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337 (1964).
This argument has been used by D. C. Mattis and

O. Penrose (private communication) to make rigorous
some of the magnetic applicatiops of the Bogoliubov
inequality.

'i The angular brackets now denote full canonical
ensemble averages, and the vector operators in the
denominator of (36) are combined as in a scalar product.
The proof of (36) is the obvious generalization of that

given by N. D. Mermin and H. Wagner, Phys. Rev.
Letters 17, 1133 (1966). The Bogoliubov inequality

was first applied to crystals by H. Wagner, Z. Physik
195, 273 (1966).

This is easily proved to be bounded in the thermody-

namic limit for any potentials C for which the free energy

per particle is bounded.

R. E. Peierls, Phys. Rev. 54, 918 (1938).
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A recently proved theorem of statistical physics states that a one- or two-dimensional
Bose liquid in homogeneous thermodynamic equilibrium cannot undergo Bose-Einstein conden-
sation. The theorem does not apply to inhomogeneous liquids. This is shown by considering
the ideal Bose liquid (i) in the presence of a gravitational field and (ii) in rotational motion.
The existence of well-defined one- and two-dimensional phase transitions with Bose-Einstein
condensation is proved by these explicit examples.

1. INTRODUCTION

The problem of one- and two-dimensional super-
fluidity is of considerable importance. Since three-
dimensional superfluidity is closely connected to
Bose-Einstein condensation, ' it is important to know
whether this connection exists in one and two di-
mensions. An inequality of Bogoliubov was used
by Hohenberg' to rule out Bose-Einstein condensa-
tion in one- and two-dimensional liquids in homo-
geneous thermodynamic equilibrium. The question
of Bose-Einstein condensation in inhomogeneous
liquids was left unresolved. It turns out that an
external disturbance which breaks translational in-
variance may cause Bose-Einstein condensation in
one and two dimensions. The purpose of this paper
is to give explicit examples of this fact. The ideal
Bose liquid is considered (i) in the presence of an
external gravitational force and (ii) in rotational
motion. In each case, a well-defined one- or two-
dimensional phase transition occurs accompanied
by macroscopic occupation of a single-particle
state.

H= Z a(t),
i= 1

and the energy spectrum is determined by the
single-particle eigenvalue problem

hg. (r) =E.q. (r) .

The partition function is given by

Z = Z exp —P[Zn. (E.—p, )], (4)

Expanding the right-hand side of the above equa-
tion in powers of the activity

and the summation over the occupation numbers is
easily performed,

lnZ = —Z in[1 —exp —P(E.—p)].
G

p = exp(p p, ) (6)
2. METHOD OF CALCULATION

In the grand canonical ensemble the equations of
state are computed from the partition function

Z =tr[exp —P(H-lJ. N)], P=(kT) '.
G

For the ideal Bose liquid, the total Hamiltonian is
the sum of single-particle Hamiltonians,

yields lnZG —— Z s 'y(sP)P
s=l

where y(t) = Z. exp(- E.t) . (6)

The crux of the problem is to evaluate the right-
hand side of Eq. (8) in the thermodynamic limit.
This is accomplished by Green's-function methods.
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The Green's function for the operator h may be
defined by

G(r, r', t)
= g(t) Z. exp(- Z t)q. +(r. ')q (r). , (9)

where 8(t) is unity if t)0 and zero if t(0. It fol-
lows from Eq. (9) and the completeness of the eigen-
functions [Eq. (2)] that

[(a/st) +n]G(r, r', t)

= 5(t)5(r r') .- (10)

where n and s represent, respectively, the particle
number and entropy per unit volume.

The rules for taking the thermodynamic limit are
more complicated for inhomogeneous system than
for homogeneous systems. One complication is
that the equations of state for inhomogeneous sys-
tems often depend on the geometrical shape of the
substance. Furthermore, the free energy per par-
ticle may diverge in the thermodynamic limit if the
strength of the inhomogeneity is not properly taken
into account. In a previous paper' the author dis-
cussed these points with reference to rotating liq-
uids. The details will not be reviewed here, but
the closely analogous situation of a liquid in a uni-
form gravitational field will be briefly explained.
The point is that a precise thermodynamic limiting
process is essential for the existence of sharp
singularities (i.e. , phase transitions) in the thermo-
dynamic equations of state.

Consider a liquid in a cylindrical container of
height l located in a uniform gravitational field g
parallel to the axis of the cylinder. In the thermo-
dynamic limit the volume grows ever larger. If
the height of the cylinder were to remain finite,
then the ratio of the boundary surface area to the
enclosed volume would also remain finite. This is
unacceptable4 even for the special case g = 0. The
correct procedure is to let I-~. However, a new
problem arises. The particles near the top of the
container have mgl more gravitational potential
energy than the particles near the bottom of the

Furthermore, it follows from Eqs. (8) and (9) that

y(t) = JG(r, r, t)d~~, (11)
where k is the number of dimensions.

