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three-particle distributions represented by

A(p, T) and B(p, T') which has not been achieved as
yet. However, our data should provide a good
testing ground in the future both for the Deutch-
Oppenheim theory and for our understanding of
molecular correlations in dense fluids.
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The calculation of the electronic contribution to the equation of state of high-temperature,
high-density matter by means of Thomas-Fermi theory is modified to include the effect of
shell structure. Shell structure is included by accounting for the discrete nature of the
energy levels of the bound states. The free states are treated by means of Thomas-Fermi
theory. Comparisons are made between Thomas-Fermi (TF) theory and Thomas-Fermi
shell (TFS) theory. The pressure and energy calculated by means of TFS theory vary about
those calculated by means of TF theory, and for some temperatures and densities they are
substantially different even at pressures far in excess of the 100-Mbar region where TF

theory is generally thought to be applicable.

INTRODUCTION

Thomas- Fermi theory has been used extensively
for finding the equation of stailte of matter at high
temperatures and densities. > TF theory is felt
to be particularly applicable to materials of high
atomic number and at high pressure. Just where
TF theory becomes a poor approximation is not
well defined. It is realized that shell structure
effects should cause considerable deviations from
TF theory, but the nature and size of these devi-
ations have generally been treated only in a quali-
tative way. The present paper is an attempt to
bring out quantitatively the effects of shell struc-
ture on the electronic contribution to the pressure
and energy of matter at high temperatures and
densities.

THOMAS-FERMI THEORY

The usual Thomas-Fermi theory will be de-
scribed briefly since it serves as a background
for the Thomas-Fermi shell theory. In TF
theory an atom is considered to occupy a spheri-
cal volume whose size is determined by the atomic
weight of the atom and the density of the matter.
This volume is given by v=A4,/p,N,, where A, is
the atomic weight, p, is the density of the matter,
and N, is Avogadro’s number. The nucleus of the
atom is considered fixed at the center of this vol-
ume, and the distribution of electrons is obtained
by using TF theory. According to TF theory, the
number of states per cm® available to electrons
whozse momentum lies between p and p +dp is
8mp°dp/h°. The probability that these states are
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full is given by Fermi-Dirac statistics, so that
the density of electrons with momentum between
pand p+dp is

2 3
8mp dp/h
’
exp (¥ 2mkT - eVTF/kT+ n) +1

Aprpp = (1)

where Vg is the Thomas-Fermi central poten-
tial, e is the absolute value of the electron’s
charge, and 7 is the chemical potential. Integrat-
ing over all momenta, the density of electrons is
given by

P = @n/W)@MET) 1, (- Vo /T4 1), (2)

where

4 © n
° exp(y—eVTF/kT+n) +1

Another relation between PrF and Vg is ob-
tained from Poisson’s equation,

V2V, (4)

F:41rpTFe.

over the volume of the atom

The integral of P
e atomic number Z of the atom.

has to be equal to

That is,
fR f°° 8mp°dp 4mrdy/n’ ~ 5)
0o 7o exp(p2/2ka—eVTF/kT+n)+1

where R is the radius of the atom’s spherical vol-
ume. One way to solve these equations is to guess
at a value for p at the surface of the atom’s
volume. The quantity (- eVpg/%7 +7) at the sur-
face of the atom is then known by means of Eq. (2).
Equation (4) can then be solved numerically by
using the proper boundary conditions and the ex-
pression for pp given by Eq. (2). The value
of Vg 50 found is used in Eq. (5). If Eq. (5) can-
not be satisfied, the initial guess on pp at the
surface of the atom is adjusted, and Vo is recal-
culated. The process is repeated until Eq. (5) is
satisfied.

The Thomas-Fermi pressure is found by eval-
uating the rate of momentum transfer at the sur-
face of the atom’s volume,

2 3
P:f o Lp(p/m)8mp dp/h , (6)
o exp(pY2mkT+n)+1

which can be written

P=[%pslg_ (n)/1§ (meT, )

where pg is the electron density at the surface of
the atom’s volume,

b= (41r/h3)(2ka)3/2Ié~ ). (8)

ZINK 176

The total energy can be expressed in the form®

E=3Pu+iE (9)

where Epot is given by
R 2
Epot_ﬁ’ (- Ze /r)pTFdT
2
+3 LR<Ze Jr— eVTF>pTFdT . (10)

The energy of interest in thermodynamic applica-
tions is not E, but the excess of E at a given tem-
perature and density over E at zero temperature
and density. In TF theory, the zero temperature
and density energy is given by E;= - 3. 34
X10-11Z7/3 ergs/atom. The excess energy is

U-E-E,. (11)
SHELL STRUCTURE

The effects of shell structure can be taken into
account by altering the method in which the totdl
number of electrons within the volume of an atom
are counted. The TF method of counting electrons
is described by Eq. (5). This method does not
allow for the existence of discrete energy levels
for the bound electrons, and thereby omits the effects
of shell structure. One way to improve the counting of
electrons is to use a trial potential function V in Schrd -
dinger’s equation, obtain the energy levels that go with
V, and calculate the number of bound electrons from
the relations

L 2(27+1)
Snl_exp(—Enl/kT+?7)+1’ (12)
and Ny =21, 8, (13)

where # and ! are the principal and orbital quan-
tum numbers, Sj;; is the average number of elec-
trons in the subshell n/, and N is the total num-
ber of bound electrons.

