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A calculation of the optical properties of electronic bubbles in liquid helium is presented.
Making use of the measured well depth and surface tension, we have computed the electronic
states as a function of bubble size and have calculated the configuration coordinate diagrams,
transition energies, oscillator strengths, lifetimes, cross sections, line shapes, linewidths,
and estimated the magnitude of the static Jahn-Teller effect in an excited state.- The depen-
dence on pressure is considered for some of these quantities from 0-20 atm.

I. INTRODUCTION

Among the many fascinating properties of liquid
helium! are those associated with charged imper-
fections. Following studies of positrons? and ions3?
in this medium, considerable attention has been
devoted recently to phenomena related to injected
and trapped electrons.”8 The central remark-
able fact with which we shall be concerned is that
the lowest energy state of an excess electron in
liquid helium may be characterized as a particle
in a box, a spherical cavity from which about a
thousand He atoms are expelled.

The experimental facts which lead to this con-
clusion are (1) liquid He has a negative electron
affinity (i.e., a barrier) of about one eV 8% ; (2)
the photo-ionization spectrum,® which is sensi-
tive to bubble size, indicates a radius of about
20 A.® Theoretical ideas which make this conclu-
sion palatable are based on (1) the Pauli principle,
which gives rise to a strong He-electron repulsion;
and (2) the low polarizability of He, which results
in only a very weak attraction.0,!

We adopt this picture of electrons in bubbles in
the present paper and discuss the model in detail
in Sec. II. In Secs. III-V, making use of the known
density, surface tension, and well depth, we com-
pute the energies, configuration coordinate dia-
grams, oscillator strengths, lifetimes, linewidths
and line shapes, and absorptien cross sections for
some of the electronic states and transitions of in-
terest. In Sec. VI the static Jahn-Teller effect is
treated in an approximation which is indicative of
the magnitudes to be expected. In Sec. VII we dis-
cuss the problem of the surface tension. In the
final section, we consider some experimental im-
plications of our results.

II. THE MODEL

We treat an electronic bubble in liquid He as if it
were an electron bound in a spherical square-well
potential. Calculations reported below justify the
assumption that there is a single electron; no evi-
dence to the contrary has been reported. Several
experimental®;” and theoreticall® works, including
this one, indicate that the bubble radius is much
larger than atomic dimensions, and one would ex-
pect to be able to ignore surface irregularities,
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that is, to retain the concepts of surface tension
and surface energy, except for modifications as
discussed in Sec. VII. Calculations reported in
Ref. 10 indicate no significant change in rounding
off the edges of the potential, so we employ a step
function for simplicity. The well depth V, is chosen
to be 1,02 eV as determined in Ref. 4, consistent
with the photo-ionization measurements of Ref. 6.
We select a temperature of 1. 3°K to agree with
Ref. 6, and use the appropriate (macroscopic) sur-
face tension 0=0.36 erg/cm? at that temperature,’s
The equilibrium vapor pressure at 1,3°K is only
P,=1.2 mm Hg," and the resulting P,V term in the
energy is negligible in comparison with the surface
energy at bubble radii of interest. We shall pre-
sent additional results for high applied pressure,
however, where the PV term and ¢ are both sig-
nificantly larger.

Other parameters of at least implicit importance
are the low dielectric constant (the index of re-
fraction is 1.0285 at 5462 A!5) and the atomic den-
sity (2.2 x 10?2 cm™3 1),

The wave functions of the bound electron extend
somewhat into the liquid, of course, where they
are modulated near each He atom by the require-
ment of orthogonality, thus producing the well,

We ignore this modulation in the computation of
transition matrix elements, since it is the same
in both electronic wave functions.

