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We have used the atomic-beam magnetic-resonance technique to measure the hyperfine-
structure separations and the differential hyperfine-structure anomalies of 78-hour 7Ga and
14-hour "Ga in the 2P; , and %Py, electronic states. From the differential hyperfine-structure
anomaly we have deduced the standard hyperfine-structure anomaly for the two J states. We
have also calculated the nuclear moments from the measured hyperfine-structure separations.
Our results are, for ¢'Ga (I=2): Av(Py,) = 2457.727 26(90) MHz, a(*Py/,)=175.097 36(15) MHz,
b(Pyy,) =71, 957 50(55) MHz, $76%%=2.51(13) x 10-5, 7%A%(Cp, ) =5,0(1.4) x 1075, ¢7A%(Cp; )
=—20.1(2.0) X 107%, p(uncorr) =+1.8454(3)u yy, and Q=+0.22 b; and for Ga(I=3): Av(P,y)
=—153.65266(53) MHz, a(®Py;)=—6.256 98(11) MHz, b(P;,)=193.67365(80) MHz, "'6"
=2,12(18) x 10~4, AP, ) =4.2(1.2) x 1075, "AR(P, )= —17.0(2.0) 1075, y7 (uncorr)
=-0,131 86(2)uN, Q=+0.59 b. The quoted values of the nuclear magnetic moments include
a correction for the hyperfine-structure anomaly, but do not include the diamagnetic cor-

rection.

I. INTRODUCTION

Historically, gallium has been an important and
frequent subject of atomic-beam studies. Because
gallium is readily detected by ionization on a hot
oxidized tungsten wire, its stable isotopes are
particularly amenable to study with the atomic-
beam technique. Also, the metastable 2P, , state
is well populated by thermal excitation at the tem-
peratures required to produce a beam of gallium
atoms; the presence of two electronic states in
the beam allows performance of interesting ex-
periments. As an example, measurement of the
electronic g factors of the two electronic states
of gallium permitted the first determination of the
anomalous electron magnetic moment, !

Another interesting parameter which may be de-
termined by study of the hyperfine structure of
two electronic states is the differential hyperfine-
structure anomaly. ?~* The hfs anomaly is very
small in a ®P,,, or 2P;,, state, and thus an ex-
tremely accurate measurement of the nuclear
magnetic moments is normally required in order
to determine this anomaly. Because such accurate
measurements of nuclear magnetic moments are
very difficult for radioactive isotopes in P elec-
tronic states, hfs anomalies which rely on this
measurement are not easily determined. However,
by measuring the hyperfine structure in two elec-
tronic states, one can determine the differential
hyperfine-structure anomaly; from this one may
deduce the standard hfs anomaly.5 The value of
the anomaly thus obtained can then be used to cal-
culate the nuclear magnetic moment, from the
observed hfs separations, with great accuracy.
Additionally, the hyperfine-structure anomaly is
itself of intrinsic interest, as it provides infor-
mationabout the internal structure of the nucleus.

Because the hyperfine structure of the stable
gallium isotopes has previously been determined
with high precision, % 7 and because ¢’Ga and ?Ga
have convenient half-lives which allow performance
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of precision experiments on these radioactive iso-
topes, we decided to investigate the hyperfine
structure of these two isotopes with a view to
measuring the hfs anomalies and nuclear mo-
ments to high precision.

II. GENERAL PRINCIPLES

A. The Hyperfine-Structure Interaction

The hyperfine structure Hamiltonian for an atom
of nuclear spin I and electronic spin J in an exter-
nal magnetic field is given by

-
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where a,b, and ¢ are the magneticdipole, electric
quadrupole, and magnetic octupole interaction con-
stants, gy=;/J and gg = py/I are the electronic and
nuclear g factors expressed in Bohr magnetons,

and 0op is given by
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The magnetic octupole interaction constant ¢ turned
out to be zero within the accuracy of this experi-
ment, and thus we will drop this term from our dis-
cussion. For the case J=3, the quadrupole and
octupole terms drop out, and the remaining Ham-
iltonian may be solved analytically to obtain a
closed expression for the energy as a function of
magnetic field.® For the case J =3, the problem

is most readily solved by numerically diagonalizing
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the Hamiltonian matrix with the aid of a computer.
The energy levels as a function of magnetic field
are generally plotted as the familiar Breit-Rabi
diagram; such a diagram for the 2P;,, state of
87Ga is shown in Fig. 1.

The interaction constants 2 and b are proportional
to the magnetic dipole and electric quadrupole
nuclear moments, respectively. The relationships
between these interaction constants and their as-
sociated nuclear moments, for the case of one
electron outside closed shells, are well known and
are given by the following formulas®:

a:Zgluo[L.’L+1)/J(J+1)](1/1f3)av g, (3)
b=e2Q[2L /(2L + 3)] <1/73}avm , (4)

where {, is the Bohr magneton, @ is the nuclear
electric quadrupole moment, Fand R are relativ-
istic corrections given by Casimir, *° L is the or-
bital angular momentum of the electron outside the
closed shells, and the average value is taken with
respect to this electron’ s wave function.

