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If N classical particles in two dimensions interacting through a pair potential 4(r) are in
equilibrium in a parallelogram box, it is proved that every kg 0 Fourier component of the
density must vanish in the thermodynamic limit, provided that 4 (r) -XH

)
V' 4(r) ) is inte-

grable at x= ~ and positive and nonintegrable at x=0, both for X=0 and for some positive X.
This result excludes conventional crystalline long-range order in two dimensions for power-
law potentials of the Lennard-Jones type, but is inconclusive for hard-core potentials. The
corresponding analysis for the quantum case is outlined. Similar results hold in one dimension.

Over thirty years ago Peierls' and Landau' con-
cluded that there can be no one- or two-dimension-
al crystalline long-range order. Computer exper-
iments, however, have since indicated a transition
to a two-dimensional crystalline ordered state, '
casting some doubt on the validity of these results
in two dimensions. The arguments are not unas-
sailable. Peierls gave a qualitative argument for
the general one-dimensional case, and a quantita-
tive argument (only in one dimension, but the ex-
tension to two is obvious) based on the harmonic
approximation. Landau, on the other hand, used
his general theory of second-order yhase transi-
tions, which is known to be misleading near the
critical point.

Within the past two years a series of exact argu-
ments have appeared, extending Hohenberg's4 use
of Bogoliubov's' inequality to exclude ordering in
a variety of one- and two-dimensional systems un-
der very general conditions. In this paper such
techniques will be used to place the Peierls-Landau
argument on a rigorous basis for a large class of
interparticle interactions without making either the
harmonic approximation or an order-parameter ex-
pansion.

The application of the Bogoliubov inequality to
crystalline ordering follows the general pattern of
earlier applications, but the extension is not com-
pletely straightforward. This is because earlier
applications have either been to lattice models in
which the structure of the Hamiltonian insures that
a given spin interacts only with a finite number of
others (for finite-range forces), or to types of or-
dering (superfluid, superconducting, itinerant elec-
tron magnetic, or excitonic) in which the energies
of order-destroying fluctuations are purely kinetic
and therefore independent of the number of parti-
cles interacting with a given one. In the crystalline
case the crucial energy is potential, and there is
no guarantee that a given particle will not diffuse
through the crystal, eventually interacting with all
the others. This possibility makes a rigorous an-
alysis more difficult, and requires the pair poten-
tial to satisfy restrictions that have not arisen in
other applications. '

Another complication in the crystalline case is
the variety of not necessarily equivalent choices
one has in selecting a criterion for the presence
of ordering.

For these reasons it is worth recording one form
of the full argument, in spite of its many similar-

ities to other applications of Bogoliubov s inequali-
ty. To keep algebraic complications to a minimum
we consider in detail only classical crystals. The
generalization to the quantum case is briefly de-
scribed in the Appendix.

Consider, then, classical particles interacting
through a pair potential C (r). The form of the
argument depends on whether one uses periodic
or impenetrable wall boundary conditions. Im-
penetrable wall conditions will be used here for
two reasons: existence theorems for the free en-
ergy will be required which have only been yroved
in the impenetrable wall case; furthermore enclos-
ing the system within fixed walls provides a con-
venient mechanism for localizing and orienting the
supposed crystal, which must be supplied by suit-
able fictitious forces in the periodic case. ' Thus
if the particles are supposed to form a crystalwith
Bravais lattice generated by a „a„we take the
box spanned by N,a„N,a (i. e. , the set of points
r = x,N, a, +x,N, a„0&x„x,& 1) and fill it with
N=nN, N2 particles, where n is the number of par-
ticles per unit cell.

