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The main thermal characteristics of the structural change at low temperatures of solid He®,
from the cubic to the hexagonal form, are expected to be governed by the dominant spin
excitations. The spin-dependent interactions in these structures are assumed to be proportional
to the scalar product of the nuclear spin vectors on nearest-neighbor atoms. With the current-
ly available, if scarce, empirical interaction strengths, the transformation is probably
anomalous. One aspect of the anomaly corresponds to the appearance of a very shallow min-
imum of the transformation pressure. It arises from the negative or anomalous latent heat of
transformation at low temperatures, wherein heat has to be supplied to the low-density cubic
solid to change it into the high-density close-packed solid, the transformation proceeding at
constant temperature and pressure. At temperatures which are high compared to the very low
spin-ordering temperatures of these structures, the anomaly is independent of the nature,
ferromagnetic or antiferromagnetic, of the spin-ordering processes in the two solids along
the transformation line. The increase in the anomalous-transformation pressure with de-
creasing temperature is estimated to become observable in the several-millidegree temper-
ature range, the pressure anomaly increasing hyperbolically with decreasing temperatures.
On compressing solid He?, the strength of the assumed nearest-neighbor spin-dependent atomic
pair interactions, as well as the attendant spin-ordering temperatures, decrease very rap-
idly. As a result, within the limits of validity of the interaction model, both the cubic and,
above all, the hexagonal solid exhibit practically ideal nuclear paramagnetism down to very
low temperatures. The possibility of exploiting this ideal magnetic behavior of solid He® for
the production and control, through static experiments, of very low temperatures is briefly

discussed.

I. INTRODUCTION AND STATEMENT
OF THE PROBLEM

In earlier and recent studies on solid He?, we
have called attention repeatedly to the likely occur-
rence of thermal anomalies in both modifications
of this solid at low enough temperatures where the
thermal excitations are dominantly those of the
nuclear spin system. 2 The predicted anomalous
behavior of the solid was expected to result from
the persistence, in a modified form, of the funda-
mental thermal anomaly of the liquid phase over
a finite and large area of the state surface of this
phase, solidification and vaporization conditions
included.® The latter anomaly consists of an en-
tropy increase on isothermal compression, or an
entropy decrease on isothermal volume increase.
Stated in other terms, over a finite region of the
state surface of the liquid phase, the isobaric ex-
pansion coefficient and the temperature coefficient
of the pressure along isochores are anomalous or
negative. The origin of these same anomalies in
the solid phases can be traced, within the frame-
work of a model of exchange interactions, to the
pressure or volume dependence of the character-
istic exchange energy parameter of the model.
While the most complete, if necessarily approx-
imate, and strictly indirect determinations of this
parameter are quite recent, % 5 its pressure or
volume dependence has been observed earlierS, 7
in both modifications of solid He3. These deter-
minations rely on various relaxation-time measure-
ments by nuclear magnetic resonance techniques
at easily accessible temperatures. The fairly com-
plex formalism of the relaxation processes in -
volves, through the postulated exchange interaction
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model, the same energy parameter which appears
in the expressions of the component equilibrium
thermal properties of the solid arising from the
interaction model. Hence relaxation time data
enable one to calculate the characteristic exchange
energy parameter, The experimental and formal
complexity of this indirect approach, however,
could cause the derived exchange parameter to be,
in general, only an approximation to the param-
eter obtained through direct equilibrium thermal
property measurements. It should be noted,
though, that in contrast with the former approach,
the latter requires measurements at quite low
temperatures where the dominant thermal excita-
tions are those of the exchange-coupled subsystem.
In the cubic modification of solid He3, and at low
densities of this phase, in the neighborhood of the
melting line, the first direct measurements of the
exchange energy parameters have been made recently
by Adams and his collaborators.® Besidesverify-
ing the expected anomalous behavior of the temper-
ature coefficient of the pressure? along a number
of isochores of the cubic solid, these workers ob-
tained the modulus of the exchange-coupling param-
eter and its approximate volume dependence

over about two-fifths of the volume range of the
cubic solid at the low temperatures. Over the
overlapping cubic-solidvolume interval, these
directly measured parameters, although consis-
tently larger, are in fair agreement with the Duke
University indirect parameter values.* The simi-
lar indirect parameters of the Oxford group® fall
considerably below the corresponding Duke Uni-
versity data over this volume range. Given then,
at low enough temperatures, the two thermally
anomalous solid modifications, the anomaly in the
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dense close-packed phase being confirmed at least
qualitatively by the extensive Oxford data, 5 the
question is: Is the transformation of these two
anomalous phases normal or anomalous. This is
the main problem studied in the present paper.
Within the limitations arising from the absence of
accurate exchange energy values of the two solids,
reasonable assumptions on these parameters sup-
ported by indirect parameter determinations at the
transformation line, or their ratios, tend to impose
the development of an anomaly on the cubic-hexag-
onal crystal structure transformation of solid He?
at low temperatures. Observation of this anomaly,
accessible only at very low temperatures which
are only being approached at the present time,
would help to clarify the equivalence of the two
methods of parameter determinations of the dense
close-packed structure. It would also yield di-
rectly the equilibrium exchange parameter ratio
of the two solids at the transformation line. The
task of obtaining direct equilibrium exchange en-
ergy parameters in the transformation region of
these two structures would become more difficult
if the transformation anomaly were displaced to-
ward inordinately low temperatures or if it were
suppressed.

