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Resonant Four-Wave Interaction of Electron-Plasma Oscillations*
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The time evolution of a uniformly turbulent ensemble of electron fluids is studied in the
electrostatic approximation. A kinetic equation for the action density is obtained in the long-
wavelength limit, in which resonant four-wave processes cause the nonlinear transfer of
energy in the oscillation spectrum. It is shown that the entire region of k space {within the
limits of the simple-fluid model) is accessible to resonant four-wave interactions. Such four-
wave mode coupling serves as a mechanism for the transfer of wave energy into shorter
wavelengths.

I. INTRODUCTION

(kl)+e (k2) = &u (k3), kl+k =k,

cannot be satisfied for a triplet of modes (o., P, y),
then the principal mechanism for the nonlinear
transfer of energy between modes is resonant
four-wave coupling. This is manifest in the re-
sulting kinetic equation' through resonant behavior
for &u(k) and k satisfying

(u (kl)+(u (k2)=~ (k3)+(u~(k~),

k.) + k2
——k3+ k4. (1.2)

The fundamental process in relation to (1.2) is the
merging of two waves of frequencies &uo (k, ) and

&up (k, ), say, into a virtual state ~g(k„+k ), fol-
lowed by the (instantaneous) decay of e& (k, +k, )
into two oscillations &uy(k, ) and u&g(k4). This is
shown schematically in Fig. 1. An excellent case
in point arises in the study of a random sea of
gravity waves in a channel of constant depth h. '~'

In this example the dispersion relation is of the
form &u'(k) =g) k) tanhl k) h, where g= )gl is the
acceleration due to gravity. The resonance con-
dition (1.1) cannot be satisfied for such a disper-
sion relation, whereas (1.2) can be satisfied. Con-
sequently, in weakly turbulent situations, the prin-
cipal mechanism for the nonlinear transfer of energy
in the oscillation spectrum is that of resonant four-
wave scattering. The situation in a plasma is, of
course, considerably more complicated since
there are many modes of oscillation possible in
general. In certain simple models, however, sit-
uations occur where the dispersive properties do

The derivation of the kinetic equations describ-
ing the time evolution of wave correlations due ta
resonant three-wave and resonant four-wave inter-
actions in a uniformly turbulent ensemble of weakly
nonlinear, dispersive systems, has previously
been put on a rigorous and systematic basis. '&'

The results are applicable to a broad class of prob-
lems in which a fluid-like description may be used.
Let us denote by fera(k)) the set of possible eigen-
frequencies as a function of wave vector k describ-
ing the linear response in a given problem for
which the analyses in Refs. 1 and 2 may be applied.
In situations, where the resonant three-wave decay
conditions

not permit a solution to (1.1). This is the case
for long-wavelength electrostatic electron plasma
oscillations with

~'(k) —&u '(1+3k'X ')
0 (1.3)

where the electron plasma frequency ~, and the
electron Debye length ~D are given by

~0'=4mnoe'/I, XD'-8 /4' e'.e' D e (1.4)

(u)g(K, ), K,) ((dy (K3), Kq)

(tu&(KJ, K4)

FIG. 1. Basic resonant four-wave process consisting
of the merging of two waves into an intermediate virtual
state, followed by the {instantaneous) decay of this
virtual state into two further states.

In Eq. (1.4), n, is the uniform density of the back-
ground ions (assumed fixed and singly ionized),
and 88 is the electron temperature in units of ergs;
me and —e are the mass and charge of the elec-
tron. Equation (1.3) is valid in the absence of ex-
ternal magnetic field for sufficiently long wave-
length disturbances, i.e., PXD' small compared
to unity. Although resonant three- wave interac-
tions are forbidden, the four-wave condition (1.2)
may be satisfied since l &u(k) ) = u&, .

