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The condensation of an ideal Bose gas, in which the phase symmetry of the boson states has
been removed by a linear coupling of the creation and annihilation operators ('f (r), $(r) to
a fictitious external field C(r), is considered as a model of a second-order phase transition.
In the vicinity of the transition, the spontaneous-order parameter (thermal expectation value
of p) is related to the conjugate field by a series of terms of which the first represents a
scaled equation of state that exhibits a power-law behavior with nonclassical exponents. The
expectation value for the ordered product of boson operators (ff(1) gf(2) gf(M) $(1') ~ ~ ~

g(N'))p is determined and its behavior across the coexistence curve discussed. The exis-
tence of a conjectured critical eigenvector is demonstrated and a related asymptotic property
of the ordered product determined.

I. INTRODUCTION

In this paper we reconsider the condensation of
an ideal Bose-Einstein gas using an approach de-
rived from a suggestion of Bogolubov. ' With this
point of view, the Bose transition acquires a very
close resemblance to the liquid-vapor critical
point as well as the magnetic transition about the
Curie point. Our analysis is motivated by a desire
to provide a definite model with which one can test
certain of the recently conjectured descriptions of
a phase transition. Since the Bose gas is one of
the few nontrivial many-body systems which ex-
hibits a change in phase whose properties can be
calculated explicitly, much can be learned about
the physical behavior in the vicinity of the transi-
tion.

Several other authors have also recently inves-
tigated the condensation of an ideal Bose gas as a
model cooperative transition. Gunton and Buck-
ingham, ' using ideas like those contained here in
Secs. I-III, have studied the dependence of the
thermodynamic variables and pair- correlation
function of both the dimensionality and the nature
of the individual particle energy spectrum. Casher
and Revzen' have shown that the Bose condensation
is naturally representable in terms of the coherent
states introduced by Glauber. '

In this paper we wish to present several points
of general importance in the theory of critical
phenomena not emphasized in previous work.
First, the equation of state may be expressed as
an ordered series in appropriately scaled thermo-
dynamic variables. In the vicinity of the transi-
tion, the first term in the expansion exhibits the
homogeneous form of a scaled equation of state, ~~'

which shows a power-law behavior with nonclas-
sical exponents. Unlike the liquid- vapor transi-
tion, in this model the k-dependent susceptibilities
(variation in the complex-order parameter with
respect to the conjugate field) are infinite for k= 0
along the coexistence curve. ' Secondly, we have
determined the thermal expectation value for the
ordered product of boson-field operators in the
neighborhood of the transition and have used them
to demonstrate the existence of a "critical eigen-
vector" as has been postulated by one of us, MSG, '
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as a universal feature of critical points. The ex-
pressions for the expectation values are shown to
have asymptotic properties related simply to the
critical eigenvector. This relationship is a spe-
cial case of a more general asymptotic formula
for the distribution functions near the critical
point that has been discussed elsewhere. '

The system of noninteracting Bose particles is
described in terms of the complex boson-field
operators gj(r), g(r) and the existence of a con-
densate (macroscopic-order parameter) charac-
terized by a nonvanishing thermal expectation
value for the single-field operator (denoted @).'
After removing the degeneracy associated with the
continuous-phase symmetry of the boson states by
introducing a fictitious external field linear in the
boson operators, ' a coherent-state representation
is used to calculate the thermodynamic properties. '
The mathematical description for the order pa-
rameter as an appropriate thermodynamic quanti-
ty is like that of the spherical model of a ferro-
magnet, ' with the analysis of both systems re-
ducing to computing Gaussian functional integrals
with a physical external constraint. The critical
indices for the Bose condensation are also those
found in the spherical model. "

II. HAMII. TONIAN

Consider a gas composed of N noninteracting,
spinless Bose particles contained inside a d-di-
mensional volume V(= Id) in thermal equilibrium
at a, temperature 7(= P '). The field operators
associated with such a collection of bosons tIt(r),
gj(r) satisfy the equal-time commutation relation

[tt (r), y~(r ')] = n(r - r '), (l)
with the physical properties of the system deter-
mined by the Hamiltonian

II, = 1'dr q~(r) [(—ri /2m)V ]g(r)

for a fixed particle number

X= ldr q (r)g(r). (&)

