results from II in Eq. (3. 4), we
finally get an energy contribution of -0.1'K from
this diagram. Adding this energy to the binding
energy obtained, we get a total binding energy
of —1.0'K per particle, as shown in Table III
and Fig. 1.

The hole-hole scattering corrections are prob-
ably not important for calculations of the total en-
ergy. But they introduce more important correc-
tions into the single-particle energies, particularly
near the Fermi surface. And inclusion of particle-
hole scattering could make a significant contribu-
tion to the energy also.

4. EFFECT OF EXCLUSION PRINCIPLE

In Brueckner's theory, the Pauli exclusion
principle limits the number of states available
for the two atoms being considered. To include
the effects of the exclusion principle and the
single-particle energy spectrum, a Green's func-

v vj

-X q( I

2

V T

FIG. 4. Third-order diagrams, cancelling each other
to define the single-particle energy spectrum for holes.

FIG. 5. Direct third-order diagrams with relative
weights.
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FIG. 6. Exchange third-order diagrams with relative
weights.

FIG. 8. Some third-order diagrams with relative
weights.

52/~=16. 36 K A'. (4. I)

From these tables it seems obvious that the
exclusion principle cannot be neglected as a first
approximation, at least not for the S wave. For
higher partial waves, the approximation is not too
bad, at least for L) 1. So one could possibly use

tion method is used to evaluate a G-matrix prop-
agator in coordinate space, as outlined in I. For
nuclear matter, Bethe et al. ,

"have developed a
method to calculate a relatively simple reference
reaction matrix, in which the exclusion principle
is neglected in some way in first approximation,
i.e. , the Pauli exclusion operator is set equal tc
one. This method could possibly be applied to
liquid 'He too, if the exclusion principle were
not too important, and did not change results too
much.

The exclusion principle should have some effect
on the results of the calculations. For slow par-
ticles, the exclusion principle increases the con-
tribution from the strongly repulsive core quite
a lot. This effect decreases as the Fermi sur-
face is approached, and the interaction energy
becomes more negative. The variation of the
effect of the exclusion principle on particles mov-
ing at diff erent depths in the Fermi sea thus gives
a variation in the single-particle potential. Also,
a more rapidly moving particle excites the higher
states of relative angular momentum more strongly
when it collides with other particles in the medium.

To estimate the importance of including the exclu-
sionprinciple, we have calculated the main first-
order term in the original ref er ence spectrum method
of Bethe et al. ,"which we denote as the RS meth-
od, using the same input energy spectrum as in
our other two-body calculations which are per-
formed with what we denote as the BG method.
That is, we have neglected the exclusion principle
and used Eq. (3. 38) in I instead of Eq. (3.36) for
the Green's functions I'1,(r, r') in I, when solving
the Bethe-Goldstone equation. " Results for the
two methods are compared in Tables VI and VII
for some typical standard parameter values. The
G-matrix elements are given in A, which can be
converted to ('K A'), the conversion factor being

a procedure in which the exclusion principle is
included for L=O and L=1, and neglected for
L=2 and L=3. For L)3, one can just replace
the G matrix by the two-body potential, or the
perturbed wave function by the unperturbed one,
as explained in I.

5. SPECIFIC HEAT AND COMPRESSIBILITY

In addition to the binding energy, we also would
like to estimate theoretical values for other prop-
erties such as the compressibility, the magnetic
susceptibility, and the coefficient of thermal ex-
pansion. All these properties can be calculated
from our G-matrix elements, but complications
arise because the G matrix is density dependent.
We get the so-called rearrangement energy in
addition to the usual potential energy term.

If we write nz for the occupation number of the
state i, i. e. ,

(s. I)
= 0 for k.)kF,

and p+ and p( ) for the densities of atoms with
spin up and spin down respectively, then the total
ground-state energy for

P =P =zP(+) (-) (s. 2)

can be written

E(p ) = , + n ref 2/—M. . .(+)
z z

+ —,
' + n.n. [(k . . I G(p) Ik. .) —exchange].ijzj U ij (s.3)

Brueckner writes the energy of a quasiparticle
with spin up in the unpolarized medium as

e,
' =SZ/6 . ' = —,'hu, 2/M+V(u, )+U„, (S.4)

I

2

FIG. 7. Some third-order diagrams with relative
weights. FIG. S. Third-order hole-hole diagram.
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TABLE VI. Diagonal GL-matrix elements in A, calculated on the energy shell. Statisticalweightsareincluded. BG
method is with the exclusion principle included; RS method is with the exclusion principle neglected. Yntema-Schneider
potential. kp is varied. k&=0.75 A i. 6=0.5. pap=2. 5.

Method kp/kk" L=O Total

0.125
0.25
0.375
0.50
0.625
0.75
0.875
1.00

16.5
27.4
40.1
51.0
58.0
60.5
58.6
53.1

-12.1
-38.8
-61.8
-69.9
-60.3
-34.5

3.1
45.9

-0.1
103

-4.7
-9.6

-15.0
-19.8
-22.9

23 03

0
-0.3
-1.9
-6.2

-12.9
-21.5
-31.8
-43.3

0
0

-0.4
-1.7
3 «7

-6.7
-10.9
-16.5

4.2
-13.1
-28.7
-36.4
-33.9
-22.0
-4.0
16.0

0.125
0.25
0.375
0.50
0.625
0.75
0.875
1.00

-2.8
7.9

20.2
30.3
36.4
37.9
35.2
29.2

-12.5
-40.0
-63.8

72 03

-62.5
-35.9

2.5
45.4

-0.1
-1.4
-4.8
-9.8

-15.4
-20.4
23,7

-24.1

0
-0.3
-1.9
-6.3

-13.0
2107

-32.1
-43,7

0
0

-0.4
-1,7
-3 .7
-6.7

-10.9
-16.5

-15.4
-33.7
-50.8
-59.7
-58.3.

-46.8
-29.1
-9.8

where the single-particle potential U(k. ) is
2

U(k. ) = +.n. (k. . i G(p) ik. .).