We define the 0th Fourier component of the den-
sity by

where
N—ik ~ r-(

) g —ik ri
pk —

&
dre

1=1
N

p(r)= Z 6(r —r. ),
- i=1

(4)

The integrations are all over the interior of the box.
If k is a vector of the lattice reciprocal to that

generated by a„ i„ then pk will in general be non-
zero, whereas it will vanish in the thermodynamic
limit if k is not a reciprocal-lattice vector. (This
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is simply the statement that in the thermodynamic
limit the density is a periodic function with the
periodicity of the direct lattice; the assumption is
that the effects of deviations from periodicity at th'e
surface become of negligible significance in the
thermodynamic limit. ) We therefore adopt as our
criterion for crystallinity the following:

limpk~ =0, k not a reciprocal-lattice vector;

limpk0 0, for at least one nonzero reciprocal-
lattice vector k, (6)

where lim denotes the thermodynamic limit N„

We now prove that (6) cannot be satisfied in two
(and by the obvious analogous argument, one) di-
mensions. The proof is based on the following in-
equality, which holds for continuous differentiable
functions P(r) and y(r), provided p(r) vanishes when
r is on the surface of the box

0& T IZ&p. ~g. & I'
& IZ.~. I ) --,f &-,'ZV'C . .Iy. —y. I'+& TP IVq. I'&jj z j

Here p =p(rf), g~ =g(rf), @fan--4(rf —Fj), and all
indicee are summed from I to N.

The derivation of (7), which is closely related to
Bogoliubov's inequality, is elementary and has been
given elsewhere. ' Briefly, (1) is just the Schwartz
inequality

+k&T k2&Zcos2k ~ r .) j
'

(10)

The denominator on the right side of (10) is in-
creased by replacing cos'k ~ x~ by 1, and using the
inequality

(sink ~ r. —sink ~ r.)' ~ k'(r. —r.)'
2 i j

which leads to

(1j&)&pg „-p

8 K K+2kgk T(k+K)'(p~- p )'

k'(k&T+(1/2X)X, &IV2C ..I~..2&)

To complete the argument we must establish that
the coefficient of 02 in the denominator on the right
side of (11) is bounded in the thermodynamic limit.
(This is the problem peculiar to the crystalline
case referred to at the start of this paper. ) The
following argument' yields a fairly general condi-
tion on C (which is, however, probably too re-
strictive at small x) which insures this bounded-
ness:

Let I'& be the configurational contribution to the
free enex gy when the pair potential is taken to be

4' (r ) = 4 (r ) —Xr' I V24 (r ) I;

&IAI2} « l&A+B& I'/& IBI2)

in which

A(rl' ' ' 1'N) =Z$. ,

(8)
l. e. ,

-8(~-~~)
—PF =ln dr ~ ~ dr ex

where

B(rl ~ r~) =-k~ Te Z V. (p. e ).
i=1 '

An integration by parts in the numerator on the
right side of (8), and two integrations by parts in
the denominator (in all of which the surface terms
vanish due to the vanishing of y on the surface) lead
directly to (7). (For details see Ref. 8. )

Now choose

y(~) l(k+K) I
( )

where K is the reciprocal-lattice vector for which

pg is claimed not to vanish, and k is of the form

k=n,b, /X, +n,b,/X„b. a. =2wni j
so that p vanishes on the surface as required. Eq.
(7) then becomes

&'u. k'-If-k&-"a""' ' &Pre-PZ 2k&
'

x [~Z&V'4. . (sink ~ r .—sink ~ r .)')
U

—BF/» =&&) «0

d(s/»)&~& =&&(~-«& )'& -0,
where the subscript X ieriicates the average is in an
ensemble interacting through 4&. Equations (15)
and (16) imply

F, —F„=J &4& dp, «X&&), «0A.

or, equivalently,

(F, —F )/2A «(1/2N)Z &IV2C ..Ir. .2& «0. (18)
U U

Therefore provided

lim(F /N) =f

for X=O and for some X&0, we can replace the
denominator on the right side of (ll) by a larger
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constant which will, for sufficiently large N, be
very close to

k [6 '+-(f0 f,—)/~]. (20)

Now (19) is just the condition that the free energy
per particle for the pair potential 4 y be intensive in
the thermodynamic limit. A sufficient condition
for this is that the potential be integrable at infinity
and repulsive and nonintegrable at the origin. "
Thus (19) will hold, provided

C (~)-1/~, r-~;2+ I el

pK(1/(in%)"' .
(26)

The following further points are worth noting:
(a) Evidently a similar argument can be pro-

duced in one dimension. Conditions (22) and (23)
become

in the thermodynamic limit.
However the sum over k on the right of (24) goes

to an integral that diverges logarithmically at
k =0 in the thermodynamic limit. Thus (24) can be
satisfied only if pK vanishes in this limit.