The nonlinear interaction of coherent electron
plasma oscillations has been extensively studied
in a simple-fluid approximation. ' ' In this article
we consider the time behavior of a uniformly turbu-
lent ensemble of such electron fluids, which
evolve according to (2.1)-(2.4) in the absence of
magnetic fields. The model lacks sufficient so-
phistication to recover the effects of linear and
nonlinear Landau damping which appears in a
Vlasov analysis. "~" However, it does serve to
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illustrate the essential features of resonant four-
wave coupling which is a fundamental process in
relation to the nonlinear interaction of electron
plasma oscillations. Moreover, it is a useful ex-
ample to demonstrate the techniques which may
be used in reducing a particular problemto a form
in which the weak turbulence formalisms of Refs.
1 and 2 may be applied. We remind the reader
that the effects of resonant four-wave scatterings
of electron plasma oscillations were first estimat-
ed within a one-dimensional Vlasov framework. "
The analysis, however, was incomplete in this re-
gard. Upon close examination of the problem, it
is apparent that a fifth-order perturbation analysis
of the Vlasov equation (in powers of the electric
field amplitude), instead of third-order, would
have been necessary to properly include the total-
ity of resonant four-wave interactions which cause
the wave energy to change with time. The neces-
sity of a fifth-order perturbation analysis in the
oscillation amplitude has been shown to be the
case in relation to the shallow-mater wave prob-
lem, ' and is discussed in some generality else-
where. '

In Sec. II, the simple electron-fluid model used
in the present analysis is discussed. There re-
sults a coupled system of nonlinear Eqs. (2.19) and
(2.20) with bilinear nonlinearities describing the
time evolution of the density and velocity fluctua-
tions, in the spatially uniform ensemble. Analo-
gous to the techniques employed in time-dependent
perturbation theory in quantum mechanics, the
problem is reformulated in Sec. III in a representa-
tion where the basic vectors are solutions to the
linear versions of Eqs. (2.19) and (2.20). The re-
sulting nonlinear equation for the fluctuation am-
plitudes is given by (3.10) and is of the general
form used in Ref. 2; consequently, the appropriate
kinetic equation (3.16) describing the time evolu-
tion of the spectral energy density of the fluctua-
tions may be taken over directly from this latter
reference. Although the general solution to the
kinetic equation is not tractable, some simple ob-
servations are made in Sec. IV. It is shown that
the entire region of k space (within the limits of
applicability of the model) is accessible to reso-
nant four- wave scatterings of electron-plasma
oscillations. In particular, if the wave vectors
composing an initial preparation are 1 kl & l kpt,
say, then it is found that energy may be trans-
ferred into the region of k space for I ki 2 I kpl,
i.e., to shorter wavelengths.

II. MODEL OF ELECTRON FLUID

(nv) =0,
8t 8x (2. 1)

The model we use to describe the nonlinear in-
teraction of electron-plasma oscillations is a
very simple one. Namely, the positive ions are
assumed to form a fixed uniform background of
density no. Moreover, the electrons are described
by truncated moment equations. In the electro-
static approximation, the electron fluid evolves
according to

8 8 e 1—v+v. v =- E- P,8x fPl

nial

e
(2. 2)

8x
E =-4ve(n-n )0 (2. 3)

8 xE=0,8x (2.4)

8««8» e ~ e Ã 8 n8—V+ V'~V= ——E —38t ~X I m ne e 08x (2. 5)

Equations (2. 1) and (2. 3)-(2. 5) then form a closed
set. It should be noted in regard to (2. 5) that if
the velocity flow is initially irrotational, i. e. ,

XV= 0)
8x

(2. 6)

it remains so for all times. We assume that this
is the case. This is tantamount to omitting zero-
frequency shear waves from the analysis.

Let us now consider the problem of uniform
turbulence in a statistical ensemble evolving ac-
cording to the system (2. 1) and (2. 3)-(2.6).
Each fluid and field quantity is written as an aver-
age plus a fluctuation, i. e. ,

n=(n)+5n, v=(v)+6v, E=(E)+6E. (2. 7)

In Eq. (2. 7), (n), (v), and (E) are independent of
position by the assumption of spatial uniformity of