The last term in Eq. (5.4) is

U~= ~Q '~. ~n. n~
2p

8 k.&IG p, p Ik.
&x I

~ ~ '

(„) ( ) , (s. 6)

Bp
(+) ) P =P =pPp

which is the rearrangement energy and arises

from the density dependence of the G matrix. It
follows from the relations

SG(p)letup; = [5G(p)ISp]/(5p/5pp, ),

and P=+.(n./Q), (6. S)

which is just Eq. (2. 6). The rearrangement energy
represents the difference between the energy re-
quired to remove a particle quickly to infinity with
no change in the states of the rest of the system,
and the energy required to remove the particle
adiabatically to infinity with the rest of the system

TABLE Vti. Diagonal GL-matrix elements in A, calculated on the energy shell. Statistical weights included. BG method
is with the exclusion principle included; RS method is with the exclusion principle neglected. Yntema-Schneider
potential. kp is varied. k~=0.78 A . 6=0.5. mp*=2.5.

Method 1&3 Total

0.125
0.25
0.375
0.50
0.625
0.75
0.875
1.00

24.1
35.6
48.5
58.9
64.9
66.0
62.4
55.3

-13.0
-40.8
-63.2
-68.7
-55.1
-24.6
17.1
62.5

-0.1
-1.5
-5.2

-10.4
-15.9
-20.6
-23.1
-22.4

0
-0.3
~2o3

702

-14.5
-23.7
-34.9
-46.7

0
-0.1
-0.6
-1.9
-4.2
-7.6
12e3

-18.6

11.0
.70I

~22 p7

-29.3
-24.7
-10.6

9.3
30.2

0.125
0.25
0.375
0.50
0.625
0.75
0.875
1.00

-0.3
11.0
23.6
33.5
38.9
39.3
35.4
28.4

1303
-41.9
-65.1
-70.9
-56.9
-25.6
16.6
61.3

-0.1
-1.5
-5.3

-10.7
-16.4
-21.3
-24.0

23 +3

0
-0.3
~2 o3

. -7.2
-14.6
-24.0
-35.3
-47.2

0
-0.1
-0.6
-1.9
-4.2
-7.6

-12.3
-18.6

1307

-32.9
-49.7
-57.2
-53.2
-39.2
-19.6

0.7
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rearranging itself to the new ground state.
The Hugenholtz-Van Hove theorem" states that

the energy of a particle on the Fermi surface is
equal to the negative of the energy required to
remove the particle adiabatically to infinity, i. e. ,
the separation energy; and it is equal to the aver-
age energy of all the particles in the system. Then
the separation energy is the negative of the energy
which the system acquires when one particle is
added at constant volume, while the average en-
ergy is the energy acquired when a single particle
is added at constant density. The Hugenholtz-
Van Hove theorem is, however, not directly ap-
plicable to reaction-matrix calculations. " It is
strictly valid only if the single-particle energy
spectrum is continuous at the Fermi surface. But
some single-particle energies should in principle
be calculated off the energy shell, and the re-
arrangement energy is usually neglected in cal-
culations of the binding energy where we have a
gap in the single-particle spectrum at the Fermi
surf ace.

For momenta near the Fermi surface, we can
rewrite Eq. (5. 4) in the form

= —5'k .'/M*+ constant,(+) (s. 9)

with

Fermi momentum, and because we have set the
center-of-mass momentum equal to zero. The
last approximation affects the slope of our output
single-particle spectrum, especially at the Fermi
surface. Also, the three-body energy is not in-
cluded when the output single-particle energies
are calculated. So we have just used the value
nz, *= 2. 5 as a parameter in our input energy
spectrum for the hole states.

The on-energy- shell single-particle energy
spectrum could probably in principle both satisfy
the Hugenholtz-Van Hove theorem and give the
correct effective mass or specific heat, while the
off-energy-shell spectrum corresponds to free
propagation for large excitation energies. But it
would be very complicated to make a completely
self-consistent version of Brueckner theory, sat-
isfying these criteria and including both the two-
body- and the three-body potential energy.

It is possible to obtain an approximate value for
the compressibility from our calculations. Liquid
3He has a remarkably high compressibility which
is qualitatively what one expects for a low-density
system, and it would be interesting if we could
reproduce this value.

The compressibility coefficient is given by

1/M*= 1/M+ [8U(k)/8kj /(5'k ). (s. io)
(sQ/s(P) 3/kT 1 p

n =
ss/sp

=
ss/ek (5. 14)

Close to zero temperature, the specific heat is
mainly determined by the single-particle level den-
sity near the Fermi surface. The anomaly in the
level density is described by the concept of the ef-
fective mass M* or the corresponding dimension-
less quantity nz*. We write the excitation energy
(5.4) or (5. 9) near the Fermi surface as

where 6' is the pressure

6'=- —~=——= 3PkE N (s. is)

1/m*=M/M*= 1+(M/Fi')[&U(k)/skjk k /kE.

(5. 12)
The specific heat at zero temperature is then

determined by the single-particle energy spectrum
(5. 11), and the variation, is proportional to the
variation or change in the level density, i. e. ,

c/c =M*/M=m~, (s. is)

e(k) = ~ (P/M)k'+ U(k) = —,'(P/M*)k'+ U(k )

(s. ii)
where

If we assume a quadratic dependence of the en-
ergy on density, we can write

E —E,=A (p —p,)' = «,
sE/sp = 2A. (p —p, )= 2A(ap),

(5. 16)

where Eo and po are the minimum binding energy
and the equilibrium density, given by Fig. 1. Fig-
ure 1 shows that the energy rises by 0.02'K per
particle when x, decreases from 2. 51 to 2. 46 A,
i. e. , when the density p increases from 0. 0151 to
0. 0160 A '. This gives us the constant A, i.e. ,

where C~ is the specific heat of an ideal Fermi
gas. The calculations of Brueckner and Gammel
predict that the specific heat near absolute zero
temperature should increase if the liquid is com-
pressed, but their estimated value for m* at equi-
librium density is 1.84, while the experimental
value is 3. 08. It js, however, probably unfair to
compare these two results directly because of the
gap in the single-particle spectrum at the Fermi
surface in the BG method.

We have not tried to calculate any effective mass
from our results, because we used rather different
input particle and hole energy spectra near the

A = («)/(~p), (s. is)

s'= & '(p/p. -i), (5. 18)

where

P '=2', '«/(&p)'= 23. 2 atm.