Since II, and X commute, the states of the system
are invariant to a gauge transformation generated
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by expipN, where p is the continuous phase vari-
able, 0 «y «2m, and consequently the expectation
value of a single-field operation g must vanish
identically. To remove this degeneracy, we de-
stroy the phase symmetry of the boson states by
introducing a linear coupling of the boson oper-
ators to a fictitious local field C(r) thereby intro-
ducing additional terms into the Hamiltonian

H=H, + fdr[C(r)g (r)+C (r)g(r)]. (4)

(The existence of a condensate is then exhibited by
the presence of a spontaneous-order parameter as
this external field vanishes. )

Expanding the boson-field operators in terms of
the usual creation and annihilation operators of the
Pock momentum-space representation ak&, af and
introducing the Fourier components of the external
field ~, the grand Hamiltonian operator X=H- pN
is found to be

X=2 (e-- p, )a a-+c-~~ +c- ak k k k k k k k &5)

where N = Z ak jak, and ek = —,
' k' in units of m = Fi = 1.

The value of the chemical potential p is restricted
to p. «0 by the condition that X be positive definite.

The grand Hamiltonian is bilinear in the creation
and annihilation operators of the individual k modes
can be diagonalized exactly by simply completing
the square, i. e. , addin wack ck(ek —p, ) '. The
unitary operator' Q ((ck ) =II exp(ckakj' —ck*ak)
that generates this linear canonical transformation
provides a new set of operators

A-=b~=g =a-+c-/(e-- p. )k k k k k

A- =g~„- 9 =a- +c- /(e--p),

which also satisfy a boson commutation relation

[Ak, Ak' ] = 5(k, k'). (7)

Thus, in the A representation, takes the diagonal
form

results of the previous section [diagonal form of
3:(A) with energy spectrum quadratic in k] the cal-
culation may be done explicitly, and in d dimen-
sions, we f ind

N . 8lim —= lim z——ln=
Bz VN» oc P'» Dc

(12)

is given by

n=(2~x) F 2(z)
d/2

' Ic-I'
lim 1 z 1g k

V- V 1 —z V (Pe lnz) '—
k k

In more than two dimensions (d) 2), the quantity
Fd/ (z) is bounded above on the interval 0 ~ z ~1
by f d/2). Thus for any fixed-number density n
less than'nc = (2mT)d&2&(d/2), there exists a, unique
solution to Eq. (13) such that z & 1, with terms of
O(l/V) vanishing as V- ~. In the absence of any
field, C(r)-0, the number density is just

1Vln. (p, g, V, C)= Vln" 0+~2
k k

Here =,(p, p. , V) is the grand partition function for
an ideal Bose gas in zero field with

V ln-
0

—
& F,

& 1(z)—V ln(1 —z), (10)
2

where X ' is the thermal wavelength of the particles
(2mmkT)' ' and with the fugacity ePP denoted by the
variable z, 0 «z «1.

The Bose function F~(z) is defined in terms of its
power- series expansion"

F(z)= Za z. (»)S 0'= 1

It is a positive, monotonically increasing function
of z which reduces to the Riemann zeta furiction at
z=1, F (1)=l(s).

The particle-number density n defined as

k kae= Z(e- —p, )A- A-- Z
k k k k e —p,

'

k k
(s) n(z) = (2mT) F (z), (14)

This expression corresponds to the usual ideal
boson system in which the Hamiltonian has been
displaced by an amount — Zk I ck I'/(E'k —p. ). In the
following sections, we shall make use of this di-
agonal A representation to calculate the thermo-
dynamic properties of the system and also the ex-
pectation value for the ordered product of Bose-
field operators. Although for a spatially uniform
system only the k= 0 component of the symmetry
breaking field C(r ) exists (ck= V '~'C5~0), in order
to maintain generality C(r) will be taken to con-
sist of all k components so as to allow for spatial
variations.