where n, v, and P are the electron density, mean
velocity, and pressure tensor (defined relative to
the mean electron velocity), respectively. The
electric field E is self-consistent through Pois-
son's equation (2. 3). It should be kept in mind
in relation to (2. 2) that the forces associated
with the thermal stresses are smaller by
O(k2yg') in comparison with the electrostatic
restoring forces, where k is the wave number
typical of the disturbance under consideration.
To complete the system (2. 1)-(2.4), information
must be specified regarding the electron pressure
tensor P. This may be done by using the equation
of evolution for the corresponding moment of the
Vlasov equation, and achieving closure by neglect-
ing the effects of heat flow. " However, for pres-
ent purposes, it is adequate to use a model in
which the electron pressure is scalar, and be-
haves adiabatically with the density. In particular,
we take I' = (&e l&0')n' in order to recover the lin-
ear-dispersion relation (1.3) correct to O(p2yD2).
Although this procedure is technically incorrect
except in one dimension, it has the obvious ad-
vantage Of simplifying the problem as well as
recovering the correct long-wavelength disper-
sion relation. We will see at a later point that
the nonlinear contribution of the force associated
with the above scalar pressure model may, for
present purposes, be omitted from the analysis,
although we shall make no assumption a priori in
this regard. The equation of motion for the elec-
tron fluid is simply
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the ensemble. Moreover, the correlations be-
tween fluctuations are invariant under translation.
Averages may be viewed as averages over a prob-
ability distribution of systems, or alternatively as
the arithmetic mean of the quantity under consid-
eration taken over a large number of systems.
Clearly the average of the continuity equation (2. 1)
gives (&/et)(n) = 0 because of spatial uniformity of
the ensemble. That is to say

(n) =no, (2. s)

&v) =«) =0- (2. 9)

initially. %e assume this to be the case. In light
of (2. 7)—(2. 9), the fluctuations in the ensemble
evolve according to

8 ~ 8 &n. 5v — . —5v
Bt np Bx -Bx nP

(2. 10)

for all times if so initially. Moreover, as indi-
cated in Appendix A, it may be demonstrated
within the context of the model that no average
flow velocity or average electric field is generated
in the ensemble if

5A(-k, t) = 5A*(k, t). (2. is)

In addition, it is convenient to introduce the quan-
tities 5V(k, t) and 5N(k, t) related to the Fourier
transforms of the velocity and density fluctuations,
5v(k, t) and 5n(k, t), by

(zk/I kl) 5 V(k, t) = 5v(k, t),

5N(k, t) = [I&o(k) I/Ikl] [5n(k, t)/n, j,
(2. iv)

(2. iS)

where &u'(k} is given by (1.3). Equation (2. 17)
follows since the velocity field is irrotational;
and the function 5N(k, t) in (2. 1S) is constructed
to have the same dimensions as 5V(k, t). Mo. re-
over, the symmetries 5 V(—k, t) = 5P'(k, t) and
5N(-k, t) =5N"(k, t) hold true. The Fourier trans-
forms of Eqs. (2. 10) and (2. 11) may then be
readily reduced to

—5N(k, t) = lu)(k)i5V(k, t)

fdk' tl~(k)ilk'ik. (k-k')
~ ( g ) (- f )

(Ik I ice(k') I ik- k'I ) 2. 19
and

—5v =- —5f—8 - e 3ee 8 en
Bt ~ m Bx n08

388 e 5n 8 5n— 6v ' — 5v +
Bx I no Bx no

where ~ 5E = —4we5n
8
Bx

, (2. ii)

(2. i2)

&&5V(k, t)=-la)(k)l5N(k, t)

f dk lklk (k k ) 5V(kP t)5V(k kf t)
(2lk'Ilk-k I )

ee / ikllk'ilk-k'I
5N(k t)5N(k kl t)

e ( i co(k')I leo(k- k')ig

(2. 20}

x 52=0,8
BX

(2. 13)

~5v= 0.
Bx

(2. i4)

The only nonlinearities in Eqs. (2. 10) and (2. 11)
appear within square brackets and are bilinear in
nature.

%e now Fourier transform with respect to the
variable x,according to the convention

5A(x, t)=(s~) fdke' "5A(k, t)',

5A(k, t) = fdx e 9A(x, t),
(2. 15}

where 5A(x, t) may represent any of the fluctuations
appearing in Eqs. (2. 10)-(2.14). Since the fluc-
tuations are real valued,

Equations (2. 19) and (2. 20) are exact within the
context of (2. 10) and (2. 11), and the corresponding
nonlinear terms are easily identified.