Here E is Boltzmann's constant, and we get a
volume change of

and we can write the pressure-density, relation
(5. 15) as
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P = 4. 3% per atm. (5. 2o) where our calculations give

The experimental value for P is extrapolated
to be 3. 8/o per atm. '~ ' Brueckner and Gammel'
give the result of 5. 3% per atm. We have, how-
ever, been unable to reproduce their result from
their given data and in the way they claim the cal-
culation is done. In fact, we have found that their
value should be closer to 10% per atm, but of
course there may be a misprint or a misunder-
standing somewhere. On the other hand, the
curve they present for the binding energy as
function of the mean interparticle spacing x„ is
in fact rather flat, which means a large value for
P because &E/&p is then small. Since their equi-
librium density is low, one would expect a large
compressibility coefficient from their results.
Another theoretical result is 9. 9% per atm, due
to Woo. "a The compressibility coefficient, how-
ever, depends strongly on density; and at the
experimental equilibrium density, with the binding
energy fitted to the experimental energy, Woo''b
obtains 3.. 6/o per atm.

Our result is surprisingly close to experimental
values. This, however, should not be taken too
seriously, but only as an indication of results which
might be expected from more refined calculations.

6. THERMAL EXPANSION

so= 2. 51 A, (6. 6)

as indicated by Fig. 1. The constant B has to be
estimated in some way, since we have no curve
for the effective mass as function of density.

The entropy is
T

s= j dr'c(r')/r'= —,'k (M*/r2)nff2r
0

= (-,'~)»(M~/n )A(n/x)2»z r, (6. 7)

6 = p-~(I- n/n, ),
and using

sn/eo'=- pn„

(6. 8)

(6. 9)

we get from Eqs. (6. 7) and (6. 8) for n= n, the
expression

in=n,]3M,I, , ~ A~M 't

o
(6. 1o)

where a possible variation of M* with temperature
is neglected. For the pressure-density relation,
Eq. (5. 18) is written

The coefficient of thermal expansion, n, is
given by the relation

(6. 1)n=(sn/sr) /n=-(es/ea) /n,
6'

where the first term is valid for constant pres-
sure, i. e. , for 6 =0 at equilibrium. To estimate
e, we can use the pressure-density relation de-
veloped in Sec. 5, but we need an expression for
the entropy S.

The specific heat at constant volume is given
by Eq. (5. 13), i. e. ,

n= —*, ( &)'" —,(g ) PlPT( —fB) (6.11)

If we assume that SU/Sky is proportional to the
density p near equilibrium density, which looks
like a reasonable assumption from our various
calculations, we can write

, sfI r 1 M*/M
(6. 12)

for Eq. (6. 1). Using Eq. (6. 4) to obtain BM*/sn,
we finally get

c = (M+/M)cz, (6. 2)

where Cy is the specific heat of the ideal Fermi
gas, which is

2/3

(6. 3)

Using the parameter values m, *=2. 5 and ky
= 0. 765 A ' at our equilibrium density, we get the
value —1.025 for this constant. Inserted in Eq.
(6.4), this gives an effective mass ratio of 2. 66
for k~=0. 78 A-', which leads to B=2.8. Finally
we obtain from Eq. (6. 11)

M ( g' k&

where Mo* and 0* are the effective mass and the
volume at zero pressure and equilibrium density.
Then

00= &3''03', (6. 5)

The ratio M*/M, which determines the change in
level density from that of the ideal Fermi gas,
can be estimated as a function of density. Equation
(5.12) gives

n=-0. 10r ('K) ' (6. 13)

The last term with the constant 8 in Eq. (6. I])
arises from the density variation of the effective
mass. We see that this term changes the sign of
a, and if it were neglected, we would get a posi-
tive coefficient of thermal expansion and the liquid
would contract when cooled near zero temperature.

This anomaly in the coefficient of thermal ex-
pansion can be explained by the dominant effects
of Fermi statistics at very low temperatures. When
the liquid is cooled, the tendency of the 'He atoms
to form a state of momentum order is inhibited
by the effects of the strong forces. The repul-
sion is increased by the exclusion principle in
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the degenerate state, while the attraction becomes
less effective because of the high zero-point en-
ergy and short wavelengths. The liquid conse-
quently expands as the atoms drop down into the
states of momentum order.

Brueckner and Atkins' obtained the value of
n = —0. OV6T ('K), which is only in semiquan-
titative agreement with the latest experimental
results. But they used a value of 27. 5 atm for
the parameter P ' instead of 18.9 atm which
Brueckner and Gammel' estimated in their calcu-
lations. This procedure seems somewhat incon-
sistent, since other parameters such as ~, and

~,* were taken from the BG calculations. How-

ever, if Brueckner and Atkins had used the other
value for P ', they would have obtained the result
of e = -0. 11T ('K) ', which is much closer to re-
cent experimental values.

Our result (6. 13) is in general agreement with
experimental results. It can be compared with
other values given by various people, such as the
—0. 076T ('K ' of Brueckner and Atkins, ' the
—0.08T ('K) ' of Anderson et al. , "the —0. 103T
('K) ' of Goldstein '4 the —0. 105T ('K) ' of
Brewer and Daunt, "the —0. 12T ('K) ' of Rives
and Meyer, "the —0. 125T ('K) ' of Kerr and
Taylor, "and the —0. 14T ('K) ' of Boghosian
et g$ 6

7. MAGNETIC SUSCEPTIBILITY

The magnetic susceptibility is a measure of the energy r'equired to produce a net spin alignment in a
given direction. It is inversely proportional to the energy required to polarize the spins. This energy
has been given by Brueckner and Gammel in the limit of small spin alignment as an equation similar to
Eq. (5. 3). If p(+) and p(-) are the densities of atoms with spin up and spin down respectively, we can
write

where n. =1 for k. (kF(+) (+)

=0 for k.)k (+)
i

= 0 for k.)kF
(-)

z

d Z. . =Qp =Q(2mb) —p =Q&k /8,(+) (+),, (+)3 ~ (+)3

i i

8 (p, p )= —,g.n. Pk.'/M+ —, Q n n [(k...lG.(p, p )Ik. .)-exchange],
o ' ' ii i '. . ij ij iji

p

n. = I for k. (kF(-) (-)

(v. 1)

(7. 2)

=Qp =Q(2m%) ' p . =Q —'k /6

(v. 3)