III. ELECTRONIC STATES
According to our model, we seek the solutions of

(- sV, ()=, (B), (@),

V=-V, 7<R (1)
=0, >R,

a problem treated in elementary textbooks on quan-
tum mechanics.!” To the electronic energy en(R),
we add the surface energy 4moR? and volume energy
4mPR®, to obtain the total E, as a function of R.
The polarization energy is ignored, following the
arguments of Ref. 10. Only spherical distortions
are considered here, The effect of /=2 modes on
the linewidth is considered in Sec. IV, and the ef-
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fect of nonspherical distortions when the system is
in a p state is considered in Sec. VI.

The calculations were carried out on a CDC-6600
computer at New York University, using a routine
written by Herman and Skillman,!® modified by
Smith (Illinois), and further modified by Kunz
(Lehigh). Certain points were also evaluated by
hand from the analytic solutions!” as a check of the
numerical method.

The resulting plots of E,,(R) versus R are note-
worthy in the history of the theory of imperfections
in condensed matter in that they depict reasonably
accurate calculations of a “center” on a one-di-
mensional “configurational coordinate” diagram.
Figure 1, for example, computed with P=0, pre-
dicts that the equilibrium radius is about 17.5 A
(which is between the experimental values deduced
in Refs. 6 and 7), and that the 1s-1p oscillator
strength should be 0.97; a 1s-2p transition should
occur at 0,49 eV with oscillator strength 0. 025,
and no further bound optical transitions should
occur. Furthermore (see Sec. IV) we can readily
predict the absorption linewidths and line shapes.
This center is much simpler than those encoun-
tered in solids, and this model itself is probably
better than the vastly more difficult models re-
quired by other centers,

The usual Stokes shift is exhibited in Fig. 1;
that is, after the system at equilibrium at 17.5 A
is excited to a p state by absorption of a photon,
the medium would relax to a new minimum energy
configuration, here represented as still spherical,
and emission would occur at lower energy. For
example, the 1s - 1p transition would occur at 0. 11
eV, and the corresponding 1p — 1s energy would be
0.075 eV. (It should be recalled that transitions
occur vertically on diagrams of this sort, Usually
it is because of the Franck-Condon principle, which
tells us that if they do not occur this way, there
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FIG. 1. Configuration coordinate diagram for an
electronic bubble in liquid He with a well depth 1.02 eV,
surface tension 0=0.36 ergem™, and zero pressure.

will be diminution of the transition matrix element
because of cancellation in the vibrational overlap
integrals. In our case, a nonvertical transition
would imply a shrinkage or expansion of the bubble
in the unrealistically short time of ~10~ sec. )

Normalized radial wave functions computed at
points of interest in Fig. 1 are presented in Fig.

2. The solid (dashed) curves represent the wave
functions for the 1s and 1p states evaluated at the
1s(1p) minimum,

Along with total energies, we have also computed
oscillator strengths, absorption cross sections,
and lifetimes, and thus we can predict (for a spheri-
cal bubble) absorption and emission energies and
transition probabilities.

Key numerical results are shown in Table I.

The equilibrium radii listed there should be re-
garded as uncertain to perhaps 3 A, since the
curves are rather flat and these radii were obtained
from the curves.

Several results should be emphasized from Fig.

1 and Table 1. First, the oscillator strength into
the 1p state is very large, 0.97, corresponding to
a cross section of 1.0x107'¢ eV cm?, In fact, less
than 0. 005 is left for the 3p state plus continuum
(a cross section <5x10-1° eV cm?). It is just this
low strength which was observed in the photo-ioni-
zation experiment, testimony to the sensitivity of
the technique.

It should be noted that the oscillator strengths for
the 1s —p transitions are close to those for p - 1s,
in the absence of the Jahn-Teller effect, in spite of
a sizable (40%) change in the squared dipole matrix
element. The energy change almost cancels that in
the squared matrix element, even with large dis-
tortion. Such a result was not obviously to be ex-
pected,!® .