As previously discussed, in a conventional weak-
turbuience analysis, it would be necessary to ob-
tain the perturbation solution to (2. 19) and (2. 20)
to fifth order in the fluctuation amplitude, "fol-
lowed by the appropriate statistical averaging, in
order to obtain the kinetic equation describing the
time evolution of the spectral-energy density in
the fluctuations due to resonant four-wave pro-
cesses. The principal thesis in Refs. 1 and 2,
however, is to eliminate the vast amount of in-
formation and algebra associated with the afore-
mentioned method by studying at the outset the
time behavior of correlations in the ensemble.
We now rewrite Eq. (2. 19) and (2. 20) in canon-
ical form similar to the general dynamical equa-
tion previously studied. '~'

III. THE KINETIC EQUATION

Analogous to the techniques used in time-dependent perturbation theory, it is convenient to formulate
the problem in a representation where the basis vectors are solutions of the linear versions of Eqs. (2. 19)
and (2. 20). Introducing the column vector, ((k, t), where

((k t)
5V(k, t)l~

5N(k, t) j
(3. 1)
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Eqs. (2. 19) and (2. 20) may be written in the form'

i g(—k, t) = H, (k) 0'(k, t) + ffdk, dk, 5(k k—, —k, )H,[k„k2; ( (k~, t), ((k„ t)] . (3.2)

The 2 x2 matrix H, and column vector H, in (3. 2) are given by

0 —il &u(k) I I

H, (k) =
I

(k)l 0

and 2(2m)~(- i)H, [k~, k„g(k„ t), $(k2, t) ]

(3. 3)

f2I kl k-, k,/ik, I I k, I

= (1,0)~ g(k„ t) I

0

0
~ (R„ t)

I (o(k)i I k, l k k, /l(o(k, )l I kl I k, l/'

('0 —(38 /2m )I k) I kll I k2l/l(o(ki)l l(u(k)l l
+(0, 1) $(k„ t)~ ~ g(k~, t) +[k, k2] . (3.4)

The eigenfrequencies associated with the linear (H, = 0) version of Eq. (3.2) are solutions to &o'= &o2(k)
= &o,2(1+3&'XD'). We denote the two possible modes by &u+(k) and &o $)[=—&o+(k)] and use the sign conven-
tion

(o (- k) = —(o (k), n =+, — (3.5)

throughout the remainder of this article. The eigenvector of the linear version of Eq. (3.2) corresponding
to mode n is simy1. y

U (k)= —
/

(3.8)
&2 (i(o (k)/l(u(k)it

It should be noted in relation to (3.6) that U (—k) = U *(k) and that the normalization is of the form

U (k) U (k)=a (3.7)

(3.8)

where U8(k) is the Hermitian conjugate of Up(k) and 5np is the Kronecker delta. Introducing the ampli-
tude A 5, t) associated with the nth mode, then, with

-i(o (j~)t

P(k, t) =+ A (kl, t)U (k)e

Eq. (3.2) can be rewritten
(~A ) —i&a (k)t

Zil, „'(k, t)IU (k)e
' =Z ffda, dr tI(k k

g&t n

XI'l[kl, k2, U8(kI), U (k2)]A %1, t)A (k2, t) exp{-i[(o (k1)+ &o (k2)]t) (3.9)

where the summations in (3.8) and (3.9) are over +, —polarizations. Multiplying Eq, (3,9) by the
Hermitian conjugate of Un(k), we have

(k, t) = ~ ffdkldk2&(k- kl —k )

where the interaction kernel

&«(k kl, k24 (k1, t)A (k2, t) exp{i[(o (k)- (o (k ) —(g (k )]t],y 2' 1 y 2 (3.10)

(k, k, k2) =- iU (k) HI[kl, k2, U (kl), U (k )]
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(k) Ikl2k ~ k lk Fk. k Iki I k k2 8 Ikl'Ikil'lk2I'

(2m)'4/2lkl lkil Ik2I ~~(R) ~ (k2)
y 2 1 e n 1 y

which follows from Eq. (3.4). It should be noted that the term proportional to 88 in exPression (3.11)
arises from the nonlinear contribution of the electron pressure in Eq. (2.11). In an order-of-magnitude
estimate, this is smaller by O(k'XD') than the remaining terms in (3.11), and may be omitted from the
long- wavelength analysis for all practical purposes.

Equation (3.10), advancing the amplitudes Ao (R, t) in time, is exact within the context of the original
model; the form, however, is more amenable to a, direct analysis than that of Eqs. (2.19) and (2.20). The
general procedure outlined above can, of course, be applied in situations where there are any finite num-
ber of coupled nonlinear equations describing the problem under consideration. It should be noted that in
a small-amplitude theory of (3.10), Ao, (k, t) does not change with time in the lowest approximation, thus
giving a +(k, t) in which waves of different wavenumber propagate independently. In higher order, how-
ever, the nonlinear terms act as perturbations causing Ao (R, t) to change in the course of time through the
interaction between waves of differing wavenumber.