III. THERMODYNAMIC PROPERTIES

All of the thermodynamic properties of the sys-
tem can be obtained directly from the grand parti-
tion function .(P, p, , V, C) =—Tr(exp —P&). Using the

lim 1 z
~V1 —z' (15)

Here, the last term z/(1 —z) V corresponds to the
usual k= 0 mode contribution that is traditionally
required to support an indefinitely large number
occupancy, but which is of a vanishingly small
magnitude compared with those terms arising from
the coupling of the phase of the boson states to the
external field C(r). Thus, in the thermodynamic
limit of V- ~ first, - as a uniform C tends to zero,
the variable z approaches unity such that the fol-

with z(1, for n(n~ along C=—0. For values of
the number density greater than the critical value
nc, the solution n(z) requires a finite nonvanishing
contribution of the form n -nz -=+', where

P co
, + f dkP'ic-I'(Pe- —lnz) '

(lnz)2 k) 0 k k
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lowing limit exists = (2.T) [F, ,(.) —»zFd/2(z)],
d/2

2 +
lim lim P c /(lnz)'

C 0 1/-~
z-1

(16)
—2T ' ~ dkE-&'- +'-

~k) 0 k k k' (24)

Therefore for values greater than ~C the num-
ber density in zero external field is given by

n=(2~V) F (a=I)+&2.d/2 (17)

The point of equality of the two different analytic
branches for"n [Eqs. (14) and (17)] occurs at z = 1,
+'= 0 and defines a critical-value temperature

T = [27//((d/2)n] (18)

pp= lim lim V 'in=
C-0 V-~

and is given by

(2 )d/2 d/2+ 1
( )d/2

z(1, T) T~, z= 1, T(T~ .

(20)

For the three-dimensional system d= 3, the tran-
sition occurs along a, critical isotherm pn
constant —the condensed region degenerating to a
simple coexistence line owing to the lack of repul-
sive interactions between the particles prevents a
collapse to a state of zero volume.

The energy density, like that of any ideal gas is
proportional to the pressure

E/U= —(8/SP)V 'ln== —,t2 (22)

and like the pressure is a continous function of the
temperature. The specific heat at fixed number
density (volume) is therefore continous across the
transition, although its derivative

&c ~/t Z = [e2(Z/V)/sT2]+

displays a finite jump at Tz along the coexistence
line.

The correspondence between &" and the thermal
expectation value of the single Bose-field oper-
ator ((t)tl as a spontaneous order parameter comes
from noting the identity

1

((t)(r))&= — C„- In=(p, I/. , V, C) = (&')'. (19)

In two dimensions or less, d ~2, no such order
parameter as & exists, since Fd/2(z) is unbounded
as z tends to unity.

The pressure is related to the number density
parametrically through the variable z by

where the fugacity z is to be expressed as a func-
tion of (P, n, 4'). The equation of state relating the
thermodynamic conjugate variable C to ~' is ob-
tained by differentiating G with respect to the
order parameter + at fixed T.

In the absence of a spontaneous condensate + = 0,
at temperatures above Tq, ~(nz, inversion of
n(z) finds the leading terms of the G function cor-
respond to an ideal-gas free-energy expansion
(d=3)

G(P n), @' = 0) = P(—')n 'T2/2[n —n inn+ O(n')] (25)

Below the critical temperature T(T~ the re-
lationship between the number density n and the
fugacity z may be written as

(I +'/n-)
2/2 c ~ (1 + t)3/2 )' (26)

where we have measured the temperature in terms
of a reduced variable t defined by

7=r (1+t). (27)

F (z-1)= I'(I —s)q + Z, g(s —g)q
S c 'I

(26)

Using this series for F,/, (z), the inversion of Eq.
(26) finds a natural expansion parameter

(1 —~2/n) &(-,')
(1 p t)3/2 ~0 In( 1) (29)

in which to expand the thermodynamic function
G(P, n, +),

G (P, n 'I') = (2 m T )'"(1+ t )' "

Thus along the coexistence curve (fixed C= 0,
z -1) the ratio of the reduced normal-state den-
sity 1 —(@2/n) to the distance from the reduced
critical temperature t is given by a homogeneous
function of the chemical potential p. as had been
generally conjectured by Widom. '

In the vicinity of the transition as z tends to uni-
ty, the series for Fs(z) of Eq. (11) converges
very slowly and it becomes necessary to use an
alternate expression defined in terms of g= —lnz, "

IV. SCALING PROPERTIES

The Legendre transformation which eliminates
the variables conjugate to ~ and +, p. and C, re-
spectively, def ines a new thermodynamic function

G0), n, ")=—(( —p——0——)n=(I3, n, n, c) (23)ac v

—2T '(I+t)-' 1 dk e-1v- +-
k k k

and the equation of state (C uniform, &!k = 0),

c =
~ ~ ~

= 2~(", ~ /2~')—

x [1 17)(1}))-1/2$p O($2)]