The 3p state at radii below about 19.5 A is degen-
erate with the continuum, This suggests that ab-
sorption into this region of 3p may lead to auto-

ionization. This possibility was noted® in connec-
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FIG. 2. Radial wave functions for the 1s and 1p
states evaluated at 17.5 A bubble radius (solid curves)
and 22.5 A (dashed curves). The vertical lines cor-
respond to the two radii.
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TABLE I. Computed absorption and emission parameters for the spherical electron bubble with P=0.
Equil. radius E Oscillator Lifetime
&) Transition (ev) strength (sec)
Absorption
17.5 1s—1p 0.11 0.97 *
17.5 1s—2p 0.49 0.025 e
17.5 1s—3p 0.96 <0.005 (in continuum) s
17.5 1s— continuum 0.92 <0.005 .
Emission
22.5 1p—1s 0.075 .. 1.27 % 10™°
27.5 2p—1s 0.22 ce 5.5x107°
35.0 3p—1s 0.30 cee 1.55 % 10~

tion with one of the peaks observed in the photo-
ionization experiment.

Predicted radiative lifetimes of the excited p
states are rather long, 1074-10"5 sec, Such long
lifetimes raise the possibility that a bubble excited
into 2p or 3p will not emit from that state, but will
rather execute a radiationless decay and emit from
a lower state, e.g., 1p, or be trapped metastably
in, e.g., 2s or 1d. This possibility can best be
explored experimentally.

As has been pointed out by others,©,2° the appli-
cation of external pressure is expected to cause
significant changes in the equilibrium bubble radi-
us and in transition energies. There has been
some discussion in the literature of the pressure-
dependence of the surface tension, and the matter
still seems rather unsettled (see Sec. VII). We
have assumed that ¢ varies with P according to the
Amit-Gross theory,?! starting at 0.36 erg cm~2 at
P=0; at 1, 10, and 20 atm, then, o is taken to be
0.37, 0.50, and 0.62 erg cm™2, respectively.

We have computed the configuration coordinate
curves for several different pressures, and in
Fig. 3 and Table II shows some of the results.
Note, for example, that in going from 0 to 20 atm
the 1s bubble radius decreases from 17.5 to 11.0
A, the 1s - 1p transition energy increases from
0.11 to 0.24 eV, and the 1s - continuum transition
energy decreases from 0,92 to 0.79 eV. The 20-
atm bubble radius of 11 A is close to the experi-
mental value of 10,22 A obtained by Springett and
Donnelly” at that pressure,

It would be of interest to study the properties
of the bubble at even higher pressures, es-
pecially pressures at which helium solidifies.

IV. VIBRATION FREQUENCIES AND
LINEWIDTHS

An expression for the vibrational frequency of a
liquid drop surrounded by a different liquid was
first derived by Rayleigh.2? Setting the density of
the inner liquid to zero (corresponding to a bubble),
one obtains the result

w?=(1+1)I-1)1+2)0/pRE , (2)

where [ is the angular momentum quantum number

of oscillation, ¢ is the surface tension, p is the
density of the liquid, and R, is the equilibrium radi-
us of the bubble, This expression is not applicable
for =0, since liquid drops are (approximately) in-
compressible. (We present below our derivation
for the breathing-mode frequency.) The Rayleigh
result for 7=2 also does not precisely describe our
case, since it applies to an empty bubble and not
to one containing an electron. However, it is of
interest to use Eq. (2) to estimate the frequency

of the /=2 mode. Using 6=0.36 erg cm™2, p
=0.145g cm™3, and R,=17.5 A, we/obtain hw=5
x10-5 eV,

For the breathing mode, we let R be the radius
of the bubble and p be the density. The kinetic
energy of a shell of fluid at radius 7 of thickness
dr is equal to

dT = s pdnridr+2, 3)
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" FIG. 3. The same as Fig. 1, but with a pressure of

10 atm and 0=0.50 erg cm™2, as discussed in the text.
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TABLE II. Transition energies as a function of pressure. See Table I for zero-pressure results.