The volume dependence of the exchange inter-
action strength in solid He® imposes upon that sub-
stance essentially ideal nuclear paramagnetic be-
havior down to very low temperatures entirely out-
side the accessible temperature range of accept-
able accuracy. While technically difficult, be-
cause it involves relatively high pressures, espe-
cially in the dense close-packed solid, the possi-
bility of taking advantage of the ideal magnetic
character of solid He® for the production and
measurement of very low temperatures will be
briefly discussed.

2. THE STRUCTURAL CHANGE OF SOLID
He® AT LOW TEMPERATURES

The model assumed here in the theoretical de-
scription of solid He? in its low-density cubic and
high-density hexagonal modifications refers to the
approximation where the lattice degrees of free-
dom are taken to be independent of the nuclear
spin system, which appears only in the exchange

couplings. The exchange Hamiltonian is assumed
to be
- - 2 (5.-2
H, ZJ(V)Z"]‘ (Si s].) s (1)

where the 7 summation runs over the N atoms of
the solid, and the j summation is restrlcted to the
nearest nelghbors of the ith atom, §, being the
spin vector of atom k; and J (V) is the exchange
energy parameter, assumed to depend on the
volume (or the density, or the pressure). In the
two structures (the body-centered cubic and the
hexagonal close-packed), the parameters J will
be indicated here by the subscripts B and H,
respectively. The numbers of nearest neighbors
of one atom are gp and gg, corresponding to 8
and 12 in the two solids. The assumed indepen-
dence (at equilibrium) of the two subsystems of

degrees of freedom leads to the total entropy of
these solids, given by

S(t, v,J) (T/e(v))+s (J/kT), (2)

with the appropriate subscripts of some of the
variables of state and parameters. The arguments
of the phonon entropy S¢ and the exchange entropy
Sy refer to the temperature regions of interest
here, namely,

J/k< T<KO(V), (3)

© (V) being the characteristic temperature of the
limiting ideal phonon excitations. The exact in-
finite-series representation of the exchange en-
tropy, for spin-3 atoms, at high temperatures is?

S

X, B _ _3 n B n

Ne o 2 8qBB % w2 B ’
xp =dg/kT, xp<1, (4)

in the cubic solid, and

Sx,H n Hn

3 2
Nk :1n2‘§quHnZ:0() (n+2) H’

xy =J g/kT, xp<1, (5)

in the hexagonal solid, resulting from the high-t
temperature formalism of these exchange-coupled
systems.® The coefficients cp 5 and cg, 5 have
been obtained up to » =7, with cB 0 and ¢
being equal to unity. The series {4) and (Hf refer
here to antiferromagnetic exchange couplings, al-
though the sign of the parameter J has not been
established as yet in either structure. However,
we will be concerned here with the asymptotic
temperature range of the exchange systems, and
the exact nature of the exchange interactions will
not affect the details of the structural transforma-
tion over the here-relevant temperature range.
With the limiting ideal phonon entropy

S(p(T/G)/Nk =4.7m4(T/0)?, (6)

(2) and (4), or (5), define explicitly the entropy
expressions of the body-centered cubic and hexag-
onal close-packed phases within the limits of va-
lidity of the models chosen to describe the phonon
and exchange systems. With the parameters Op,
Oy, JB, and Jyg referring to the phase boundary
line, these entropies give the temperature deriva-
tive of the transformation pressure. According to
thermodynamics,
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P, _ AS,..
dT A‘V‘tr
_SB,t (1, Vv 275 )— H tr(T, VH,JH) -
- b
B tr(T) V (T)

the subscript tr referring to transformation con-

ditions. The volume change along the transforma-
tion line,
AV, D)=V,  (T)-V tr( 7), ®)

an empirical parametric function, has been mea-
sured at higher temperatures by Grilly and Mills
in the course of their first observation of this struc-
tural change. ° These measurements have been
extended indirectly recently, ! down to tempera-
tures of about 1.5°K. At the low temperatures of
interest here, only a rough extrapolated value of
this volume change is available at the present time.
It will be taken to be-0.09 cm3/mole and will be
assumed to be essentially constant throughout the
temperature range discussed here. With the in-
dicated entropy components (4), (5), and (6), one
obtains with (7)

dptr qua, tr dPx, tr

ar = —ar _t—ar

__R {ééT_> [1_(35_&_”
AVip 15 OB, tr n, tr

9 (The\ ] |

v J 5 ’ (9)
9 \“B, tr

where only the asymptotic high-temperature terms
of (4) and (5) have been included.