Thomas-Fermi theory can be used to count the
free electrons. Since the free electrons are con-
tained in a continuum of energy levels, the use of
TF theory here seems particularly well justified.
In order to count free electrons, Eq. (5) is al-
tered so that the lower limit on the momentum
integration is given by

P/ 2m=eV,

or p,=VeV2m (14)

The number of free electrons is then given by

2 2 3
N :fRfoo 8up dp 4nr dr/h . (15)
fJs Jp, exp

(p°/2mkT - eV/RT +1)+1
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The total number of electrons is given by Ny +
Ny. 1f Vis equal to VTF, the total number of elec-
trons will not, in general, be equal to the correct
number of electrons associated with a given atom.
If VTF included the effects of shell structure prop-
erly, the value of Ny +N f would equal the correct
number of electrons.

OBTAINING A PROPER POTENTIAL

A potential V which leads to the correct sum for
Ny, and Nf can be found in the same manner that
Vg is found except that in place of Eq. (5) the
relation Np + Nr=Z is used. The electron density
at the surface of the atom will thereby be different
from a TF calculation and will include the effect
of shell structure. Another way to arrive at a po-
tential V which leads to the correct sum of Ny and
N is to assume for V an analytic form, which is
based on physical considerations and contains an
adjustable parameter. The parameter can be ad-
justed so that Ny +Nf =Z.

The following model of a partially ionized atom
can be used as a basis for finding an analytic form
for V. Thevolume of an atom can be divided into
two regions: an inner region around the nucleus
where the electron density is high and mainly due
to bound electrons, and an outer region where the
electron density is low and mainly due to free
electrons. If it is assumed that all the electrons
in the outer region are free and that their distri-
bution is uniform, the potential in this region is

* 2
v L gy, meren @)

where Z* is the number of free electrons, and 7,
is the radius of the inner region. It has been
shown® that a good approximation to the potential
about an isolated, zero-temperature atom is given
by the expression Ze/7(1+Ar)’, where A is a
constant for a given value of Z. It is reasonable
to use this same potential for the bound electrons
within 7, since the removal of outer electrons by
ionization affects very little the distribution of the
inner bound electrons. The potential in the inner
region, including the effect of bound and free
electrons, is then

Ze Z*e[ ¥
V:W+T<Z_R2 'A)’ Osr<r,, (17)
where A, is chosen to make V continuous at »=7,.
« ZR R 3
AI—W—Z-%E . (18)

A relation between Z* and 7, can be obtained by
using Poisson’s equation to find the electron den-
sity corresponding to V, and then setting the in-
tegral of this electron density equal to Z. The
result is

«_ 2ZA7, Y4
= + .
(1+A7r)2 (1+Ar)>

(19)

Since TF theory is assumed to apply to the free
electrons, Eq. (8) can be used to obtain a relation
between the chemical potential and the free electron
density at the surface of the atom. For the ana-
lytic potential, the electron density pg is given by

pg=2* /&nR®, (20)

The quantity Z* occurring in the assumed analytic
potential is the parameter to be adjusted so that
V will yield a value for Np and Ny such that Z =

N; b + Nf .

A THOMAS-FERMI-LIKE CALCULATION

It is of interest to see what sort of results are
obtained for electron pressure and energy when
the analytic potential V is used in a Thomas-
Fermi-like calculation of these quantities. To make
a TF-like calculation, the electrons in the volume
of an atom are counted by means of Eq. (5) just as
in TF theory, except Vpy there is replaced by V.
The value of A to be used in V is determined by
the requirement that the total number of electrons
in an isolated, zero-temperature atom be equal to
Z. Thatis,

fowpl.41wzdr=2 , (21)

where p; is given by the TF relation,

p; = (87/31%) (2me v, P72

with V= Ze/7(1 +A1')2 .

The result is that A =1,14%x10%ZY3 cm™!. The
procedure used to find V consists of guessing at

a value for Z* and finding the values of 7, »,, and
A,, using Egs. (8) and (18)-(20). If the value of

V so determined does not yield the right value for
Z when used in Eq. (5), the guess on Z* is adjusted
and the procedure repeated. Further adjustments
are made until some set degree of agreement is
attained.