Since the time evolution of the fluctuations has been reduced to the canonical form (3. 10), the general
results from previous analyses may be used directly to give the kinetic behavior of the spectral-energy
density associated with the fluctuations in the ensemble. The spectral-energy density associated with the
nth mode, Goo(k, t), is given by'

(A (k, t)A (k, t))=2G (ki, t)~(ki+k ) (3.12)

for a spatially uniform ensemble. Moreoverw, e introduce the action density no (k„t) associated with the
nth mode, where

(&I, )i &I),

and the response p (k, k„k,) defined in terms of the interaction kernel by

(3.i3)

(k, ki, k2) —= ~ (ki)e (k2)K (k, ki, k2), i. e. ,

(u (k)(ar (ki)(o (k2) Ikl2ki k2 lk2 Pk k Iki l2k k2 8 Ikl2lki I'Ik2l'

(2g)'4v2lkl ikil Ik2I &u (k) &o (k2) &u (ki) e &u (k)e (ki)&u (k2)Q y 2 1 o. ]. y 2—

It should be noted that n~(—k, t) = —n (k, t)= —n (k, t), and that the response, in addition to being real, en-
joys the symmetries

(k, k, k2)=P ~ (-k, —ki, —k2)=tL (-ki, —k, k2)=tL P (-k2, ki, —k). (3.i5)

In addition, we remind the reader that, G++ and, G may be expressed directly in terms of the density
and velocity correlations, (&Ny, &Np, ), (&Up, &Vy ), and (5Ny, &Vy,) although this is not necessary for
present considerations.

As stated in the introduction, long-wavelength electron-plasma oscillations cannot satisfy the resonant
three-wave decay condition. Hence, in the simple model used here, the leading-order process causing
no (k, t) to change with time is that of resonant four-wave interactions. In light of Eq. (3.10) and the sym-
metries (3.15), we may use the kinetic equation derived in Ref. 2 to de scribe the evolution of no, (k, t). In
particular, the kinetic equation for the action density is given to O(n') by

—n (ki, t) = Z 'JJJdk2dk3dk45(ki+ k2 -k3 —k4) 5(&o (!zi)+ &u (k2) —&o (k3) —~&(k4))

X
(o (ki)(o (k2)(o (k3)u) (k4)

[ (k, t) (k~t)n, (,k~t),

+ n (k , t)n (k , t)n (k , t) —n (k , t)n (k , t)n (k , t) —n (k , t)n (k , t)n (k , t)], (3.i6)

where 2m k+k
D (-k„-k„k,k~) =

Py~-
(ki)+ &@ (k2) —~ (ki+k2)
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&k- k&

The response D defined in (3.17) and appearing in the kinetic equation (3.16) may be written explicitly in
terms of its k arguments and ((oo, (k6 through the definition of p in Eq. (3.14). It should be noted that the
summation in (3.17) is over virtual states g. Moreover,

(3.17)

I)»'( k„-k„k„k,)
is symmetric under interchange of any two of the quantities (o), —k, ), (p, —km), (y, ks), and (6, g) when the
resonance condition (1.2) is satisfied. We also remind the reader that the stoss term in the kinetic equa-
tion (3.16) is frilineax in the action density, in contrast to the kinetic equation for resonant three-wave
processes' where the driving term is bilineax in the action density.

IV. DISCUSSION OF RESULTS

(kl)+ &o (k2) =(u (R3)+(o6(kl+k2 —k3).

Keeping in mind that I+(k)I- ~, in the long-wave-
length circumstances considered here, then,
depending on the various polarizations, there are
three distinct ways in which the resonance condi-
tion (4.1) can be satisfied. Namely,

(4.1)

iv)(k, )I+ l&v(k, )I= l&u(k, )I+ I&a(k, +k, —k,)I, (4.2a)

l a&(k, ) l
—) &o(k, ) I = I &o(k,) I —l ar(k, + k, —k, )I, (4.2b)

I &o(k,) I
—I &a(k2) I = —

l &o(k, ) I+ I &o(k, + k, —k, ) I. (4.2c)

The kinetic equation (3.16) thus describes the
time evolution of the action density no (k„f) as-
sociated with the nth mode. The general con-
servation relations and law of entropy increase
discussed in Ref. 2 apply in relation to Eq. (3.16).
Although the resulting kinetic equation is a non-
linear integrodifferential equation whose solution,
in general, is not tractable, certain observations
may be made. It is of particular interest to de-
termine the region of k space accessible to reso-
nant four- wave scatterings.