The rules of calculating the thermodynamic equa-
tions of state for the inhomogeneous ideal Bose
liquid are now evident: (i) The cause of the in-
homogeneity is described by a single-particle
Hamiltonian h; (ii) the Green's-function problem
[Eq. (10)] is solved; and (iii) the grand canonical
partition function ZG is calculated via, Eqs. (7) and
(11). In three (two, one) dimensions the thermo-
dynamic potential per unit volume (area, length) is
given by

y = k T lim [Q ' inZG ], (i2)

where Q is the "volume" of the system and lim re-
fers to the thermodynamic limit of infinite size. If
y(T, p, ) is known, then the thermodynamic proper-
ties follow from the Gibbs-Duhem relation

dp =ndp. +sdT,

container. The energy per particle may there-
fore diverge unless g-0 with the product gl re-
maining finite. ' This condition is needed to com-
plete the rules for taking the thermodynamic limit
in the presence of a uniform gravitational field.

3. GRAVITATIONAL FORCE

The thermodynamic properties of the one-di-
mensional ideal Bose liquid in a box of length /

(along the vertical axis) in a uniform gravitational
field g can be computed by the methods described
above. It is shown in Appendix A that

1im[l- 'y(t)]

= (m/2v5't)

(moult)

(1 —e ) . (14)

From Eqs. (7), (12), and (14), it follows that

y =kTx (e~i'), (»)
where

X (g)=(Xq)-' Z s (1 —e ")p
s=1

In the above equation

x = (2w Fi'8/m)'~'

is the thermal wavelength and

(i7)

g =/angl . (is)
The density follows from the thermodynamic rela-
tion

n=(Sy/&i )T =CXI'(r).

It is
—1 p —3/2( —s'g) s

1

(19)

(20)

As the activity varies through its physical values
(0 & P ~ 1), the density varies from zero to the
critical value

n (g, T)=(xq) Z s (1 —e ) . (21)
s= 1

The finite critical density signals the onset of
Bose-Einstein condensation. For n)n~, a frac-
tion

o(g, T) =(n —n )/n (22)

of the particles are in the condensate. Note that
as g-0, n~ —~ which implies the well-known re-
sult that Bose-Einstein condensation is absent in
the one-dimensional homogeneous ideal Bose
liquid. However, when g 10 one-dimensional Bose-
Einstein condensation is clearly possible. Further-
more, Eqs. (13), (15), and (16) completely de-
termine the thermodynamic properties of all
phases.

The two-dimensional ideal Bose liquid in a uni-
form gravitational field is qualitatively similar to
the one-dimensional case. Instead of working out
the details of this model, we shall consider a dif-
ferent example of two-dimensional Bose-Einstein
condensation.
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4. ROTATIONAL MOTION APPENDIX A

Consider the two-dimensional ideal Bose liquid
in a circular box of radius A which is rotating at
angular velocity ~. It is shown in Appendix B
that

Iim[(~ZP)-'y(t)]
= (m/2iili t)(2/muPB t)(e —1) . (23)

From Eqs. (t), (12), and (23) it follows that

y =I alt (e~~), (24)

h = —(li'/2m )(a/ay )'+ mgy . (Al)

The Green's function in the absence of a gravita-
tional field is well known, '

g, (y, y', t)

The one-dimensional Hamiltonian for a particle
in a uniform gravitational field is given by

where

~,(r) =(~ &)-' ~ ~ (e' —l)r'.
s= 1

The modification necessary to include the effects
of the gravitational field is given by

G(y, y', t) =g, (y, y', t)exp[-Z'(y, y', t)], (A

In the above equation

( = —,/ma'R'.
where

If'(y, y', t) = —,'mg(y +y')t —Ii'mg't'/24 . (A4)

The thermodynamic properties of this system are
completely determined by Eqs. (24), (25), and the
two-dimensional Gibbs-Duhem relation for rotat-
ing systems

(A5)

Equation (A3) may be verified by substituting Eqs.
(A2)-(A4) into the equation of motion

[(a/at) + Ii] G(y, y', t) = a(t)a(y —y') .

dp =ndp, +sdT+Adw, (27) It follows from Eq. (11) that

where n, s, and A represent, respe;, tively, the
particle number, entropy, and angular momen-
tum per unit area.