If we let the number of atoms with spin up and spin down be

N = ~N+5, N = 2N-5(+) i (-)
7 (v. 4)

the spin polarization parameter s is defined by

s = 25/N= (N —N )/(N +N ) = (N N)/N. — (v. 5)

The corresponding Fermi momenta for spin up and down are

kF = kF(l+ 25/N)'~3 = kF(1 + s)'~', k~ ——k~(1 —25/N)'~'= kF(1 —s)'~', (v. 6)

(v. v)

where k is the Fermi momentum in the unpolarized system, given by Eq. (2, 6). After expansion in
powers of the polarization parameter 6, the total kinetic energy of the system is, to second order in 5,

T (5)= N +(5'/M)k + N ~(h2/M)k =~ (—'5 k '/M)N(1+ atL 6'/N2)

The total interaction energy in the polarized system can be written

k (+) k (+) k (-)k (-)
F F k, (+)k (-)

V(5)= + Z a (k., k.)+ +~ +~ a (k., k.)+ +~ ~l [a (k., k.)+a (k. , k.)],
0 k 0 0 i j k 0 k 0 0 .i j k 0 k 0 e i' j 0 i' j

i i j i

(v. 8)

where the contributions from even and odd states are
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a (k.,k.)= + ( k. .lG&(p)lk. . ), a (k., k.)= ( k. . lG&(p)lk. . ) .e i'j „& ij I Sj
' oi' j dd& ij I ij (v. 9)

The statistical factor of 3 for odd I. is here. omitted from the Gl -matrix elements, while it has been in-
cluded in our earlier definition of Gl, The factor of (2L+1) is still included as before, however.

Equation (7. 8) can be rewritten in the form

k (+) k (+)k ' ' k ) k k

V(5) = V(0)+ Z Z — Z ~[a (k. , k.)+Sa (k. ,k.)] — Z Z [a (k. , k.) —a (k. , k.)], (7. 10)
O k k k k ) e i'j o i'j

k k k k e i'j oi'j'
E i F j E

where V(0) is the usual total interaction energy at equilibrium when 5= 0. The sum over kf in the second
term on the right-hand side is just like the single-particle potential

kF
U(k. )= Z [a (k. , k.)+Sa (k. , k.)].j k 0 e i' j o i' j (7. 11)

Then for small 5 we have

k ')
Uk. =4~02m -SkE kF'kE2 8Uk 8kk kj= E j=

Equation (7.6) gives, to lowest order in 6,

(v. i2)

kF —kF = ~kF(25/N),

which, together with Eqs. (2. 6) and (5. 10), gives for Eq. (7. 12) the exyression

k (+)

( F F
Z — Z U(k. ) = Nab k (6/N)~(1/M* —1/M).

I,k,, =k k =k (-))

Defining a(k&, k&) = [J (dQ /4w) 1 (dfl /4n)a(k , k. )]. .'''i 'j'E
we can write for the last term in Eq. (7. 10)

k (+) k (+)

Z [a (k., k.) —a (k. , k.)]=N ,'(k '/m')(6/N)'[a -(k, k ) —a (k&, k ) ].e i'j o i'j ' F e F'Eav o E'Eav
i F j F

(v. is)

(7. 14)

(v. is)

(7. 16)

Collecting the terms from Eqs. (7. 7), (7. 14), and (7. 16), we then get the energy difference

E (5) = TF(5) —TF(0)+ V(6) —V(0) =N&~F2(5/N)'(f12/M* ——,'(kgb~)[a (kF, kF) —a (kF, k ) ]). (7. 17)

(v. is)

As the Fermi liquid is polarized, the shift in the spin population will cause a change in the G-matrix
elements through the change in the Fermi momentum. In the odd states, the Fermi momentum of the
states with syin up shifts to kF +& and with spin down to kE &. In even states, a particle with spin up
interacts with a particle with spin down. %hen calculating the t" matrix, Brueckner and Gammel here
used an average value

k ' —[-'(k +k ) ))&E F F

for the new Fermi momenta in the states of spin up and down. Indicating explicitly the dependence on
the shifted Fermi momenta, we can rewrite Eq. (7. 8) as
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k (+) k (+) k
'-'

k (-)

V(5)= Z Z a (k. ,k. , k +)+ Z Z a (k. , k. , k ) y Z
k. =0 k. =0 ~ k. =0 k. =0 k. =0

2 i

(-)
k

[a (k. , k. , k ')+aJk, , k, kZ')].

(7. 19)

After carrying out an expansion of the amplitudes around kF&+&, kF~ &, and kF'=kF, and keeping terms
to second order in the small parameter 6, we finally get an expression for the energy of the spin alignment
Eg, given as the ratio to the spin polarization energy E F of the ideal Fermi gas,

)k.=k

1 1 I 1
+ I 4 k 3 dk

~
4 k 3dk ~ k&

8'a k., k. ~a k., k. ~ aO k., k. ~a k., k.
Bk 2 F Bk 2 BkF

(7.20)

The first term depending on the effective mass m* comes from the change in the density of the single-
particle levels. It arises from the momentum dependence of the single-particle potential and determines
the quasiparticle specific-heat contribution. The second term comes directly from the spin dependence
and arises from the change in the pair interaction as spins are shifted from antiparallel to parallel align-
ment. As the number of pairs with parallel spin increases, the exclusion principle requires that these
pairs go into states of odd relative angular momentum. Then there is a net shift from even to odd states.
The third term arises from the rearrangement terms in the single-particle energies, or the variation of
the reaction matrix with the Fermi momentum because of the spin polarization.