Once agreement has been obtained, the electron
pressure can be found from Eq. (7). The electron
energy can be found by using Egs. (9) and (11),
where Eyot is found with the analytic potential and
the electg'on density given by this potential through
Poisson’s equation. This electron density is

zZ* 3ZA?

P=game *aEAT AR 05T ST @2)
3
p=Z*/%1R , 7, <7<R. (23)

The reference energy E;, in ergs/atom, is E;=
- 0.8Z%¢%A. This result is obtained when the
electron density for an isolated atom at zero tem-
perature is taken to be p; =3ZA2/277 (1 + Ar):, This
density cannot be used to find A in the manner indi-
cated by Eq. (21) because, for such a density, any
value of A will satisfy Eq. (21).

The potential V is known only to an arbitrary
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constant. It has been assumed here, as in the TF
calculations of Refs. 1 and 2, that V=0 at »=R.
Figure 1 shows the variation of electron pressure
with density for iron at two different tempera-
tures. The dashed lines are the results of calcula-
tions made by using the analytic potential in a
TF-like calculation. The solid lines are the re-
sults of a strictly TF calculation. Figure 2 shows
the corresponding curves for the energy U. In
places where the dashed curve does not appear,
it coincides with the TF results. The TF-like
results are seen to agree well with the TF results.
The largest difference is in the energy at low
temperature and density, where the TF-like re-
sults are lower than the TF results. As it turns
out, the values for IEpot' and | E;| for the TF-
like calculation are as much below reality as the
TF results for these quantities are above reality.

A THOMAS-FERMI SHELL CALCULATION

The Thomas-Fermi-like calculation gives con-
fidence in the appropriateness of the form of the
analytic potential for use in a TFS calculation.

The energy levels associated with the analytic
potential V, were calculated by means of the WKB
approximation:

¢ 1 1/2
(n"’+§>ﬂff:rab<822m (—Enl+eV’) _(l_;g_)_z) dr.
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FIG. 1. Pressure versus density for iron.
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FIG. 2. Energy versus density for iron.

The energy levels found by means of Eq. (24) have
been shown to agree closely with those found from
Schrddinger’s equation when the potential was
that of an isolated, zero-temperature TF atom.*
The potential V’, is the analytic potential modi-
fied in an approximate way to exclude electron
self-interaction.

V'=(Z'e/R)R/r+v*/2R*-}) +e/r, r,<7<R,(25)

V'=(Z-1)e/r(1 +Ar)’ +(Z'e/R)*/2R* = A)) +e/7,
Osr<7r, (26)

V=e/v, 7v=R, @7)
where
zZ'=2%z-1)/Z . (28)

The principal quantum number is the sum of the
radial quantum number 7, plus the orbital quan-
tum number ! plus 1, n=ny+1 +1. The radial and
orbital quantum numbers can take on the values
zero through n— 1. The integrand in Eq. (24) is
the radial momentum, and the limits 7, and 7
are the inner and outer turnaround radii. The
radii 74 and 7p are the roots of the equation ob-
tained by setting the integrand equal to zero.

The method of determining the parameter Z*
parallels that used in the TF-like calculation.
The only difference is in the method of counting
the number of electrons within an atom’s volume.
In the TFS calculation, the quantities Ny and Ny
are used to find the correct number of electrons.

One of the effects of a nonzero density for the
matter is to limit the number of bound levels that
can exist for an atom. For high temperatures,
the limitation in the number of bound levels is of
no consequence because these levels are empty
of electrons anyway. At low temperature and
high density, the limitation in the number of
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allowable levels can force some electrons to be
free that at a lower density would be bound. This
phenomenon is termed pressure ionization. This
occurs where the momentum of the outer bound
electrons is so low that the uncertainty in the
electron’s position exceeds, roughly, the cube
root of the cell volume. A reasonable criterion
for finding a minimum momentum is to require
that the momentum of an electron be such that
the probability of finding the electron within the
atom’s volume is greater than one-half. Energy
levels whose associated momenta are less than
this are not considered bound. This criterion can
be written

$1R% 11‘i>ca/h3 =. (29)

Taking the cutoff energy as E.=p,°/2m, Eq. (29)
leads to

E = (12 /2m)(3/8m2" /v (30)

or Ec=5.9X% 10"27/v2/3 ergs. If the ionization po-
tential associated with a subshell is less than E ,,
the electrons of that subshell are considered to

be free. The assumption that V'=¢/» for 7 2R is
more of a convenience than a physical reality.