(3o)
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c/c0 = + H2(x)+ ~ H3(x)+ ~ . . + 4 +
H (x)

with C, = 6$'(—')/5v'~' Here II (x) denotes a.

polynomial of order s in the variable x of which
the first few are explicitly

H, (x)= (1+—,'x)',

H, (x) = y, (1+&x)3—3(1+-3x)(1+ax)x,

H (x) = y (1+ 'x) —&y (1 +&x)'(1+aax)

(33)

As f -0, this parameter f may be expanded in a
binomial series and written in terms of 4'/n and
the variable x= t(n/g')

&/$, = &"(1+ -', x)+0(x'+4) (32)

Substituting for g and rearranging terms we find
that in the vicinity of the transition, the equation
of state is given by

(32)

UNP HYS ICAL

REGION p. &Q

G(t,% )

L G(t,~)-o
8G/8+=0

+ ~4(1+—,x)(1+&6x)x'+ ~4x'(1+~x)'

with the constants y, = ,",f—(&—)g(&)/v 1. 7-2, and

y4 7~'(a)/247' &2 0 35
A relation similar to Eq. (32) has been suggest-

ed for the Ising model equation of state by Domb
and Hunter4 from studies of the power-series de-
velopments of the partition function. The first
term of the rhs represents the homogeneous func-
tional form for the equation of state proposed by
Widom. ' It is of the form later asserted by Grif-
fiths" to relate the applied magnetic field and the
net magnetization of a simple ferromagnet and
rewritten as the scaling-law equation of state

C(@,t)=@I~
I h(x=t+ ' ),

—1!P (34)

In our model, the critical indices have the values
P=~2 and 5= 5, while k(x) is given by the poly-
nomial H, (x)=(1+~ax)' with x=t@ '. This func-
tion vanishes identically along the two-phase
boundary (coexistence curve C = 0, &' c0, I (0)
of xp z Schematic r epr es entations of
G(P, n, +) together with the equation of state
C(P, +) are shown in Figs. 1 and 2.

The variation of the thermodynamic function
G(P, n, @) with temperature defines a fixed density
(volume) specific heat e~ q whose behavior about
the transition as @ vanishes is characterized by
the critical exponent n,

c @=(&G/ST')@ 0-const+t (35)

FIG. 1. Representation of G(t, 4) =4 (1+ 2&)

lines of constant temperature in the vicinity of the'crit-
ical point. Above 7.'z, the function is bounded asymp-
totically by the value along the critical isotherm
G(0, 4) =O' . The locus of the intercept 8+ G(t&0, 4'&0)

determines the coexistence curve and the amount of
ordering present. The region of G & 0 is unstable and

excluded by requiring p& 0 always (see Sec. II of text).

0 k

it can be shown that

] (j2Q ] g2Q

B~ 8~ 4' 2 BR. BP0

= 25kk [3(+')'(1+ -'x)' —2pe-] (37)k

RITICAL POINT

In this model, we thus find a negative value of
~ = —1 which describes a specific heat both con-
tinuous and finite up to the transition. A finite
discontinuity in slope at T~ occurs like that in the
spherical model and classical van der Waals fluid.

The isothermal susceptibility X &, defined as the
change in the order parameter + with the field C
at constant temperature, is described along the
coexistence curve by the critical index y,

~ =(ee/sC)@ (35) X= g/+ Xp-2]S

Using the previous expression for G(P, n, @) with
L k~k +k and noting the +k are complex

quantities so that any change in them must be sep-
arated into independent variations'

FIG. 2. Schematic representation of order parameter
4 versus reduced temperature t for various values of the
applied field C/Co together with lines at constant x=t4
The coexistence curve is given by the parabola of xo=-&.
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with s2G/soke Pi i= 0. The inverse of these sec-
ond derivatives defines two orthogonal susceptibil-
ities y~, y everywhere equal and displaying a
nonclassical form of the k = 0 susceptibility di-
verging as t ' (y= 2) at the transition.

The complete set of critical indices (- 1, —„2,5)
satisfy the thermodynamic inequalities as exact
equalities

2 —n = P(5+ 1)= 2P+ y.