To evaluate the last term in Eg. (7. 20), i. e. , the integrals inside the curly brackets, Brueckner and

Gammel made the approximation

Ba /Bk&=Ba/Bk&.e F o
(7. 21)

Since Bae/Bk~ appears with a much smaller coefficient than Ba /Bk~, one can hope that this assumption
does not affect the results too much. They also assume that a depends only on Ikf —

K& I, i. e. , on the
0

relative momentum

k, = 2 lk. —k. I.p 2 ~ ~
(7. 22)

If we compare the results in Table VIII for even and odd L, we see that the assumption (7. 21) is not at
all valid. It is, in fact, so strongly violated that we have to consider a /Bky separately, even when it has
a very small coefficient in front. After transforming the integrals in Eq. (7. 20) to

kF kF
Jdk . = 16m ko'(1 —ko/k~)dk, , fdk . fdk =32.g(&vk ') ko2(1 —2k/k + ~ko'/k ~)dk, , (7. $3)

the third term in Eg. (7.20) can be written as

k I' F k ' k 1k ') f B a (k0, k&) B'a0(k0, k&) Ba (k0, k+))
g2 f 2 Qk 2 3 k 3k 3 F Qk 2 F Qk

-2

( k0 k03) Ba0(k0, k )

~

4 2
0

2
0

~

0 0 (7. 24)

If we assume a linear dependence of a on kF, we can write

a (x, k ) =a (x, 0)+k&f (x), a (x, k ) =a (x, 0)+k f (x),

where x=k,/k&,

(7. 26)

(7.26)
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TABLE VIII. Diagonal GL-matrix elements in A, calculated on the energy shell. BG method is with the exc1usion
principle included; RS method is with the exclusion principle neglected. Yntema-Schneider potential. ko is varied.
s=o 4. mo

(A ) ko/k G

even L

BG method

G

odd L
G

even L
G

odd L

RS method Difference, BG —RS

G g G

even L odd L

0.75 0.125
0.25
0.375
0.50
0.625
0.75
0.875
1.00

9.42
19.26
28.69
34.40
35.59
32.40
25.99
18.30

- 4.10
-13.22
-21.71
-26.33
-26.08
-21.27

13,37
—4.35

- 8.25
1.33

10.20
14.95
14.78
9.99
2.02

—6.96

- 4.24
-13.72
-22.58
-27.41
-27.10
-22.00
-13.77
- 4.68

17.67
17.93
18.49
19.45
20.81
22.41
23.97
25.26

0,14
0.50
0.87
1.08
1.02
0.73
0.40
0.33

0,78 0.125
0.25
0.375
0.50
0.625
0.75
0.875
1.00

16.36
26.55
35.83
40.87
40.88
36.33
28.75
20.24

- 4.39
-13.92
-22.36
-26.39
-25.10
-19.09
-10.20
- 0.65

- 6.15
3.84

12.64
16.82
15.67
9.82
1.15

- 7.96

- 4.53
-14.41
-23.20
-27.41
-26.05
-19.77
-10.58
- 0.99

22.51
22.71
23.19
24.05
25.21
26.51
27.60
28.20

0.14
0.49
0.84
1.02
0.95
0.68
0.38
0.34

which gives

Sa (x, k&) a (x, & ) —a (x, p) &a (x, k ) a (x, je ) —a (x, p)
(V. 2V)

In Eq. (7. 25), ae o(x, p) is the amplitude for zero density, for which we take the RS results with the ex-
clusion principle neglected. The quantity ae o(x, k&) is the amplitude at the equilibrium density for
which we take the corresponding BG results. Tables VI, VII, and VIII give a comparison between these two
cases, as we have seen. It turns out, however, that the assumption (7.27) is a bad approximation. Both
the first and second derivatives in Eq. (V. 24) have to be estimated numerically, and details will be pub-
lished later.

To obtain the second term in Eq. (7.20), we use the results given in Table IX. These results differ
from earlier values for GL-matrix elements by a factor of 3 for odd L states, because of our definition
(7. 9). Using Eq. (V. 22) for kf = 0& =k~, we write

k, =0+ sin(-,'8), (7. 28)

and average the G-matrix elements over the Fermi surface.
With M*/M = 2. 5, the final results for Eq. (V. 20) are

E E @=0.40 —1.25+0.95 =0. 10 for k~=0. 75 A-',
0', E

=0.40 —1.40+1.05=0. 05 for k =0. 78 A ',
(7-29)

which gives us a magnetic susceptibility ratio of

(7. 30)

for k~ = 0. 75 A '. This result is very approximate, but should indicate the correct order of magnitude
at least. However, we notice that the set of results for kg=0. 78 A ' gives a susceptibility ratio of 20,
and that it is a rather uncertain value.

Brueckner and Gammel got a result of

E E ~= 0. 543 —0. 780+0. 320= 0.083,
0 (7. 3l)
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TABLE IX. Diagonal G&-matrix elements in A, calculated on the energy shell. Yntema-Schneider potential.
kp is varied. mp*= 2.5.

(A ) kp/k Z GL
even L

6=03
G

odd L
Difference Z

even L
Difference

0.75 0.001
0.125
0.25
0.375
0.50
0.625
0.75
0.875
1.00

-2.1
2.3

12.3
22.0
28.1
29.7
26.9
20.9
13.6

0
- 4.1
-13.4
-22.1
-27.0
-27.1
-22.6
-15.1
— 6.5

-2.1
6.4

25.7
44.1
55.1
56.8
49.5
36.0
20.1

5.1
9.4

19.3
28.7
34.4
35.6
32.4
26.0
18.3

0
- 4.1
~13r2

21r7

-26.3
-26.1
~21r3
-13.4

5.1
13.5
32.5
50.4
60.7
61.7
53.7
39.4
22.7

0.78 0.001
0r125
0.25
0.375
0.50
0.625
0.75
0.875
1.00

3.8
8.5

18.9
28.5
34.0
34.4
30.4
23 .3
15,3

0

-14.1
-22.8

~27.2
-26.3
-20.7
-15.9
- 3.1

3.8
12.9
33.0
51.3
61.2
60.7
51 ~ 1
39.2
18.4

11.7
16.4
26.6
35.8
40.9
40.9
36.3
28.8
20.2

0

-13.9
-22.4
-26,4
-25.1
-19.1
-10.2
- 0.7

11.7
20.8
40.5
58.2
67.3
66.0
55.4
39.0
20.9

or y/y+=12 for &~=0. 74 A '. Our first term in Eq. (7. 29) is of the same order as the first term in
Eq. ,7. 31,), but the second and third terms are completely different. It seems quite impossible to re-
produce the second and third term in the expression (7. 31) of Brueckner and Gammel, even from their
own data and in the way they claim the calculations are done. Their second term is too small for some
reason, and their third term is too small because of the approximation (7. 21).