Pressure (atm) Equil. radius Q) Transition AE (eV)
1 17.0 Absorption 1s—1p 0.12
1 17.0 1s—2p 0.52
1 17.0 1s—3p (in continuum)
1 17.0 1s — continuum 0.93
1 21.0 Emission 1p—1s 0.09
1 26.5 2p—1s 0.25
1 31.0 3p—1s 0.39
10 13.0 Absorption 1s—1p 0.18
10 13.0 1s—2p 0.73
10 13.0 1s—3p (in continuum)
10 13.0 1s — continuum 0.85
10 15.5 Emission 1p—1s 0.13
10 19.5 2p—1s 0.40
10 21.5 3p—1s 0.73
20 11.0 Absorption 1s—1p 0.24
20 11.0 1s—2p (in continuum)
20 11.0 1s — continuum 0.79
20 14.0 Emission 1p—1s 0.16

We assume the fluid to be incompressible,
which means that an increase of bubble radius by
an amount dR is related to an increase d7 of the
shell radius » through the expression

$7[ (R, +dR)® — RZ] =4[ (r +arP - »3] , (4)

or R2dR=7%r. (5)
Thus we obtain

72=(R,Y/r4)R? (6)

and dT =%p 4WR04R2dr/72 . (7)

Integrating, we find

= 1p4TRIR? = 1p 4TR 62 | (8)
where R=R ,+0 defines the displacement from
equilibrium 6. We now use a potential energy of
the form

V=V,+b6%, 9)

where b will be obtained from the configuration co-
ordinate curve, Fig. 1. Assuming harmonic oscil-
lation and using the Lagrange equations, we obtain

w?=b/2MpR3 . (10)

Using (from Fig. 1) 5=1.02x107% eV A-z,
=0.145g cm~%, and R,=17.5 A, we obtain Hw
=3.8%x10"% eV, Thus the breathmg -mode fre-
quency is lower than and rather close to the esti-
mated [ =2 frequency (5x 1075 eV/h).

Gross and Tung-Li% have computed the vibra-
tional frequencies for the bubble plus electron,
assuming an infinite potential well for the electron.
They found that the frequency of the /=2 mode is
7/2Y2 times that of the /=0 mode. During prepara-
tion of this manuscript, we received a preprint by

Celli et al.?* containing a similar calculation.

To obtain the predicted line shapes and linewidths,
we employ classical configuration coordinate theo-
ry.25

It is easily verified that the vibrational quantum
state reached in the optical transition is a highly
excited one; hence we expect the absorption and
emission lines to be approximately Gaussian in
shape. The widths are computed from geometrical
considerations, and the absorption width at half-

maximum is given by
1

hw

hw
~ 1.386
WA(T)—2KeXO Kg —= cochkT) , (11)

where wg is the pertinent vibrational frequency,
Kg and K¢ are force constants for ground and ex-
cited states, respectively, and X, is the displace-
ment of the minimum of the excited state from that
of the ground state.

For the contribution of breathing-mode (I =0) vi-
brations to the width of the 1s -~ 1p tran51t10n we
use X, = 50A Ky =1. '78><103eVA2 ~tw1ce
the value of b given above, and w the value given
above for the breathing mode. e obtain a contri-
bution of breathing modes to the 7'=0°K half-width
of 0.001 ev. Since all the excited states appear to
have about the same curvature, the main variable
will be X,, and we expect the contribution of breath-
ing modes to the 1s —3p width to be about 0.003 eV.
At 1.3°K the coth function increases from unity to
5.8, so the =0 contribution to the 1s - 1p line-
width increases to 0.0025 eV and that to the 1s
—~3p width to 0.008 eV, It is remarkable that be-
cause of the low vibrational frequency the line
broadening is already approaching the high tempera-
ture 7%2 limit at 1,3°K, and the linewidth is
therefore to a good approximation independent of
w,. Thus any spread of frequency in the small
[ modes due to interaction with phonons is not ex-
pected materially to affect the linewidth.
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We have also estimated the contribution of [ =2
vibrations to the width of the 1s - 1p transition.
For this calculation, we used a force constant K
(actually, Ko /5, by virtue of its definition) and
vibrational ﬁ'equency Wg given in Ref, 24, Ina