Evidently if N„N, are both of order ¹

' one can
also conclude for the large but finite system that

C (x)) IXI/r +, r-0 (21)

Most potentials one is likely to consider will
satisfy (21) for A. = 0, so the pertinent conditions
for the absence of crystalline ordering in two di-
mensions are

v'C -1/x, r- ~;3+i&I

C (r) —xr' I v2p(r) I ) IA I/x

x=0, for some X ) 0

(27}

(26)

V2@- 1/~
4+ lel r-~:, (22)

Equation (26) becomes

PK ( 1/v N (29)

c(r ) —z~'I v'p(r ) I & Ig I/~

x=0, for some A. ~ o .

~~ k~TIPg(2K0)PK
)~ (24)

Now if

&c'(~) = f [dq/(»)']g(q) e

If 4 satisfies these conditions, the argument that

pK vanishes in the thermodynamic limit is com-
pleted as follows:

Multiply both sides of (11)by g(k+ K), where
g(q) is a positive Gaussian centered at q= 0, di-
vide by the volume of the system, and sum over

We can replace the right side, which is term
by term positive, by a summation restricted to
values of k less than half the smallest reciprocal-
lattice vector Ko; for these pK+2k vanishes in the
thermodynamic limit by the first criterion (6).
We thus have

1—~Z(~)(p-Io -)/&
q

(b) The bounds (26) and (29) are weaker than
the bounds one finds for a harmonic model:

—Ncy E'2
p -e 1 dimension;

(30)

—K2n
p -N

K
2 dimensions. (31)

([u(R)-u(R')]'& —»I& —R'I, IR —R' I- (32)

(c) Note that the exact bound (26) may well be
so weak as to allow two-dimensional systems of
less than astronomic size to display crystalline
order. This property is maintained in the har-
monic case [Eq. (31)], where for reasonable tem-
peratures and force constants nK' may well be of
order 10 ' for the smallest reciprocal-lattice
vectors.

(d) The weakness of the instability suggests that
some kind of ordering may still he present. An
example of this is provided by the two-dimensional
harmonic lattice. If the supposed equilibrium sites
are R =n, a, +n, a, and the actual instantaneous posi-
tion of the ions r (R) = R+u(R), then the absence of
long-range crystalline order is reflected in the
divergence of the displacement autocor relation
function:

EC(0) y —5 (&C(r. —r.))j (25)

But" the second term in (25) is bounded by the dif-
ference in free energies per particle for the pair
potentials 4 and C —~C'. Since if 4 satisfies the
condition for the existence of a thermodynamic
limit so will C minus a Gaussian, (25) is bounded

then the right side of (24) is bounded in the thermo-
dynamic limit by

This reveals that positional long-range order does
not exist. However directional long-range order
is transmitted infinitely far, as revealed by a cal-
culation of

([r (R+ a, ) —r (R)] ~ [r (R'+ a,) —r (R')]) (33)

If the particles were frozento their equilibrium
sites this would just be a,'. If, due to thermal
fluctuations there were no long-range propagation
of the local crystalline orientation, it would vanish
for large l R —R'

t . In fact it approaches a,' as
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I R —R'I- ~, revealing that there is long-range
orientational order in the two-dimensional har-
monic net.

(e) Note that the conditions (22) and (23) are
satisfied by potentials of the form

C'(r)= IBI/r —ICI/r, m&n) 2+ I&I . (34)

The conditions also have the appealing feature
that if one tries to help the crystal by putting a
periodicity into the pair potential, e.g. ,

C(r)-cosK. r/~"

then a more rapid falling off at large r, (n) 4
+ I e I), is required to exclude the crystal. How-
ever the restriction (23) at small r is probably too
stringent, excluding, for example, behavior of the
of the form

o(r)-e, r o.-IBI r

Also, of coarse, no conclusion can be drawn from
these conditions for hard-core potentials.

The particles are enclosed in a box, as before,
which now requires that the N-body wave function
vanish when any particle is on the surface; operat-
ing on such a wave function with A or 0 maintains
this boundary condition, and they are therefore
acceptable operators to place in (36).