The susceptibility is also often given as

y=C /T*=-C /Tc ' c F (7. 32)

where Cz is the Curie constant, T* is the effective magnetic temperature, and Ty** is the Fermi tem-
perature or the magnetic degeneracy temperature. - Experimental values for the spin susceptibility ratio
are the T~ *=0. 55'K or y/yF = 9. 0 of Beal and Hatton, "the T*= 0. 35'K or y/y&= 9. 5 of Anderson et
gf. , '~28~29 and the T~**= 0 43 K or y/y~= ll. 5 of Thomson et af.3' Another theoretical value is the

1t/y& = 13.9 of Woo. "
The magnetic susceptibility is thus found to be rather close to experimental values. The energy re-

quired to polarize the spins is very small compared to that for a Fermi gas, and the corresponding mag-
netic susceptibility is very large. The large magnetic susceptibility is due to the large spin-dependent
terms in Eq. (7. 20). It arises from a ferromagnetic exchange interaction tending to line up the nuclear
syins parallel, and hence tending to cancel the antiparallel alignment due to Fermi-Dirac statistics. This
large spin-spin interaction comes from the exclusion principle, and is not purely a magnetic spin-spin ef-
fect. Since the effective mass increases with increasing density, the magnetic susceptibility should also
increase in the same way. This is, in fact, indicated by our results.

8. NEW POTENTIAL

The interatomic potential used seems to have a
strong influence on the results of the calculations.
Potentials with different shapes generally give dif-
ferent results, and the value we obtain for the bind-
ing energy is extremely sensitive to changes in the
various parts of the potential. This is because the
binding energy is really a small difference between
large repulsive and attractive terms. The repul-
sive core in the potential is not at all well known,
and this uncertainty may cause relatively large

errors in the calculations. So we want to discuss
this question in more detail.

Helium atoms have rigid electron shells, as in-
dicated by a dielectric constant nearly equal to
unity. Because of this, the force acting between
two distant atoms in liquid 'He is almost exactly
equal to the force between two isolated helium
atoms. The polarizability of each of the interact-
ing atoms is practically unchanged by the presence
of neighboring atoms, and the polarization of the
intervening atoms does not change the interaction
force between the atoms which we consider. How-
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ever, although the energy of interaction between
the atoms in the liquid at large distances is close to
the interaction energy for isolated atoms, the scat-
tering amplitude for the excitations is not at all
similar to that for atoms, since interaction with
neighboring atoms has a considerable influence
on the excitation motion. The van der Waals forces
are connected with the existence of zero-point fluc-
tuations of long-wave electromagnetic radiation in
the medium, i. e. , with the exchange of virtual
long-wave photons.

A good potential function should satisfy the fol-
lowing criteria. It should go asymptotically to
zero as x- ~, it should become infinite at x= 0,
and it should have a minimum between. The limit
infinity for x-0 is, however, not strictly true if
nuclear structure and forces are taken into account.
Then one can consider the potential energy as the
algebraic sum of different parts; one the nuclear
repulsive potential corresponding to a Coulomb
potential, the other the purely electronic energy.
Van der %aals forces introduce terms of the form

n.
Varshni" has made a comparative study of many

potential functions for diatomic molecules. Among
others he refers to the Frost-Musulin potential,
constructed from semitheoretical arguments, of
the form

V(r) = [(bjr) —c]exp(- ar),

for which Frost and Musulin" got quite satisfac-
tory results for hydrogen. We shall return to this
potential form later.

The interaction energy between two normal helium
atoms as a function of the internuclear distance x
has been calculated quantum mechanically by sev-
eral authors. Davison" has calculated the coeffi-
cients of the series representation of the long-
range interaction potential between two atomic
systems by a variational procedure, using highly
refined ground- state wave functions. Earlier
values for dipole-dipole polarization or x-' terms
were obtained by use of sets of oscillator strength
data adjusted to reproduce the experimental re-
fractive indices and to satisfy the. Thomas-Reiche-
Kuhn sum rule. Davison checked his method by
calculation of dipole and quadrupole polar izabilities,
and then calculated the dispersion terms in the
two-body potential. The values are 1.47 atomic
units for the dipole-dipole or x term, and 14. 2
atomic units for the dipole-quadrupole or ~ 'term.
Other values given for the first coefficient are
1.46 by Kingston, "1.47 by Bell, "and 1.49 by
Barker and Leonard. 3 The variational procedure
is successful in refined calculations of multipole
polarizabilities, and the values obtained can be
expected to be of fairly high accuracy, but are
generally not in agreement with values previously
derived from the viscosity, second virial coffi-
cients, and low-energy scattering of atomic beams.

The second virial coefficient is found to be a
sensitive test of the semiempirical potentials con-
structed. There are, however, limitations be-
cause of quantum corrections. Another test of
derived potentials could be to require a simultan-
eous fit of the second virial coefficient and the

transport coefficients.
The repulsive potential between two ground-state

helium atoms has been investigated by several
people. Theoretical self-consistent field calcula-'
tions of the helium-helium interaction at small
distances have been performed by Phillipson, "
and Gilbert and Wahl. " Potential energy curves
in the repulsive region are calculated, using single-
configuration wave functions constructed from mo-
lecular orbits, and then further refined to include
effects of electron correlations by inclusion of su-
perposition of configurations. In the molecular or-
bit approach, the two helium atoms are regarded
as a helium molecule in which each of the electrons
is assigned to a one-electron orbital wave function,
or molecular orbit which extends over the whole
molecule.

The repulsive part of the potential energy curve
has been studied experimentally by the atomic-beam
scattering method of Jordan and Amdur. " They
have measured the total elastic cross sections for
helium atoms which have been scattered by helium
at room-temperature. It is a scattering experi-
ment involving high-velocity neutral beams of heli-
um atoms in ground states, and it gives results for
the potential in the range 0.6&x(1.1 A. The re-
sults seem to indicate a remaining uncertainty in
theoretical calculations at short ranges.

There has always been bad agreement between
short-range potentials for helium obtained from
scattering and those from theoretical calculations.
One could argue that the atomic-beam potentials are
in principle not strictly adiabatic, since at higher
energies the nuclear motion of the system is not
negligibly small compared to the orbital motion of
the electrons. The potentials derived from scatter-
ing experiments may be velocity-dependent, and
not characteristic of two helium atoms fixed in space
with specified internuclear separations. How-
ever, there seems to be no significant difference
between the potential obtained from scattering and
a calculated adiabatic potential. When examining
helium potentials, we find that semiempirical
curves lie about 10% below theoretical ones in the
repulsive region. The theoretical errors can be
classified in three main categories as correlation
errors, expansion errors, and distortion errors.
But there is at the moment no reliable method for
estimating the magnitude of these errors. It just
seems that theoretical curves give too much re-
pulsion.