linear approximation, KeX o is equal to minus the
rate of change of excited-state energy with re-
spect to vibrational coordinate; this, in turn, can
be related to a derivative of energy with respect to
eccentricity e as defined by Feenberg and Ham-
mack.?® We find, then, using the relation between
eccentricity and coordmate given by Moszkowski,2?
that K, X in Eq. (11) should be replaced by (3/2R°
9E/%e. We used the expression derived in Ref, 26
for the energy as a function of eccentricity to com-
pute 89E/9e; the result, for the contribution of I =2
modes to the linewidth of the 1s - 1p transition at
1.3°K is about 0.01 eV. I we again assume (with-
out as firm evidence this time) that the 1s - 3p
width will be about 3 times as large as that of 1s
-~ 1p, we predict that the contribution of =2 modes
to the 1s - 3p half-width will be about 0.03 eV.
This is to be compared with a half-width of ap-
proximately 0.04 eV, observed® for the photo-
conductivity signal tentatively attributed to a 1s
-~ 3p transition. Configuration interaction of the
excited state with the continuum could easily ac-
count for some of the broadening of this transition.
It thus appears that the I =2 mode will be about
4 times as effective as the /=0 mode in broadening
the optical transitions. This result is rather sur-
prising, in view of the case of the F center in alka-
li halides, in which the breathing mode is general-
ly at least as important as the other modes. How-
ever, in the present case, the rate of change of
energy with eccentricity seems to be very large
for small e; in fact, this rate of change, if ex-
trapolated to large e, would yield a static Jahn-
Teller effect (see Sec. VI) several times as large
as computed by better means.

V. THE STABILITY OF TWO ELECTRONS IN A
SINGLE BUBBLE

We briefly mention the result of a calculation in
which we estimated the energy of two electrons in
a bubble. We used a variational technique with hy-
drogenic wave functions to compute the electronic
energy, as in an elementary treatment of the atomic
helium problem.'?” We found that although such a
system forms a bound state with respect to two
free electrons and no bubble, the system would be
unstable (by about 1 eV) against decay into two
separated bubbles, each with one electron. In
other words, the Coulomb repulsion of the elec-
trons is too great for two of them to exist stably
in a single bubble.

VI. THE STATIC JAHN-TELLER EFFECT

The static Jahn-Teller effect has been widely
discussed in the color center and molecular litera-
ture,?® but is extremely difficult to treat quanti-
tatively in condensed matter. It appears that this
effect might well be large in the bound p states of
this system. It seems a logical assumption that

the sphere would tend to deform into a prolate
spheriod, with the long axis parallel to the axis

of the p function. This intuitive feeling is rein-
forced by the consideration that the p function has
no probability density along the equator, and hence
benefits little from the well in this region; thus it
could afford to shrink the cavity at the equator and
expand along the poles with no increase in surface
energy. Performing an exact calculation for a
particle in a finite spheroidal potential is a non-
trivial task. However, there are perturbation
variational techniques available for an approximate
solution of the problem if the deviation from a
known sphere is not too great.?6,2” To obtain an
idea as to the magnitude of the deviation to be ex~
pected we computed the “exact” results for a
model which, while less appealing physically, al-
lows an estimate of the Jahn-Teller distortion to
be made. In this model, we constrained the bub-
ble to the shape of a rectangular parallelepiped,
and used harmonic oscillator wave functions in a
variational approach to compute the distortion.
Then in the most general case four parameters
had to be varied, two for the box size and two to
describe the wave functions. This was done with
a computer routine, which we ran on a GE-225
computer at Lehigh,

Results of this calculation are shown in Table
III. The most significant results are these: The
static Jahn-Teller effect depresses by about 0.03
eV the energy of the 1p state whose axis is paral-
lel to the long dimension of the parallelepiped, and
the box is distorted a good deal, going from a cube
of edge length 34 Atoa parallelep1ped with edge
lengths 24.4, 24.4, and 49.8 A. One should also
note that the edge length of a cube whose surface
area equals that of a sphere of radius 17.5 A (ap-
propriate to the 1s state) is 25.4 A this is not
far from the edge length of 27 .6 A computed The
variational principle, of course, prevents the en-
ergies in the parallelepiped model from being as
low as the exact values.