It is seen that the transformation pressure Ptr(T)
can develop an extremum over the paramagnetic
ranges and high temperatures (xg< 1 and xg < 1)
of the two structures, provided the phonon and ex-
change components of the pressure derivative 9)

are of opposite sign. Since the phonon excitations
are normal in both structures, one should have

—_— 3 2
16 98B, tr [1"

o) >0 (10)

H,tr B, tr’

in agreement with the heat-capacity data at those
high temperatures where the asymptotic exchange
heat capacity is negligible in comparison with the
phonon heat capacity. In order that dPx tr/dT be
negative, it is required that at low temperatures,
where the spin excitations become dominant, one
should have

i = =2
i =Yg, 0/, 0 < 9/ 1 7% - a

This is the elementary asymptotic condition for the
solid-solid transformation to be anomalous over an
interval of temperatures in the paramagnetic range

of the two solid modifications. The location of the
minimum of the transformation pressure, below
which the transformation is anomalous is, by (9),
at Ty, in such that

1

35 2 2
o518 2w (B
min =~ 87 I-9 ° "Btr k ’

=0

B, tr/eH, p<l- (12)

(ptr

It is seen in (11) that the development of the trans-
formation anomaly is independent of the sign of the
exchange energy parameters. If the numerical
values of these parameters satisfy (11), the anom-
aly should appear — regardless of whether both
structures undergo similar or different types of
spin-ordering processes.

For the discussion of Tyin, Eq. (12), the ratio
jtr of the numerical values of the exchange energy
parameters, J H,tr and JB, trs has to be taken as
the principal varlable, the other parameters in
(12) being available empirically to some degree
of approx1mat10n. Namely, we have taken OB, tr
to be about 30°K, and ¢tr appears to be close ’to
%, according to the analysis of the transformation
at higher temperatures. !’ 2 The parameters J, B, tr
together with ji,. are, however, somewhat uncer-
tain at the present time. As mentioned above, the
direct and accurate determination of the exchange
energy parameters requires the measurement
of an equilibrium thermal property. This should
be done, preferably, over a temperature range
where the phonon component of the measured prop-
erty is already quite small. This small phonon
component of the measured property may then be
calculated to a fair degree of approximation, en-
abling one to correct for it in the measured total
property, in which the exchange interactions are
dominant, and which should yield the parameters
J (V). Over a restricted volume range of the cubic
solid, the Florida group® obtained the strictly
empirical relation

r
X _
JpV ¥=const, T <O, (13)

the parameter I'y being approximately — 16.4.
Given the large numerical value of Ty, it may be
justified, in the sense of a rough extrapolation, to
assume that I', will only change moderately, if at
all, over the rest of the volume range of the cubic
solid where (13) was not as yet verified experi-
mentally. At the limiting low-temperature value

of the cubic solid volume, Eq. (13) yields (JB /%)
to be about 28 x107¢ °K. At the present time, this
extrapolated exchange energy parameter is the only
available approximate numerical equilibrium

J B,tr value, The other numerical values of Jpg tr
and Jyg. tr are indirect relaxation or nonequilibrium
J values. It is to be noted that the Jg r value
obtained by the Oxford group® from théir relaxation-
time data is practically identical with the extrapo-
lated equilibrium Jp ¢, value resulting from (13)
above. This close agreement must, however, be
considered as probably fortuitous at the present
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time. The Duke University* relaxation Jg t, value
is about one-half of the extrapolated equilibrium
JB, tr value or of that of the Oxford value.® We will
assume here, tentatively, that the empirical re-
lation (13) should be capable of yielding the best
approximation to the correct equilibrium Jg values
throughout the whole volume range of the cubic
solid.

As far as the ratio ji, is concerned, only in-
direct values are available for this quantity. The
recent Oxford work yields, probably, the best
approximation for this ratio, available at the pres-
ent time. This Oxford value of j;. is about 3,
which agrees qualitatively with earher results
on this ratio. 67 The expression (12) of Ty,jy may
be written as

: — 3, 2\1/5
Tmin(]tr) - Tmin(o) (1 - thr) ’ (14)

where Tpmin(0) is the upper limit of the temper-
ature of the transformation anomaly, correspond-
ing to an ideal noninteracting nuclear spin system
of the close-packed hexagonal solid, wherein j{r
vanishes, i.e.,

J 1/5
Tmin(o) _|:<15 (1- Pir >GB tr <—feit—r>i\ -(15)

With the approximate numerical values of the
para.meters entering into (15), this upper limit is
at 63.2 m°K. At Jtr equal to 7, this decreases,
by (14), to 57.5 m°K; at ji, equal to £ it is
about 33 m°K; and Tmln vanishes at Jtr equal to
(3)*2 or 0.8165. Although indirect and scarce,
data currently available on ji,. favor the existence
of the transformation anomaly.