But theoretical calculations of the short-range
repulsion and of the coefficients of the multipoles
in the long-range attraction between helium atoms
have been considerably improved recently. Bern-
stein and Morse ' suggested an interpolation meth-
od to infer the helium-helium interaction at all
distances. They constructed a potential by joining
Phillipson's short-range repulsion" via a Morse
function to a long-range attraction given by Dal-
garno and Kingston. " But Varshni" has calcu-
lated the second virial coefficient for their po-
tential, and finds rather poor agreement with ex-
perimental data below 150'K.

Bruch a.id McGee" have made a detailed study
of the construction ot a semiempirical helium-
helium interaction by the same procedure. They
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use an empirical potential function to interpolate
through the potential minimum between theoretical
calculations at short and long separations. The
parameters in this function are restricted by the
requirement of slope matching at the end points
of the interpolation. The final potential is then
given by three separate analytic terms for the
three ranges of separations. However, Bruch
and McGee found that they had to modify this pro-
cedure because potentials constructed in this way
do not describe thermodynamic data satisfactorily;
for instance, second virial coefficients calculated
for these potentials are in poor agreement with
experimental data. They therefore modified the
original interpolation method by constructing a
semiempirical potential which fits the data well.
A three-parameter potential is joined by slope
matching to the theoretical long-range interaction
only.

The long-range interaction is assumed to be
given by the first two nonzero terms in a multi-
pole expansion, i. e. , the dipole-dipole and dipole-
quadrupole interactions. This potential energy
is given as a function of the nuclear separation
x as

(8. 2)

The values of the constants C, and C, are

C6=1.47 a. u. =1.41x10 ' ergcm',

C, =14.2 a. u. =3.82x10 ergcm',
(8. 8)

as given by Davison. "' Higher multipoles and an
overlap repulsion are then neglected, but they should
partially cancel each other.

Bruch and McGee then relax the original require-
ments in order to- fit the experimental second
virial coefficients. The potential is only required
to make a first-order contact with the theoretical
long-range interaction, which means

9. CALCULATIONS WITH NEW POTENTIAL

We have repeated our calculations of the two-
body and the three-body contribution to the bind-
ing energy of liquid 'He using the new potential
(8. 2) and (8. 5). Our new potential is defined as

'V& (r) = —12.54 1+ 8. 01 (&
— '

) (9.1)

8.01(1—r/2. 98)
for x'(3. 5 A,

=-7250 ', + +,for x & 3.5 A,
1.41 3.82

Our results have been discussed and compared
with other results separately in the various sec-

in 'K, where x is measured in A We will call this
our Frost-Musulin potential. Figure 10 shows this
potential together with the Yntema-Schneider po-
tential defined by Eq. (2. 8).

Calculations are performed as outlined and ex-
plained in I, II, and Sec. 2 of this paper; and re-
sults are given in Tables X-XIV.

We get a binding energy of —2. 0 'K per particle
for r, =2. 46 A or ky =0. 78 A . The correspond-
ing experimental values are —2. 5'K per particle
for x, =2. 43 A or ky =0. 79 A . Our theoretical
result thus is fairly close to the experimental
result, but this agreement should not be taken
too seriously, of course. There are too many
uncertainties involved in the calculations. It is,
however, an encouraging result, and indicates
that there is still hope for a good reproduction
of experimental values by theoretical calcula-
tions, using methods originated by Brueckner,
Bethe, and collaborators.

10. SUMMARY

V(y) = V~(r) for r ~t;,

—V (y) for r)r, .
(8.4)

)i vL'Kj

20-

The parameters of the best semiempirical poten-
tial finally derived by Bruch and Mcoee are prac-
tically the same as the parameters listed for their
so- called Frost-Musulin potential. This should
then be the analytic form for a semiempirical po-
tential which seems to fit the viri3l data most
closely, and it is given as

IO-

V& = —e [1+c(1—x )] exp[- c(x —1)], (8. 5)

where x=r/R, 8=2. 98 A, c=8.01,

q=1. 73x10 "erg=12. 5'K. (8.6)

-IO—

We will use this potential in some new calculations
of the binding energy.

FIQ. 10. Potentials for liquid He. V~s (Yntema-
Schneider) is given by Kq. (2.8) and VFM (Frost-Musulin)
by Eq. (9.1).
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TABLE X. Diagonal GL -matrix elements in A, calculated on the energy shell. Statistical weights included. Frost-
Musulin potential. ko is varied. &= 0.5 mo*= 2.5.

k (A i) ko/ky L=O L&3

0.75 0.001
0.125
0.25
0.375
0.50
0.625
0.75
0.875
1.00

5.3
10.6
23.9
39.7
53.3
62.4
66.2
64.6
58.8

0
-14.6
-47.1
-75.7
-86.8
-76.8
-47.2

3 03

46.8

0
-0.1
-1.6
-5.5

-11.5
-18.0
-24.0
-27.9
-28.4

0
0

-0.3
-2.2

7 y3

-15.3
-25.6
-38.4
-52.6

0
0
0

-0.5
-l.9
-4.3
-7.8

-12.8
-19.5

5.3
-4.1

-25.0
-44.3
-54.2
-51.9
-38.5

17 e7

5.2

0.78 0.001
0.125
0.25
0.375
0.50
0.625
'0.75
0.875
1.00

14.1
19.8
33.7
49.7
62.8
70.8
72.9
69.3
61.5

0
-15.7
-49,5
77 04

-85.6
-70.8
-35.6

13o2
66.2

0
-0.1
-1.8
-6.2

-12.4
-19.2
-25.0
-28.2

27 y3

0
0

-0.4
-2.7
-8.4
17 ~ 1

-28.4
-42.1
-56.8

-0.1
-0.6
~2g2
-4.8
-8.9

-14.4
-21.9

14.1
4.0

-17.9
37+2

-45.8
-41.1
-25.0
-2.1
21.8

tions, but we would like to add some comments.
The binding energy of liquid ~He is calculated to

be —1.0 K per particle for the Yntema-Schneider"
potential given by Brueckner and Gammel, ' and
—2.O'K per particle for the Frost-Musulin" po-
tential given by Bruch and Mc Gee. ' The results
of our calculations can be compared with values
from other calculations, as we have done in Sec.
2, and we want to mention the other methods being
applied.