We examine Eq. (3.16) for a fixed k~ and carry
out the k4 integration over 5(k, +k, —k~ —R, ),
which replaces k~ by k, +k, —k, in the remainder
of the integrand. For example, 5(uu(k, )+ ~p(k, )
—~(k, )-co6(R,))- 6((o~(k,)+ (ot)(k, ) —(oy (k )
—&u6(k, +k, —.g', }). We now imagine doing the k,
and k, integrations successively. For each k,

(keep in mind k, is fixed), the resonant region in
the k, integration is determined from

only the k, integration. When integrating over k„
the location as well as the radius of this "reso-
nant sphere "varies, covering the entire region
of available phase space. Of course, the model
is limited in the range of wave numbers to which
it is applicable. In particular, 0& lkl& lkl max,
where lk~lax~D (1. For wavelengths shorter
than 2v/Ikl max, collisionless dissipation through
Landau damping becomes important.

Since the resonant region covers all of phase
space (within the limits of the model), resonant
four-wave scattering serves as a mechanism for
the transfer of energy into shorter wavelengths.
Without presenting any of the algebra here, one
can show from Eq. (3.16) and the preceding ar-
guments that, if the wavenumbers composing an
initial preparation are Ikl & Ik, l say, then the
region of k space III)}R,l becomes populated for
times greater than zero. This corresponds to a
transfer of energy to shorter wavelengths. In a
more sophisticated model, the ultimate fate of
the wave energy would be dissipation through
Landau damping at sufficiently high wave numbers.
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APPENDIX A

Since the velocity field is irrotational according
to Eq. (2.6), the convective term v (8/Bx)v may
be rewritten as (9/&x)(v'/2). Then the average
of Eq. (2.5} over a spatially uniform ensemble
just gives

For the purpose of illustration, it is sufficient to
determine the resonant k~ region in ca,se (4.2a).
With I &o(R) I

= &,(I + 2k'XI)') in the long-wavelength
limit, it follows from (4.2a) that

k, '++2=ks + (k, +k, —ks) .
Equation (4.3) may be rewritten

(4.3)

[k, ——,'(k, +k,)j'=-,'(k, —k, )'.
That is to say, for each k, the resonant k, region
is the surface of a sphere of radius 2Ik, -k, I

centered at —,'(k, +k, ) as depicted in Fig. 2.'
In Eq.

(3.16), the k, integration over the surface of this
sphere may, in principle, be carried out leaving

R = radius of resonant sphere

= r' Li- La

FIG. 2. "Resonant sphere over which the k;
integration in Eq. (3.16) is to be carried out.
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—„&v&=- «& ~

8
(A.l)

Moreover, combining the equations of continuity
(2.1) and motion (2.5) readily gives

(A.2)(nv) =- (nE) .at m e

If we supplement the model with the curl 8 Max-
weD equation in the absence of magnetic field,
a.e.,

Using the identity

Q ~ Q ~~ g ]
~ E — .EE E2

~x Bx Qg 2

et, (E)+ &oo'(E) =0. (A.v)

when (8/Sx) &&E = 0, it is clear that the last average
in (A.8) vanishes for a spatially uniform ensemble.
Consequently, Eq. (A.5) may be written as

Q
0 =- 4genv+ —E

Q
then st (E) =4'(nv),

(A.s)

(A.4)

Thus the uniform ensemble supports average
electric fields oscillating exactly at the plasma
frequency. '~ In the event that the average fields
and currents are absent initially, i.e.,

trivially. Combining (A.2) and (A.4), it follows
that (E) = 0 = (nv), (A.8)

(A.5),', , &E&=-
"

(nE&.
e

However, the average (nE) may be rewritten
from Poisson's Eq. (2.3) as )=0, '(A. 9)

they remain so for a11 times. Moreover, from
(A. l)

(nE) =no(E) —
4 (Es~ ~ E) . (A.8)

for all times if Eqs. (A.8) and (A.9) are satisfied
initially.
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