The energy reduction of 0. 03 eV in passing from
the cube to the parallelepiped in the 1p state is a
large fraction (40%) of the 1p - 1s emission energy
(0.075 eV) predicted in Sec. III, and of course the
distortion is great also, with an axial ratio greater
than 2. Presumably the energy of the 1s state in
an ellipsoidal bubble will be raised by a compar-
able amount, shifting the emission band to perhaps
0.03 eV. It seems doubtful that approximate
methods will suffice for treating such large dis-
tortions with quantitative reliability, and we shall

TABLE III. Rectangular parallelepiped model for the
electron bubble. V,=1.02 eV and 6=0.35 erg cm™. Re-
sults refer to the equilibrium position for each state.

X, Y, and Z are the edge lengths of the parallelepiped.

State Energy (eV) X,Y ) z A
1s -0.788 27.6 27.6

1p (no JT) —0.687 33.9 33.9
1p T -0.718 24 .4 49.8
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defer further discussion of this point.

During the preparation of this manuscript a paper
appeared?® in which, infer alia, an estimate of the
bubble deformation is presented. This is a varia-
tional calculation with infinite well depth, and
shows a reduction of 0.021 eV in the energy of the
Dz statein a prolate ellipsoid as compared with a
sphere, This paper called our attention to a brief
note3® in which an infinite well depth and radius
19 A were assumed. Some results are presented
dealing with the 1s - 1p transition, and both papers
treat Raman scattering.

VII. THE SURFACE TENSION

In the preceding calculations, we used a value of
surface tension at zero pressure of 0=0.36 erg
cm~2 and considered the pressure variation to be
according to the Amit-Gross theory.2! 0.36 erg
cm~2 corresponds to the bulk surface tension mea-
sured by Atkins and Narahara!®® at 1,3°K. In point
of fact, there seems to be great uncertainty as to
what the surface tension of the helium bubble is
and how it varies with radius, pressure, and tem-
perature. This difficulty has been discussed by
several authors, and we merely review briefly
their arguments.

One of the earliest treatments of the surface
tension of bubbles or liquid drops was the thermo-
dynamical approach of Tolman,3! extended by Kirk-
wood and Buff 32 and discussed by Hirschfelder et
al.®® This theory is formulated in terms of a dis-
tance parameter z,, and it is found that for a con-
stant z, the surface tension dec7veases from the
planar value as the radius of curvature decreases.
Unfortunately, calculation of z, requires a detailed
knowledge of the radial distribution function and
the density distribution near the surface. Briscoe
el al.® have suggested that z, for the helium
bubble may be 3.5 A. In the absence of firm es-
timates we have ignored the correction, but it
might be noted in passing that the add1t10n of3.5 A
to our computed 1s radius would bring it into close
agreement with what we believe to be the “best”
experimental value, 21 A of Ref. 6.

A more recent calculatlon of surface tension at
zero pressure was that of Reiss ef al.3* They as-
sumed a radius-dependent surface tension of the
form proposed by Tolman, and computed the rele-
vant parameters by a statistical-mechanical calcu-
lation of the energy expended on the introduction of
a spherical cavity into a classical rigid-sphere
fluid. In the limit of infinite radius, the results
of their theory may be compared with experiment,
and Reiss ef al. found that whereas for many
liquids the agreement is satisfactory, for helium
at 4. 2°K the theory predicts a value of the surface
tension more than twice as large as that measured;
furthermore, as T goes to zero, the surface ten-
sion is predicted to go to zero. Using their theory
for the Tolman correction, one obtains a value of
z,equal to 0.8 A for the cond1t1ons specified in
Sec. II., It has been pointed out by Springett ef al.2°

that this theory is not applicable in the low-tempera-

ture region, because it predicts o to be propor-
tional to 7.
Hiroike et al.? have presented a calculation of

the surface tension in which they used the formal
similarity between the pair distribution function of
a boson system with a wave function expressed as
the product of pair wave functions and the pair dis-
tribution function of a classical fluid. They com-
puted a surface tension of 0.52 erg cm~2%, and
found that the surface tension varies approximately
as the square of the density.