Using the temperature-dependent many-body
Green's function formalism of Martin and Sch-

winger, 4' Beck and Sessler'4 have calculated
low-temperature properties of liquid 'He. Their
Green's function formalism gives an infinite set
of coupled integral equations, which must be solved
self-consistently. It is impossible in practice to
solve this set of equations exactly, and approxima-
tions must be made. Using separable potentials
and a noninteracting spectral function to define
the two-body interaction in the medium in a pre-
liminary zero-temperature calculation, they ob-
tain a spectral function and self-energy for quasi-
particles. Thermodynamical properties of the

TABLE XI. Diagonal GL-matrix elements in A, calculated on the energy shell. Statistical weights included. Frost-
Musulin potential. ko is varied. &= 0.6. mo*= 2.5.

kg{A ') L=1 L=3 L&3 Total

0.75 0.001
0.125
0.25
0.375
0.50
0.625
0.75
0.875
1.00

13.5
18.8
31.8
47.2
60.4
69.0
72.1
69.9
63.5

0
-14.5
-46.4
-74.2
-84.4

73 «3

-42.4
2.6

53.8

0
-0.1
-1.6
-5.5

-11.4
-17.9
-23.8
-27.6
-27.9

0
0

-0.3
-202

7 Q3

-15.2
-25.6
-38.2
-52.3

0
0
0

-0.5
-1.9
-4.3
-7.8

-12.8
-19.5

13.5
4.2

-16.5
-35.3
-44.6
-41.7
-27.5
-6.0
17.7

0.78 0.001
0.125
0.25
0.375
0.50
0.625
0.75
0.875
1.00

23.2
28.8
42.5
58.0
70.6
77.9
79.2
75.0
66.4

0
-15.5
-48.7
-75.8
-82.8
-66.7
-30.2
19.9
74.1

0
-0.1
-1.8
-6.1

-12.4
-19.1
-24.7
-27.8
-26.8

0
0

-0.4
2 +7

-8.4
-17.1
-28.3
-41.9
-56.4

I

0
0

-0.1
-0.6

2+2
-4.8
-8.9

-14.4
-21.9

23.2
13.2
-8.5
27 y2

-35.2
-29.8
-12.8
10.8
35.5
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TABLE XII. Binding energy for liquid He3 in 'K.
Only two-body terms included. Frost-Musulin poten-
tial. & and mp* are varied.

TABLE XIII. Three-body energy terms for liquid
He in K. Frost-Musulin potential. kp = 0.55 k'~ on the
energy shell. Ap is varied off the energy shell. &= 0.5.
mp*= 2.5.

m *
p 2.0

0.4

2.5 2.0

0.5

2.5 0.6 0.8 1.0 1.2

0.75
0.78

-0.51
-0.12

-0.42
-0.01

0.08 0.17
0.61 0.72 0.75

0.78
-2.09
-2.40

-2.41
-2.95

-2.06 -0.89
-2.3 1 -0.63

system are then calculated, using this syectral
function. Beck-" continued the program by cal-
culating zero-temperature properties, using the
local potential of Bernstein and Morse. ' A zero-
order solution of the thermodynamically consis-
tent approximation is obtained from noninteracting
spectral functions. Afterwards an iterative solu-
tion of the coupled integral equations is obtained,
giving a spectral function for the interacting sys-
tem. But the calculated properties are in bad
agreement with experimental values, possibly
because of the potential being used.

Wu and Feenberg44 have a rather different ap-
proach to the problem. They relate liquid 3He to
a boson system of particles of the same mass;
and given the properties of the boson system, they
get a rapidly convergent approximation for the
fermion system. Suggesting a two-body correla-
tive approximation to the boson system, which can
be checked against experiments on liquid ~He,
they repeat the calculations for bosons of mass 3.
In this way a theory of the normal ground state
of liquid 'He is constructed, using matrix ele-
ments in a representation of correlated basis
functions. Wu and Feenberg calculate the fermion
radial distribution function, and get a connection
between known results for the fermion and boson
forms of the hard-sphere system at low density
and also get properties of a hypothetical fermion
'He system. In a second paper, Feenberg and
Woo4' evaluate matrix elements of the interacting
system by a cluster-expansion technique. They
construct an orthonormal basis to express the
Hamiltonian operator in quasiparticle form. The
methods are then used by Woo" in a calculation
of the ground-state properties of liquid ~He. More
recently Schiff and Verlet" have made a varia-
tional calculation of the ground-state energy of
liquid 3He, using Jastrow-type trial wave functions.

The energy expectation value is calculated approx-
imately by use of the cluster expansion developed
by Wu and Feenberg, up to second order. This
expansion seems to converge rayidly, and should
not depend too much on variational parameters.
Assuming a Lennard- Jones 6-12 potential with
de Boer-Michels parameters, " Massey and Woo"
have also recently calculated the ground-state
energy by the variational procedure connected with
the method of correlated basis functions. They
obtain a rather small binding energy, but show
that a second-order perturbation correction added
to the result of Schiff and deerlet will give a bind-
ing energy of —1.6'K yer particle.

We have earlier made some comments about
Brueckner's papers on liquid 3He, since one of
our main justifications for the present work is to
check, modify, and yossibly imyrove the Brueckner
method. Although the Brueckner theory does not
include the possible existence of a suyerfluid phase,
it should describe the liquid quite well at tempera-
tures above the transition temperature, since most
of the properties of liquid 'He change slowly with
temperature. Moreover, possible singularities
occur only for states with energies very close to
the Fermi surface, and these make a negligible
contribution to the bulk proyerties of the liquid
(except for the specific heat). If these states are
ignored or treated in an approximate way, the
error should be small.
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TABLE XIV. Binding energy for liquid He in 'K. Frost-Musulin potential. S@is the interaction energy from the
N-body term. E~ is the binding energy with only two-body terms included, and BE is the total binding energy. mp*= 2.5.

kF(~ ') sly {'K)

0.75
0.78

2.56
2.46

0.0142
0.0160

0.45,
0.41

-3.00
-3.05

2.75
3.00

-0.25
-0.05

-1.70
-1.95

-1.95
-2.00
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