These values correspond to those found for the
Spherical Model of Ferromagnetism. " A discus-
sion of the similarities between the Bose conden-
sation and the Spherical Model is contained in the
recent work of Gunton and Buckingham2 and
Langer. 3

The complete expression for the equation of
state in the vicinity of the transition is given by
Eq. (32). Deviations from the scaled homoge-
neous form are given by the general term

+ Hs(x). Thus the corrections along the crit-
ical isotherm ((= 0, x= 0) form a power series in
@' while those along the critical "isochore" (0'= 0,
t(0) a series in t. It is not possible to provide
any further prescription as to corrections for
general x since the roots of the polynomials Hs(x)
are all different. Along the coexistence curve,
x, = - I where both H, (x,) = H, (x,) = 0, the first
nonvanishing contribution enters as H, (x) and is of
order (P)'@'. The correction to the coexistence'
curve x, will vanish like 36+ as the critical point
is approached.

V. EXPECTATION VALUES

M N
&(MiN)=& gg ak TI g & .

V. =1 V v= 1
(36)

Products of this form are most easily found with-
in the diagonal A representation, where the usual
techniques of operator algebra find

&=PI, &=o

M N
( p Ak g Ak &= + + 5(p I v)b(p).

p
—i p. v-i v 0+ pQ~

ocv cN v cv (39)

In this section we consider the thermal expecta-
tion value for the ordered product of the field op-
erators

g~(r )y (2) ~ ~ ~ 4~(M)q(I') ~ ~ .4(N')& .
1

These quantities contain information about the
spatial correlations of the Bose field and may be
related to the occurence of the spontaneous-order
parameter @ below the transition. In view of a
recent conjecture by MSG, ' it is of particular in-
terest to determine the behavior for these expecta-
tion values in the vicinity of the critical point.

It is most convenient to work in the Fourier
transform space of the creation and annihilation
operators by first defining a matrix 8 whose ele-
ments are given by the sequence of direct products

The 6(m ~n) denotes a, generalized delta function
in k space over the product of all possible pair-
wise permutations containing elements from the
sets [m], [n], and b(nz) is the usual boson distri-
bution factor

(z-' expPe(k ) —1)-'

x( I',0/I )
— '"-'6,- 06,- 0.

M
(4o)

Here we note that the expectation value for the
single boson-field operator gj'(r) or P(r) obtained
by the Fourier inversion of a single creation/anni-
hilation operator is given by

(g (r)&= V Eke (ak &= —PcO /lnz. (41)

The quantity Pc,/Inz is, however, just the square
root of the condensate number density +' discussed
in the preceding sections. Thus as the field C(r)
tends to zero in the single-phase region z & i, the
expectation value of the boson field g& vanishes
identically. However, within the condensed phase
(p, - 0, z = 1 line) along the coexistence curve, ((&
remains finite as the order parameter exhibits a
nonvanishing macroscopic value up to the critical
temperature T even in the absence of any exter-
nal field, C-O.

Preforming the (M+N)-fold Fourier inversion of
@(MIN), one finds the expectation value for the
product of boson-field operators in the coordinate
space

B(Ml N) -=(g (rl)g (2) ~ ~ ~ p (M)g(1') ~ ~ ~ g(N')&

Z n 6(p~-, )b(.-;)~- I"'N-'.
0&~&~ ~ (:

(42)0 —v X v v

Each b(rm —rz) is the Fourier transform into the
coordinate space of the boson distribution function

b(R) = &yt(r+ R) |t (r)&

= f dk e [z exp —,
' p'r —1] . (43)

In d dimensions, evaluation of this integral can be
shown to involve the Hankel transform"

f dkk Z
d 1(kB)[z exp —,'pk —1], (44)

0 2

where Js(x) is the s-order Bessel function of the
first type. As 8 -0, this integral reduces to the
local number density of particles

b(ft O) = g (r)q(r) &
= (2vr) Fd 2(z).

d/2 (46)

Using the linear algebraic relations of Eq. (6) to
transform back into the A representation, together
with the restriction to uniform external C(r), the
general matrix element becomes

e (M IN) = + 1I 6(p, l v)b(V, )
0 + p. +M p, & p.

0 Gv&X v(:v
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For very large spatial separations, R&&0, an
asymptotic evaluation of the integral expression
finds"

2 —' -'d 1b(R))0)-(2zT)R [2T(1—z)R ]' '
2 j.

xKi I/[2T(I —z)R ]') (46)2—
with Ks(x) the modified Bessel function of order s.