As indicated above, the best currently available
jtr value is about 3. This locates the temperature
of the anomaly around 50 m°K, an easily acces-
sible temperature. Nevertheless, the actual ex-
perimental verification of the anomaly turns out to
be quite difficult and even marginal at the present
time. Clearly, if the exchange interaction
strengths Jp tr and J g ty, at or near the trans-
formation llne, were available through some
equilibrium thermal property measured in the two
solids, the exact, if asymptotic, condition (11)
would help to establish without ambiguity the pres-
ence or absence of the transformation anomaly
within the limits of accuracy of the experimental
Jtr ratio, and within the limits of validity of the
exchange-coupling model. However, as shown
below, the measurements of equ111br1um JH tr and
JB ,tr values appear to be even more difficult than
either the qualitative detection of the transforma-
tion pressure anomaly or its quantitative observa-
tion, to be considered now.

The transformation pressure change between the
temperature T and Tp,ip > T is, from (9),

_ 3)(7a_ 4
I o E Oy
tr'7? "min’ T AV, 5 o

tr B, tr’

2 (-3j,% Btr) <1__—_1 ﬂ (16)
" < T Tmin

At low enough temperatures, 7< Tpin, the trans-
formation pressure is seen to increase hyper-
bolically with decreasing temperatures, the phonon
contribution becoming negligible there in com-
parison with that arising with the exchange inter-
actions. The most direct experimental verifica-
tion of the anomaly would require the observation
and measurement of the hyperbolic upswing of the
transformation pressure at decreasing temp-

eratures.
It is instructive, at this point, to consider the

pressure changes along the phase boundary line in
the several millidegree temperature range, in the
light of the work of the Florida group.® The pre-
sure resolution claimed, in the pressure-change
measurements along isochores of the low-density
cubic solid He®, was about 3x107% atm, down to
temperatures of about 20 m°K. One may assume
that some similar pressure resolution can be
reached at higher pressures and lower temperatures.
With the above given values of the parameters
9B, trs @tr»J B, tr; and AViy, and with ji, taken to
be % , a straightforward evaluation of APy,

[Eq. (16)] shows that the transformation-pressure
increase on decreasing the temperature from

10 to 5 m°K amounts to about 7 X105 atm. This
is already well above the assumed pressure res-
olution. ®* Hence the qualitative detection of the
anomaly would require the exploration of the trans-
formation pressure changes over the temperature
range between 10 and 3-4 deg. The actual mea-
surements of the pressure variations may require
temperatures lower than a few millidegrees, and
preferably the submillidegree range.

The transformation anomaly is expected to ex-
tend to temperatures somewhat below the spin-
ordering temperature of the hexagonal solid. On
the assumption of a temperature-independent
transformation volume change AVyy, the transfor-
mation pressure must develop an inflection point
whose temperature Ttr,; is the zero of

P, /aT? = (C )/ TAV,, (17)

B, tr~ H tr

at the intersection of the heat capacities Cg trand
CH, tr of the two solids along the transformation
liné. Since in the paramagnetic range, in virtue
of jir<($)*2, one has with (4) and (5)

cH, ir <cB’ o T TO’ B, tr’ (18)

Ty, B. tr Peing the spin-ordering temperature of
the cibic solid at the transformation line; the
intersection required by (17) must occur at
T<T 0, B, tr* In the latter temperature range,
CB, tr ! 1d already decreasing while C H, tr is
StIl increasing with decreasing temperatures.
Hence the temperature of the inflection point of
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the transformation pressure is at Tty ; such that

<T, .<B (19)

TO, H,tr tr, i 0, B, tr’

To H, tr being the spin-ordering temperature of
the hexagonal solid at the phase boundary line.
With 70, B, tr somewhat less than about 10-* °K

the very small variations of the transformatlon
pressure below this spin-ordering temperature
are of reduced interest at the present time, this
very low-temperature range being out of reach
currently. It will suffice to add that at the very
low temperatures T < T, p, tr, and above all at
T<To,H,tr, the phonon excitations might be ex-
pected ’to become dominant again in the two solids,
when compared with the thermal excitations of the
exchange-coupled spin systems. As a result, the
transformation pressure may become normal in
its temperature dependence, and may approach
from above its limit at the absolute zero.