As the chemical potential varies through its
physical values from (- ~) to (- k T $), the density

n = fX '(g) (26)

varies from zero to the critical value

lim[l 'y(t)] =lim[l 'J G(y, y, t)dy] .-1 (A6)

APPENDIX B

In the thermodynamic limit, l - ~ and g - 0 with gl
finite. Therefore Eq. (14) follows from Eqs.
(A2)-(A4) and (A6).

n ((u, T)=(X $) Z s (1 —e ).
s=1

(29)

The appropriate single-particle Hamiltonian for
the rotating two-dimensional ideal Bose liquid' is

A =ho —(ul, (Bl)

For n)n~, a fraction

n((u, T) =(n —n )/n (30)
where

Ii, = —(Vi'/2m )[(a/ax)'+ (a/ay)'], (B2)

of the particles are in the condensate. If rotation
is absent (+-0), then ne- ~ which implies that
Bose-Einstein condensation is absent, However,
when ( x0, two-dimensional Bose-Einstein con-
densation is clearly possible.

I = —ifi [x(a/ay) —y(a/ax)] . (B3)

For the special case, ~=0, the Green's function
is a simple product'

5. CONCLUSION
G, (r, r', t) =g, (x,x', t)g, (y, v', t), (B4)

We shall conclude this paper with a brief discus-
sion of what has been established about the role of
Bose-Einstein condensation in one- and two-di-
mensional superfluidity. First of all, Hohenberg
proved that Bose-Einstein condensation is non-
existent in homogeneous one- and two-dimensional
liquids in thermodynamic equilibrium. We have
shown that inhomogeneities in the ideal Bose liquid
can be accompanied by Bose-Einstein condensation,
but the situation when particle interactions are in-
cluded is still unclear. Finally, the most impor-
tantquestionof whether or not Bose-Einstein con-
densation plays an importa. nt role in dynamic pro-
cesses is completely unresolved.

where g, is defined in Eq. (A2). For ~WO, it fol-
lows from the equation of motion

[(a/at) + Ii, —(ut ] G(r, P', t)
= a(t)a(r —r') (B6)

that'

G(r, r', t) =exp(&utl)G (r, r', t) . (B6)

The exponential operator in Eq. (B6) is most easily
examined if the position r is expressed in polar co-
ordinates (p, p). The operator exp(&utl) replaces
the real angle y with the complex angle (cp —iTi&ut).

By writing out Eq. (B4) in polar coordinates, it
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then follows that

G = Go exp=

where

= = (mpp'/ri't)

x [cos(p —p' —iF'ioit) —cos(y —p')] .

In p articular,

G(~, r, t) = e(t)(m/2vti't) exp(op'/p'),

(B7)

(BS)

(B9)

o = (mA'/ri't)[cosh(ii&ut) —1] . (B10)

From Eqs. (11), (B9), and (B10), it follows that

y(t) - (PEP) (m/2vri 2t) (1/o.) (e —1), (Bl1)
in the limit of large A. The complete thermody-
namic limit involves the rule (d -0,R- ~ with ~R
finite, ' hence

lima = —,
' mw2@'t (B12)

Equation (23) follows from Eqs. (B11) and (B12).
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The thermodynamics of the critical point is discussed generally for a system in which some
"hidden variable" x, e.g. , a density of impurities, fluctuates in equilibrium but is subject to
a constraint (e.g. , fixed number of impurity atoms). Under rather general assumptions it
is shown that the "ideal" critical exponents 0. , G. ', P, p, &, - ~ ~ governing the temperature
variation at the critical point when x = 0 become renormalized to the values oX= -n/(I -a),
pX=p/(1 —a'), yX=y/(1 —c!), &&=6/(1 —o), . . . . A variety of exactly soluble models are
discussed, including a "mobile-electron Ising ferromagnet, " for which this renormalization
can be checked explicitly. The relevance of these results for the interpretation of theoretical
and experimentally observed critical exponents is considered briefly.

l. INTRODUCTION

The mathematical content of this article consists
chiefly in the analysis of some thermodynamic
manipulations appropriate to the imposition of

constraints on certain previously free ther-
modynamic variables and is quite elementary. To
motivate our analysis and reveal its theoretical
significance we ask the following fundamental ques-
tion: To what extent are the observed values of
the critical-point exponents universal?"

A preliminary answer to this question is embod-
ied in the first-three columns of Table I. ' The
two leading columns summarize the experimental
situation regarding a number of exponents which
describe the temperature dependence of magnetic
@nd fluid systems near their critical points. The
best determined exponent is P with values typically

in the range 0. 33 to 0. 36 both for magnets (where
P describes the spontaneous magnetization) and
for fluids (where P describes the coexistence
curve). In practice the specific-heat exponents
e and n' are less well determined, since it is
usually rather hard to know whether the specific
heat really ' diverges to infinity (n, n'~ 0) or
whether it has only a sharp but finite cusp at
Tc (a, n' ~ 0)'. Nevertheless, the fairly close con-
currence of all the exponent values for fluids and
magnets does suggest the existence of a univer-
sal set of exponents.

Theoretically, however, the most precise calcu-
lations for the standard three-dimensional Ising
models (or, equivalently, lattice fluids)' yield ex-
ponent values which, despite the numerical un-
certainties (indicated by the alternative entries for
n', y', and &'in the third column of Table I, seem