Thus in three dimensions (d= 3) the boson-field
correlation function b(R) may be written as
b(R)) 0)-R ' ~g, (y), where the argument
y = (1 —z)R' depends on the thermodynamic state
through the fugacity z. Above the transition
(z (I), the function g, (y) decays rapidly as

Z II 6(p, I v)b(r - —r-)4
0cvcN p, cM

p, =M v —v

+ 2 + 6(P I v)b(r - —r-)
Qc p. (" M p. cM —1
PcvcN vcN —1

x+M- p, +N- v

Thus their limiting ratio

~(M N)-=Iim ™N)
0-0

g (y)) 0)-y "4exp —(2Ty)'"

so that the correlation exhibits an Ornstein-
Zernike type of behavior

(47)
= 6(M —1!N)

+ 5(MlN-I)

b(r- —r )
p

b(r —r )
V

pc p, =M —1
v&v =N

B (MIN)= + II 6(!!J,lv)b(r —r-)
p, .cM p, cp
vcNv CV

(48)

The expression for B(MIN) below Tc along the
coexistence curve, where + is finite, is given by
Eq. (42) which we denote by B (M IN).

VI. CRITICAL EIGENVECTOR

The thermal expectation value for the ordered
product of the boson-field operators

&C (1)~ ~ ~ C (M)q(I')" y(N')&

is different on either side of the coexistence curve
(above and below Tc) with the difference being
given by

hB(M I N) = B (M IN) —B+(M I N),

where the subscripts refer to the two phases. At
the critical point, the properties of the coexisting
phases become identical and thus the quantity
hB(M IN) must itself vanish. The difference of the
expectation value for the single Bose-field oper-
ator 5 (!C!) is just the spontaneous-order parameter
+ which also goes to zero as the transition point
is approached from below with T tending to T~.
In fact, from Eqs. (42) and (48), it may be seen
that the difference AB behaves like the order
parameter @,

AB(M IN) = 6(P I v)b(r —r )~
pcgcM&c p

v=N vcN

b(R)-R- e~[-(I-z) ~R].
For temperatures less than T, where x=1, func-
tion g, (y = 0) is constant and therefore independent
of the spatial separation. "

In the absence of any external field, above the
critical temperature (T) Tc), there is no spon-
taneous order parameter as + is identically zero.
Thus the only nonvanishing contributions in Eq. (42)
arise from the empty sets M —p, = N —v= 0 and the
B(MIN) decompose into a product over-all permu-
tations of the boson factors

+ b(M + 2!N)O(+) (50)

exists and is finite (nonzero) for an odd number of
elements M=N+I, while vanishing of 0(+) for an
even M=¹

It has been conjectured by Green' that along the
coexistence curve, the direct correlation matrix
has an eigenvector whose components behave like
the difference of the multiparticle distribution
functions across the phase boundary. Thus, at the
critical point because of the identity of the two
phases this eigenvector has zero value. (See the
defining remarks of Eq. (53) below. ) The results
of the previous paragraph substantiate these more
general ideas about the behavior of the appropriate
averages in the neighborhood of the transition for
this model system. And, the very existence of the
limiting ratio '0(MIN) supports the characteriza-
tion of the critical-point properties in terms of the
critical eigenvector.

From the structure of the expression for the cor-
relation function B(MIN), [see Eq. (42)] which
contains the sum over all possible permutations
of the boson factors or bonds, b(rm„) it follows
that the dominant spatial behavior is determined
by that r „which represents the minimal sepa-
ration beYween members of the groups. (This is
equivalent to noting that it is just the direct two-
body correlation function between closest members
of separated groups which determines the asymp-
totic correlation between groups of particles. ) If
the groups [M] and [N] are divided into distinct,
widely separated subsets [M'+M "], [N'+N "],
respectively, where [M'], [ N'], and [M"] [N"]
are close, then the general B(M IN) may be writ-
ten as a sum of terms involving the products of
bonds between [M'] [N'], [M"] [N"], and [M'] [N"],
[M"] [N'],

B(M'0+ M "IN'0+ N")

~(P'I v ')b(r, —r.-,)
0CP, '. CM'

IU, 'CP, '
(oc, cN -, c,

x +M'- q'+N'- v~
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5(P"ft ")&(r „-r „)0~~II~~II -II& II p, v

0( vII ( ~II IIc Il

~II ~ II+~II v II
'II

&(P. 'l ~")b(r -,—r- „)
JU, v

(M"-1=N") members, as is easily seen from the
pictorial representation for Eq. (51) given in Fig.
3. These terms, however, represent the critical
eigenvectors for the separate subsets, 'U (M lN')
and '0 (M"IN"). Thus we find that B(MIN) has the
simple asymptotic property

B(M'0+ M" IN'0+N") -B(M 'I N')B(M "IN")

+ b(mini r' —r "I )'U(M'IN')U(M" IN").