We have shown above that for plausible values of
the exchange parameter ratio ji;, the minimum of
the transformation pressure is in the temperature
range of 40-50 mdeg. However, in terms of the
currently available resolutions of the pressure-
variation measurement techniques, the minimum
of P4p(T) is extremely shallow. As a consequence,
even the detection of the anomalous increasing
branch of the pressure requires observations well
below 10 mdeg. The problems encountered in
attempting to verify the transformation pressure
minimum are similar to those raised in the experi-
mental determination of the loci of vanishing ex-
pansion coefficients a,(T, V), the lines T, () or
T, (v), or the vanishing temperature coefflclents
along isochores (8p/8T)y in the two solid phases.
These loci divide the paramagnetic regions of the
two solids into the thermally anomalous and normal
subregions, referring to temperatures 7 < Ta(p
and 7> T (p) respectively. In virtue of the en-
tropy expressmn (2), one has along an isochore
of the body-centered cubic solid,

(apB/BT)V= (8SB/8V)T

= (asq) B/aV)T+ (asx’ B/a V)T

’

= (ap% B/aT)V+ (apx, B/aT)V . (20)

Using the limiting ideal phonon entropy expression
(6), with the empirical relation

B=const, r >0

o 50 (21)

r‘ﬂ
b
GBV

together with the entropy formula (4) and the empiri-
cal relation defining the exchange energy parameter
in its dependence on the volume of the cubic solid
[Eq. (13)], one finds

(8pp/3T) =V (r(p, ch)+ T, 5C,)- (22)

As stated already, this assumes the validity of (13)
throughout the volume range, at low temperatures,
of the cubic solid — an extrapolation of the empirical
Florida results® beyond the experimentation range.
The heat capacities Cyp and C, refer to the isochore
of volume V. Remembering that Ty, B is anomalous,
or negative, and that the exchange energy parameter
J g(V) increases rapidly with increasing volume,

one obtains by means of (21), with the asymptotic
high-temperature exchange heat capacity Cy, and
with Cy or 35y, S¢ being defined above by Eq. (6),

-T Ig(V)
BV =1 <—¢";BB> B(V)< . > . (23)

This locus was given by the author recently in its
pressure dependence, using the vanishing of the
isobaric expansion coefficients, - (8S/ ap)T, in-
stead of the temperature coefficient of the pres-
sure, (8S/8V)y. On rewriting (13) and (21) as

x, B
‘7 —_ ‘f ‘7 b
JB( )_JB,M( B,M/ )

r(p B
eB(V) (VB’M/V) g (24)

=%p u

where the subscripts B, M refer to melting condi-
tions of the cubic solid, one obtains explicitly the
locus formula

1
T (V=T (VB,M>5(2F%B+3F¢,B)
a, B a,B, M v ’
(25)
where
-T J
5 x, B B, M) 2
5o_2 | — D 3(_Dy M
(Toz,B,M) z <r ” >eB,M< % >’(26)

®, B

or Ty, B, M is the temperature at which the locus
Ta,B ‘infersects the melting volume line VB, M

(T) of the cubic solid. Heat-capacity measure-
ments!? give 2. 2 for Ty, B, approximately. With
©p, M and JB, M/k taken to be about 18.5 and
1.05% 103 °K, respectively, Ty B, )/ is found to
be 0.23°K, in fair agreement w1th a recent esti-
mate? where poorer approximations have been used
for the parameters entering into the expression of
Tq, B(p) at the melting pressure Pjy.

On the solid-solid transformation line, with
VB, tr taken to be about 19. 75 cm®/mole, and
JB, "tr/k as 28%10-5°K, the locus Ta, B(V) ends
at 0. 073° K, or down by a factor of about 3 from
the temperature of its intersection with the melting
line Tq,B,M-

The inverse function of Tq, p(V) in Eq. (25) is
Va, B(T), the volume locus of the vanishing ex-
pansion coefficients or vanishing temperature co-
efficients of the isochores. With the indicated em-
pirical values of the parameters T and T
it is seen that % B 0B
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5/(2|rx’B|-31“(p,B):T1/5.25. (

VQ,B(T)NT 27)

The locus volume Vg, B is thus a rather slowly
varying function of the temperature. The total
volume range of this locus arc is the volume range,
at low temperatures, of the cubic solid — extending
from about 19. 7-19. 8 cm3/mole at the transfor-
mation line to about 24. 7-24. 8 cm3/mole at the
melting line. Hence, while dV,_ g/dT> 0,

d*Vg, B/dT?< 0, or the volume Tocus line is con-
cave downward, i.e., toward smaller volumes in
the (V, T) representative plane.

Recently, onmeasuring the temperature variations
of isochores at volumes Vg > 23 cm?/mole and
temperatures below and above Ty, B, Adams and
Panczyk!* have obtained, on interpolation, the
zeros of the temperature coetficients (8pp/87)y
at four cubic solid volumes. Their results are
in fair agreement with the Ty B values resulting
from Eq. (25).