Had V'’ been taken as zero, for example, when

7 2R, then there would occur a natural limit to the
number of bound levels. However, it turns out to
be more convenient, from a computational point of
view, to setV'’=e/r for » =R and use E. to deter-
mine the number of bound levels. The results of
TFS calculations are not particularly sensitive to
variations in the density at which pressure ioniza-
tion occurs, so the method of determining the num-
ber of bound levels is not critical. )

The value of the constant A used in the TFS cal-
culation is the same as that used in the TF-like
calculation. The energy U for the TFS calculation
is found in the same manner as in the TF-like cal-
culation except that in a TFS calculation the radius
7, can be larger than R. When this happens, the
value of Z* is obtained by setting 7, =R and adjust-
ing A, so that the potential behaves properly at R.
That is, A, is obtained by means of Eq. (18) with
7, replaced everywhere by R. In finding the pres-
sure, the electron density at the boundary of the
atom is taken as Z*/4mR3, The quantity 3 Pv
which is involved in the energy uses this pressure.
In the other part of the energy, 3Epot, We use Z*
to find a value for #, by means of Eq. (19), and
then set R equal to »,. A, is then redetermined
by Eq. (18) and these new parameters are used to
find the analytic potential and electron density ap-
propriate to Z*, This potential and electron dens-
ity are then used to find Epot. In this way Epot
is determined in a manner consistent with the iso-
lated-atom energy E; . The quantity 2 pv is a mea-
sure of the kinetic energy in excess of the amount
| %Epot' .

In obtaining the number of free electrons Nf in a
TFS calculation, it should be pointed out that the
analytic potential V is used in Eq. (15) and not V’.
There is some ambiquity here, but V seems more
realistic. The use of V’ tends to make Z* too

small so that the pressure and energy results are
shifted downward.

In Figs. 1 and 2, the dash-dot curves are the
results of TFS calculations. Large differences
are seen to occur between TF and TFS results
even at pressures well in excess of 100 Mbar. The
TFS results approach the TF results in the limit of
high density and/or high temperature. The pres-
sure curve for iron at the lower temperature shows
a sort of condensation process at low density. Here
the pressure increases very little over a large
change in density. In the condensation region, as
the density increases, the free electrons tend to
become bound electrons because there are empty
bound states available, When the density becomes
sufficiently large, the available bound states be-
come filled and pressure ionization occurs causing
a steep rise in the pressure as the density is fur-
ther increased. Figures 3 and 4 show TF and TFS
calculations for lithium. Here the TFS calculation
crosses over the TF calculation at a density such
that the two K-shell electrons are pressure ionized.

DISCUSSION
In the work described here, a mean atom is used

to represent the various ionic species that would
actually exist in ionized matter. The effect of

7
10 T T —T

PRESSURE — Mbar cm%/g

0 l 1 l
10 10
DENSITY —g/cm®

3

FIG. 3. Pressure versus density for lithium.
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FIG. 4. Energy versus density for lithium.

this approximation is probably to make the differ-
ence between TF and TFS somewhat greater than
it should be. However, the mean atom approxima-
tion is probably less severe than might at first be
thought. When, for example, the first of the two K-
shell electrons becomes pressure-ionized, the
ionization potential of the second electron does
not become significantly larger than when the
first electron was still bound. This is because
the high density inherent in pressure ionization
prevents the first electron from leaving the vicinity
of the nucleus. The result is that the screening
of the second electron by the first does not change
appreciably when the first electron is pressure-
ionized. The two electrons, consequently, are
pressure-ionized at very nearly the same density.
Having the two electrons pressure ionized at exactly
the same density is probably a good approximation.
The energy levels obtained using the analytic po-
tential agree well with known values and with val-
ues calculated with a TF potential and Schroédinger’s
equation.
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TFS calculations made on heavier elements show
more oscillations about TF results, but the oscil-
lations are smaller, for a given shell, the higher

the value of Z.
It should be noted that other improvements have

been made to the TF equation of state, such as the
inclusion of exchange and correlation effects.
These refinements have been made within the sta-
tistical approximation inherent in the TF method.
The TFS method is an attempt to do better than the
statistical approximation. The TFS method can be
considered as an alternative to the quantum cor-
rections of Grover. ¢

The main advantage of including the effects of
shell structure on equation-of-state calculations
in the manner described here is in the relative
simplicity of the calculation. A Hartree-like cal-
culation could be used, but such a calculation would
be much more involved and would undoubtedly lead
to very much the same sort of results. The whole
problem could, of course, be approached more
rigorously by including the many-body effects in
detail. The object of the present work, however,
is to bring out, in a more quantitative way than
has been done, the manner in which the often-used
TF equation of state is changed when the effect of
shell structure is taken into account.

CONCLUSIONS

The inclusion of shell structure effects in equa-
tion-of-state calculations at high pressure indicates
that such effects cause significant changes from
TF results. The effect of shell structure is toraise
or lower the pressure and energy compared to TF
theory whenever the temperature and density are
such as to allow pressure ionization to be signifi-
cant,
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