0 +~II+~II II+ II
0%vIc~I vIc vI

~I ~ I+~II v II

&(P "l ~')b(r „-r,)v

An analogous result has been proposed by Green"
for the molecular distribution functions of a fluid
near its critical point. Here the critical eigen-
vector is defined as the limiting ratio of the dif-
ference in the n-particle distribution function to
that of the single-particle (density) distribution
between the two coexisting phases

x@~"—p "+¹—v'

(51)
The first bracket on the rhs contains only those
terms which arise from bonds between the groups
[M'], [N'], and [M"][N"] and thus represents the
direct product of B(M'~N') B(M"~N"). The sec-
ond set of terms contains factors between the
asymptotically far elements [M'], [N"], and [M"]
[N'] and since each bond is a decreasing function
of the relative separation, it follows that the dom-
inant behavior is determined by that single bond
which represents the minimum distance between
[M'] [N"] or [M"] [N']. The remaining elements
of the corresponding subsets must therefore have
(M'-1=N'), (M"=N"-1) or (M'=N' —1),

f~((n ]) -f&((n j)
V(n) -=lim

~f(1)- ofgH1J) —fl,ql 8
For a system containing [M+N] particles, where
the group [M] is far removed from [N], the dif-
ference betweenf ((MO+N]) and the product of the
individual group distribution functions f(lM}) f (lN))
has the asymptotic property

f((M 0 N]) —f([Mj) f((N])
- 'U(M)B (min I t—rN I

)' 'fj(N). (54)

g(rMN) js the two-particle correlation function
between least-distant members of the two sets,
while %1(M) and 'U(N) denote the critical eigen-
vectors for the separate groups of particles.

I l

(M: QN

FIG. 3. Diagrammatic representation for the distribution function B(M tN) between disjointed subsets of M and N.
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With the aid of techniques used in our previous paper I, we prove, without recourse to any
approximation, that k&k„cr»(k, cu)/k is independent of the magnetic field strength.

I. INTRODUCTION

The magnetic field dependence of the complex-
conductivity tensor of a magnetoplasma was studied
by us in a recent paper' (herein referred to as I)
by employing the Kubo formalism. We considered
the "frequency-dependent" conductivity tensor
v»(~) in that paper. The problem of the magnetic
field dependence of the "wave number and fre-
quency-dependent" complex-conductivity tensor
a~p(K, +) is of much greater importance, partic-
ularly in the study of the propagation of electro-
magnetic waves in a magnetoplasma. The prob-
lem here is far more difficult than was the k = 0
case dealt with in I. The extraction of the explicit
magnetic field dependence of o»(R, &o) has not so

far provedto be a success. However, answers have
been obtained to simpler questions such as how can the
invariant (rotationally) of o»(k, ~)that is independent
of magnetic field strength be found. From a study of
the problem in the Vlassov approximation, it is
known that k&k„o'~„(k, ro)/k', i. e. , ' of is indepen-
dent of the magnetic field strength if k is parallel to
the direction of the magnetic field. It is also pos-
sible to obtain this result, without recourse to any
approximation, from the fact that the flow of elec-
tric current is not affected by imposing a steady
magnetic field in the direction of the flow of cur-
rent. ' In the present paper, we wish to show by
using Kubo formalism that even when R is not
parallel to the magnetic field' the invariant
k &k ~(r

& „(k,~)/k' is independent of the magnetic field.

II. DERIVATION OF THE RESULT

We consider a fully ionized homogeneous plasma with electrons moving against a fixed, neutralizing,
smeared-out, positive-ion background. The conductivity tensor o»(k, &) is the Fourier transform of the
response function Z, (x,v), defined by the 'nonlocal relation