We have mentioned above that the experimental
verification of the transformation anomaly may be
less laborious than the measurements of the pres-
sure variations along isochores close to the trans-
formation volume line in the cubic solid, and @
fortiori so in the hexagonal solid. Let us, indeed,
obtain the pressure change between the temperature
T and the locus temperature Ty, B(V) in the cubic
phase. This is, on integration of (22), between
Tq,B and T,

pB(T, V)_pB(Ta,B’ V)

=v-ir_ IaE_ (T, Ta,B, V)

x, B x, B

+T AE(p,B(T, T, 1. (28)

¢, B ;Bs

Here, using (22) and with T p being negative,
s

B

T
[Fx,BIAEx,Bz_ [rx,Blf deT

Toz, B

T
=T lf B o oar
x, B X

T

= lI‘x’BI [TCx(T, V)

-7 _cCc (T

o, BCx ], (29)

a, B’

using the asymptotic high-temperature exchange
heat capacity of the cubic solid,

CX(T, V) :3R[JB(V)/kT]2 . (30)

Also,

AE =
®, B

g -

[TC</’ (eB(TV))
~T4,8% (;::(’—Izﬂ ’ (31

the AE’s being the energy variations, along the
isochore V, of the respective exchange and phonon
excitations over the temperature range (Ta, B, T).
At low enough temperatures where the phonon con-
tributions to the pressure variation may be ne-
glected in comparison with those due to the exchange
system, thatis, at T < Ta’B(V), one has

J (V)
RT B 2
pB(T’ V):3—V— lI‘x’BI (T) . (32)

If in the transformation pressure-change formula

(16) we omit the phonon term at 7 < Tyyin and use
therein the plausible value of 3 for jtp, one finds,

with (32)

pB(T, v~ Vtr)/APtr(T) z3|rx, BIAVtr/V . (33)

With a V of about 20 cm3/mole, and the above in-
dicated values of ITy, pl and AVtr, this ratio is
about %. Hence, at the same temperature, the
anomalous pressure increase, from its minimum,
of an isochore near the transformation volume
line is about four times smaller than the trans-
formation pressure increase from the minimum
of the transformation line. Stated in other terms,
in order to observe the same pressure increase of
an isochore'pB(T, V~ V) as along the trans-
formation pressure line ptr(T), one has to reach
a temperature about four times lower than along
the transformation line. Over the intervals of
temperature and pressure variations which are of
relevance at the present time, such a factor may
be critical for the detection or observation of the
above anomalies. The approximate numerical
value of I'y, B near the transformation line, ob-
tained through extrapolation, must be kept in mind
in connection with the ratio (33).

3. SOME PROPERTIES OF THE HIGH-DENSITY
HEXAGONAL FORM OF SOLID He?

In the present phenomenological approach, the
hexagonal solid is described in terms of the para-
metric functions ©g(V) and Jg(V), which charac-
terize its phonon and exchange degrees of freedom.
These functions involve the parameters I'y g and
Ty ,p» which may be expected to be of rather slow
volume variations or practically constant, to some
degree of approximation — as was the case in the

cubic solid. The derivative thermal properties of
the hexagonal solid would be expected to resemble
those of the cubic solid. For instance, the tem-
perature coefficients (8pp/8T)y of the isochores,
at low enough temperatures where the normal
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phonon contributions may be neglected, should be
anomalous or negative on the basis of the Oxford
data® on Jy(V), as well as on the basis of the
earlier work on the dependence of the exchange en-
ergy with pressure or volume of this dense

phase, 6 7 within the framework of the model of
interactions used above. The coefficient
(8pp/8T)y is then expressed by a relation similar
to Eq. (22) where the various quantities all refer
to the hexagonal solid, or from (20),

<EB{)T£>V:' 'fl/" [P<p, Hc<p <_é;7(‘7)>

* rx, ch <_%Kl>} ’ (34)

where, by (5),
C,/R= 2 IyW/eT)2, T Ig(WM/k.  (35)

In contrast with the cubic solid, the hexagonal form
has only been explored by the Oxford group® over

a small volume interval near its transformation
volume line in samples of known and small He*
admixture. This volume interval is about 1
cm3/mole below the approximate transformation
volume of about 19.6 cm3/mole. Over this limited
range, the parameter I'y g appears to be, in a
rough approximation, between — 20 and - 25. The
strictly empirical relation

r

gv, ©oH

Vi <o, (36)

=const, I‘x’ 0

may represent an approximate generalization of
the above relation (13) referring to the equilibrium
JB(V) determinations of the Florida group.® While
the anomalous Ty, g is thus larger than Ty, BI,
this change cannot compensate for the numerical
decrease of the temperature coefficient, the de-
crease arising from the rapid fall of the numerical
values of Jg(V) below those of Jg(V). The isochores
of the denser hexagonal solid are thus necessarily
more shallow than those of the lighter cubic solid.
If the approximate empirical relation (36) were
valid at volumes below the explored range, it is
seen that the exchange interaction strength, at
increasing compression, might fall below the
strength of the nuclear magnetic dipole-dipole
interactions between nearest-neighbor atoms and
soon below that corresponding to next-nearest
neighbors. With the indicated range of Iy gl, it
is seen that below about solid volumes of 14
cm3/mole, the dipole-dipole interactions become
stronger than the exchange interactions. One thus
encounters here the following problems. The first
may be said to refer to the experimental observa-
tion of the ever decreasing strength of the exchange
interactions with increasing density of the com-
pressed hexagonal solid, and an empirical deriva-
tion of the Jg(V) function. As implied above, a