The left side of (36) and the numerator of the
right side have exactly the same form as in the
classical inequality (10). The denominator re-
duces to

([[c,ll], c'])=(1/m)Z. ((k. p, )

+0'p. (cosk ~ r.)'p. + —,'Fi%~ sin'k ~ r. )i
+ —,'Z ((sink ~ r. —sink ~ r.)' 'PC ..)g

U
v

+-,'Z ((sin2k ~ r. —sin2k ~ r.)(k i)C . .) .
U v

The first ensemble average in (39) is bounded by

N(4f + 5'k'/4m )k',
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where t is the kinetic energy pex particle in equilib-
rium. " The second term is also bounded by a
quantity of oxder Nk', the argument being the ob-
vious generalization of the one given in the clas-
sical case, the generalization of Eq. (17) to the full
quantum-mechanical free energy being provided by
Peierls' theorem. '4 The final term in (39), which
could be dealt with by a simple integration by parts
in the classical case, can still be bounded by

APPENDIX: OUTLINE OF QUANTUM THEOREM
—,'O'Z( Ir, I I&C . .I)

22
(4o)

To pxove the analogous theorem quantum me-
chanically, start with the Bogoliubov inequality":

which can be pxoved to be bounded by something of
order Nk' provided we add to (22) and (23) the con-
ditions

i(k+ K) ~ rgLet A =~.e =Pk +
(37)

—,'(AA++A+A) o- 0 7 I([V, A]) I'/([[c, H], 2+]) .
(36) IV@I-1/y 3+ I e I

C(r) -Xrl~C(r)I)IAI/r " ', g O.

(41)

(42)

C = -,'Z. [p. sink r, + (sink ~ r. ) p. ] .i i

The rest of the argument is exactly as in the clas-
sical case, the convergence of the left side of (34)
being proved by another appeal to Peierls' theorem.
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A recently proved theorem of statistical physics states that a one- or two-dimensional
Bose liquid in homogeneous thermodynamic equilibrium cannot undergo Bose-Einstein conden-
sation. The theorem does not apply to inhomogeneous liquids. This is shown by considering
the ideal Bose liquid (i) in the presence of a gravitational field and (ii) in rotational motion.
The existence of well-defined one- and two-dimensional phase transitions with Bose-Einstein
condensation is proved by these explicit examples.

1. INTRODUCTION

The problem of one- and two-dimensional super-
fluidity is of considerable importance. Since three-
dimensional superfluidity is closely connected to
Bose-Einstein condensation, ' it is important to know
whether this connection exists in one and two di-
mensions. An inequality of Bogoliubov was used
by Hohenberg' to rule out Bose-Einstein condensa-
tion in one- and two-dimensional liquids in homo-
geneous thermodynamic equilibrium. The question
of Bose-Einstein condensation in inhomogeneous
liquids was left unresolved. It turns out that an
external disturbance which breaks translational in-
variance may cause Bose-Einstein condensation in
one and two dimensions. The purpose of this paper
is to give explicit examples of this fact. The ideal
Bose liquid is considered (i) in the presence of an
external gravitational force and (ii) in rotational
motion. In each case, a well-defined one- or two-
dimensional phase transition occurs accompanied
by macroscopic occupation of a single-particle
state.

H= Z a(t),
i= 1

and the energy spectrum is determined by the
single-particle eigenvalue problem

hg. (r) =E.q. (r) .

The partition function is given by

Z = Z exp —P[Zn. (E.—p, )], (4)

Expanding the right-hand side of the above equa-
tion in powers of the activity

and the summation over the occupation numbers is
easily performed,

lnZ = —Z in[1 —exp —P(E.—p)].
G

p = exp(p p, ) (6)
2. METHOD OF CALCULATION

In the grand canonical ensemble the equations of
state are computed from the partition function

Z =tr[exp —P(H-lJ. N)], P=(kT) '.
G

For the ideal Bose liquid, the total Hamiltonian is
the sum of single-particle Hamiltonians,

yields lnZG —— Z s 'y(sP)P
s=l

where y(t) = Z. exp(- E.t) . (6)

The crux of the problem is to evaluate the right-
hand side of Eq. (8) in the thermodynamic limit.
This is accomplished by Green's-function methods.