Amit and Gross?! computed the 0°K surface ten-
sion at a planar surface using a Hartree approxi-
mation, assuming a d-function pseudopotential for
the helium-helium interaction. They obtained

¢=0.ThCp , (12)

where p is the density and C is the velocity of
first sound.

Finally, Springett et al.2° developed several ap-
proaches, one of which combined the experimental
results of Springett and Donnelly on the pressure
dependence of R with the predictions of the Wigner-
Seitz model for the electronic states. They found
a variation of ¢ with pressure similar to that pre-
dicted by Amit and Gross,?! although the absolute
values of o which they preferred were larger,

In view of these disagreements and uncertainties
in the surface tension, we have somewhat arbitrari-
ly chosen to use the experimental value appropriate
to 7=1.3°K and equilibrium vapor pressure, and
have used the Amit-Gross theory to predict the
pressure-dependence. The semiempirical approach
of Springett ef al.2° has attractions, but the dis-
agreement between various experimentalists re-
garding the zero-pressure bubble radius (for ex-
ample, Springett and Donnelly” deduce a value of
16 A, while the work of Northby and Sanders® in-
dlcates 21 A) leaves some uncertainty in this pro-
cedure,

VIII. CONCLUSICNS

We have computed various optical properties to
be expected for electronic bubbles in liquid He.
In particular, we predict an intense Gaussian ab-
sorption line at 0. 11 eV at low pressure, with a
width, Wy, of 0.01 eV at 1. 3°K. The integrated
absorpt1on cross section T of 1,0x10-16 eV cm?
implies a maximum absorption coefficient of

~NE 4 1/2_ 14
“max‘WZ(m) =1.35x10"“N,  (13)

where N is the bubble concentration in cm~3 and
Emax is in cm=1,

Measurement of the absorption should be feasi-
ble for N=10* cm-3, or substantially less with
modern (e.g. phase-sensitive) techniques, We
understand that to the present time much smaller
concentrations have been present in electrical in-
vestigations,3® but it does not seem impossible to
increase the concentration to > 10 cm™3,

In studies of luminescence it is commonly found
that photo-excitation spectra are readily measur-
able when absorption is impossible to detect. The
photoconductivity experiment of Northby and San-
ders® is a closely related case. It should be em-
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phasized in connection with photo-excitation of
luminescence that the oscillator strength for 1s-

1p excitation is 200 times the total to the continu-
um, so that the high sensitivity of electrical mea-
surements is partly compensated for by the in-
creased absorption in the lower-energy range.
Excitation in the 0. 1-eV region should produce

1p - 1s luminescence at < 3 the energy, and should
be a valuable tool for investigating both the absorp-
tion curve and the Jahn-Teller effect,

It should be noted that a static electric field dur-
ing the excitation experiment should give rise to
polarized emission. A field of 103 V/cm applied
along a 60-A long spheroidal bubble should com-

STATES IN LIQUID He 343

pletely orient the relaxed excited bubbles [(103eV/
cm)60x10"8cm=6x10"*eV;kT at 1.3°K is 1.1
x107* eV], and radiation should be detectable only
perpendicular to the applied field. Other fields
may well be useful, of course, as in electro-ab-~
sorption measurements,

The luminescence properties of the bubbles are
not predicted here with much reliability, both be-
cause of the Jahn-Teller effect and because of pos-
sible nonradiative internal conversion during re-
laxation. If the bubbles do luminesce, however, a
valuable means for investigating their structure is
at hand.
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