start in this direction has already been made by
the Oxford group, as well as by earlier workersS$,”
The second problem may be said to refer to a com-
plete experimental exploration of the expected
change-over from the dominance of the exchange
interactions, at the lower densities of the hex-
agonal solid, to the dominance of the dipole-dipole
interactions at the higher densities. If resonance
techniques, at accessible temperatures, can be
extended to the denser regions of the hexagonal
solid, a qualitative differentiation may be achieved
as to the nature of the spin-ordering process at
the various densities of solid He®. ‘While in the
cubic solid and the low-density hexagonal form,
the spin ordering is likely to be governed by the
exchange interactions; at the higher densities, the
spin ordering should be of dipole-dipole origin,
within the limits of validity of the generalized
empirical relation (36). Equilibrium observations
on the spin-ordering phenomena in the hexagonal
solid occurring at extremely low temperatures

are entirely beyond the capabilities of current
techniques.

In order to complete this qualitative discussion
on the detection, at accessible temperatures, of
the likely modification of the spin-ordering phe-
nomena in hexagonal solid He? at increasingly large
densities, one has to consider the possibility of
the exchange energy parameter Jy(V) changing
sign. While this must await experimental confir-
mation, at low densities the spin ordering in both
solid forms is prokably of antiferromagnetic
character. The change-over to a ferromagnetic
spin ordering at high densities would be preceded,
over a range of intermediate densities, by a spin-
ordering process of dipole-dipole origin. These
considerations are, of course, subject to the limi-
tations in the validity of the assumed law of vari-
ation of the exchange coupling strength J H(V).

The higher-temperature heat-capacity data!?
allow one to write for the variations of the charac-
teristic temperature ey of the phonon excitations,

o, =0, (v, /0L (37)

H, tr VH, tr

where 1"% g appears to vary however slowly with
the volume of the hexagonal solid. The locus of
the vanishing temperature coefficients of the pres-
sure along isochores or that of the vanishing ex-
pansion coefficients may be shown to be, in analogy
with (25) and (26),

T (V)=T <VH, tr) $@Tc 5 +3Ty, 1)

a, H o, H, tr |7 (38)
with r J ,
Toz,H, tr = -'%_ <“IT:T’5_>GH, tr <ilé£_> - (39)

Here we have neglected the small volume depen-
dence of T'yp H, and as indicated above, Ty, g was
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also taken to be a constant, in some degree of
approximation, over the rather small volume range
of the hexagonal solid explored by the Oxford
group.® The starting temperature of the locus
Tq, H(V) on the transformation line (i.e., 7y, 7, tr)
may be above or below Ty, B, tr, the endpoint of
the cubic locus T, g, on the transformation line,
depending on the e%act value of Tx, g and Jy, tr On
the transformation line. It is seen that the locus
Ty, (V) continues to decrease with decreasing
volumes of the hexagonal solid, as was the case
with the locus T g(V) in the cubic solid. While
empirical to a large extent, the loci Tq, (V) and
T, g(V) [Egs. (25) and (38)] represent analytical
approximations to these characteristic lines of
the state surface of solid He3. They confirm
formally the qualitative results obtained in our
early work! on solid He3, where the similarity
between the pressure or volume variations of the
characteristic temperature T,(p), or T,(V), of the
spin system of the liquid phase was assumed to
persist in both modifications of the solid, denoted
here by Jg(V)/k and Jg(V)/k.

We saw above that the extrapolated equilibrium
value of the exchange energy Jp tr/k in the cubic
solid reaches the low value of abbut 30 udeg. at
the transformation line. The associated spin-
ordering temperature of about 3Jpg tr/k is then
around 90-100 ydeg. Hence this Cubic solid, down
to about 1 or 2 mdeg, is a realization of an essen-
tially ideal nuclear paramagnetic system as far as
its equilibrium magnetic properties are concerned.

“In the relatively low-density hexagonal solid, the
ideal magnetic behavior must persist to consider-
ably lower temperatures, that is to fractional mil-
lidegrees. This raises the possibility of exploit-
ing this ideal behavior for the penetration of the
millidegree and submillidegree range of tempera-
tures. The entropy of these ideal paramagnets of
spin—% atoms, in presence of a constant uniform
magnetic field of strength H, is

S;a)
NE

1 being the numerical value of the nuclear-mag-
netic dipole moment per atom. The adiabatic in-
variant y determines the cooling of these systems
through adiabatic demagnetization in their ideal
paramagnetic range of temperatures. The spin-
ordering temperatures, on the order of a few
times J(V)/k, can be made, in principle, quite
small by increasing compression of the hexagonal
solid; but the application of such high pressures
on the solid raises necessarily technical problems
which must be remembered here.

If the cubic and hexagonal forms of solid He?
may be regarded as cooling agents, they may also
be considered as thermometric agents through

=1n2 coshy — y tanhy, y :757‘}'1_ s (40)

their ideal equilibrium magnetic behavior. If the
magnetized solid prepared in a state of equilibrium
at higher temperatures is cooled reversibly through
states of thermodynamic equilibrium, a static prop-
erty of this ideal paramagnet, such as its heat ca-
pacity, may possibly be invoked as a thermometric
property usable at very low temperatures. Since,
from (40),

c; d( y)/Nk = (y/ coshy)?, (41)

the system may be prepared to have heat capacities
within a chosen interval at those temperatures
where the system under investigation is to be ex-
plored — good thermal contact between the thermo-
metric magnetized solid He® and the primary sys-
tem being hereby assumed. It is worth noting that
the heat capacity (41) has a fairly broad peak at y,
such that

y,=cothy,, or y,=~1.2 (42)

where its value is

C;4{90)/ Nk =1/ sinhy ; ~0.44, (43)

which is very large. Cz‘d(y) falls off at a moderate
rate, as a function of y, at y>y,, and at a some-
what faster rate at y <y,. It should be noted that
the use of a static thermal property as a thermo-
metric one, considered here, is based on the as-
sumption that the representative point of solid He?,
the thermometric agent, is constrained to move on
the equilibrium-state surface of this magnetized
solid. The difficulties appearing in nuclear-mag-
netic-resonance techniques at very low tempera-
tures, through the inevitable involvement of non-
equilibrium states, might thus be obviated.

The comparison of the advantages and drawbacks
of compressed solid He® as a cooling or thermo-
metric agent with those of other systems is not
within the scope of the present discussion. The
above remarks on solid He® were intended merely
to call attention to the possibility of exploiting the
ideal paramagnetic behavior of solid He3, valid to
quite low temperatures depending on the degree of
its compression. Experimental verification of the
cubic-hexagonal transformation anomaly of solid
He3 discussed above would prove, through equilib-
rium measurements, the increasingly wide tem-
perature range over which this solid should behave
as an ideal nuclear paramagnet. As stated above,
however, the possible involvement of the solid
phases of He? in the production and control of very
low temperatures is entirely independent of the
presence or absence of the transformation anomaly
over the indicated temperature interval.
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Making use of Enskog’s dense-gas formulation and the van der Waals concept of a dense
fluid, we discuss the excess attenuation of ultrasonic waves in monatomic liquid metals at
the melting point and as a function of temperature, in particular for mercury. The agree-

ment with experiment is found to be satisfactory.

INTRODUCTION

Using the thermodynamic theory of relaxation
processes, the author in a recent paper! (hereafter
referred to as I) analyzed the excess attenuation of
ultrasonic waves as due to bulk viscosity b given
by

b/77=§—A’/An,

arising from the spatial rearrangement of mole-
cules at melting point. Here 7 is the shear
viscosity, Ay is the absorption per cm due to

shear viscosity, and A’ is the excess absorp-

tion of an ultrasonic wave over that due to

classical causes. In the present paper a view-
point in terms of a dense-gas formulation? is
discussed, when the behavior of the system is dom-
inated by collisions.

In recent years the theory of transport in dense
fluids has been extensively developed by Rice and
co-workers.® They assumed that a molecule mov-
ing through a dense fluid experiences a pairwise
repulsive encounter. This is followed by a quasi-
Brownian motion during which the molecule under-
goes small random deflections in a rapidly fluctuat-
ing soft-force field of all the neighboring mole-

cules. This implies that the equation of state dur-
ing, and only during, a rigid-core encounter is
that of a rigid-sphere fluid. The equation of state
of the fluid during quasi-Brownian motion is solely
determined by the pair potentials. The require-
ment of having accurate values of intermolecular
potential and of having the equilibrium pair corre-
lation function as a function of intermolecular dis-
tance makes the calculation of transport proper-
ties very involved. This justifies the exploitation
of the theories which are based on a reasonably
realistic description of the trajectory of the parti-
cles.

The theory of van der Waals is an obvious choice
which leads to a simple, yet fairly accurate, theo-
ry? of equilibrium and transport properties. The
van der Waals picture of a fluid considers the par-
ticles as having a potential made up of a hard core
plus a weak long-range attractive force. The un-
derlying idea of this theory is that the particles
move in straight lines between core collisions be-
cause the attractive potential forms a uniform en-
ergy surface. This is called the free-flight ap-
proximation. Furthermore it is already known
from pseudopotential calculations® that the attrac-
tive part of the pairwise interaction for metallic