Ideally, one would wish to use these formulas to
obtain values for yj and @ after measurement of
a and b. The problem in this procedure lies in the
calculation of (1/7%),y. Evaluation of this quantity
depends upon a detailed knowledge of the wave
function of the outer electron, and this in general
is not well known. There are additional complica-
tions arising from configuration interaction; these
factors have been considered for Ga by Koster, °
who lists correction terms for Eqs. (3) and (4).
However, for the assumption of a point nucleus,
the quantity (1/7%),  should be a constant for the
various isotopes of a particular element. Thus,
if we take the ratio of Eq. (3) for isotopes 1 and
2 of an element, and do the same for Eq. (4), we
obtain the familiar Fermi-Segré equations,
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FIG. 1. The Breit-Rabi diagram for ®'Ga in the 2P, /2

electronic state. (A similar figure for 72Ga, showing
its inverted level structure, is displayed in Ref. 15.)
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a/az=g1 /8] - (5)
bl/bzle/Qz . (6)

We note from Eqs. (5) and (6) that if the nuclear
moments and hfs have been determined for a par-
ticular isotope, then within the accuracy of the
equation one can readily determine the nuclear
moments of another isotope of that element merely
by measuring the hfs interaction constants a and b.
This is the technique normally used to determine
the nuclear moments of radioactive isotopes, where
direct measurements of nuclear moments are very
difficult.

B. The Hyperfine-Structure Anomaly

Although Egs. (5) and (6) are valid to rather high
accuracy, deviations from Eq. (5) have been ob-
served. These deviations are collectively termed
the hfs anomaly, defined by*!

1az:(al/az)(g12/gll)— 1. (7)

The hfs anomaly arises simply because the nucleus
is not a point, but has finite extent and structure.
Contributions to the hfs anomaly are primarily due
to two causes: (a) a difference in the distribution
of nuclear magnetism in the two isotopes (Bohr-
Weisskopf effect), ! and (b) a difference of charge
distribution in the two nuclei (Breit-Rosenthal
effect). 2 These have been examined in detail by
several authors.!3 Because these hfs anomalies
can become quite large, care must be exercised
in calculating nuclear moments from hfs inter-
action constants.

In the case of gallium, which has a single p elec-
tron outside closed shells, one expects an extreme-
ly small hfs anomaly, due to the very small value
of the p-electron wave function at the nucleus.
However, Schwartz has shown that there is a sig-
nificant admixture of the s-electron wave function
in the 2P, , and 2P, , states of gallium, and thus
the hfs anomaly is larger than expected.® Addi-
tionally, the 2P;,, anomaly is three times as large
as the ?P,,, anomaly, contrary to what one would
normally expect.

We note that if we write Eq. (7) for two different
electronic states, J =% and J =3, and divide one
equation by the other, we obtain

(EL <22_> _ 1 +1A21/2 ~14+ 1A21/2 _ 1A23/2 , (8)
32 J172\ 21 /372 14102,
where we have assumed
/g,) =(g,/g;) (9)
(gll I, v 1,’=1I, /2

2

and have neglected second-order terms in A,
If we now define the differential hfs anomaly 162

as
a a
_1A2 =<_1) (..a) -1
1/2 3/2
! ! As) 12\ )32’

we note that we can obtain the differential hfs

152 Z1A2 (10)
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anomaly simply by measuring the magnetic dipole
interaction constant a for two different isotopes in
two electronic states. Furthermore, we expect
the ratio of the two hfs anomalies in the two elec-
tronic states to be a constant for all isotopes of an
element, as this ratio depends only on atomic prop-
erties and has little dependence upon nuclear
effects.® Because this ratio has already been
measured for %°Ga and "?Ga, we can use this to ob-
tain the actual hfs anomalies for radioactive iso-
topes for which the differential hfs anomaly has
been measured.

III. EXPERIMENTAL DETAILS
A. Isotope Production and Preparation

72Ga is easily produced by neutron bombard-
ment of natural gallium, with the (z,y) reaction
on "'Ga yielding substantial amounts of "2Ga; the
irradiated material could be nlaced without further
preparation directly into the oven in our atomic-
beam apparatus. The only difficulty in the han-
dling of this isotope resulted from its high decay
energy. This caused dangerously high levels of
radiation from samples of any appreciable size,
and required extensive shielding around the
atomic-beam apparatus.

The %’Ga was produced from 5Cu by an (o, 27)
reaction, using first the 60-in. (152.4-cm) Crock-
er cyclotron, and later the 88-in. (223.5-cm)
cyclotron. Bombardments of 400 pAhours typi-
cally provided sufficient material for a 5-hour
run. The gallium was chemically separated from
the Cu target material by the diethyl-ether extrac-
tion of GaCl, from a 6N HCI solution. The copper
target was first dissolved in 10N HNO,, which also
contained about 20 mg of gallium carrier. After
drying, the material was redissolved in 6N HC1
and the ether extraction was then performed. The
GaCl; was extracted from the ether with H,O, and
NaOH was added until a pH of 5.5 was achieved; at
this point the Ga precipitates as Ga(OH),. The
precipitate was redissolved in 10N NaOH, and the
Ga was then electroplated onto a short length of
platinum wire. Separation efficiencies of 85—90%
were commonly obtained.

B. Radio-Frequency Equipment

Because we were attempting a precision mea-
surement of the hfs, it was essential that the
radio-frequency-generating equipment be extreme-
ly stable and accurate. All radio-frequency equip-
ment was phase-locked to an external James __.
Knight 100-kHz quartz-crystal frequency standard,
which was in turn compared periodically with an
Atomichron and the WWVB frequencies. A Scho-
mandl FD3 frequency synthesizer was used to gen-
erate frequencies in the range 300-1000 MHz,
whereas a Schomandl ND5 + NDF2 frequency syn-
thesizer provided frequencies below 300 MHz.
Frequencies above 1000 MHz were obtained by
crystal multiplication and amplification of the FD3
output. Radio-frequency amplification was
achieved by use of a Boonton model 230A ampli-
fier (0-500 MHz), an Applied Microwave Labora-

tories amplifier (500-2000 MHz), and traveling-
wave-tube amplifiers (above 2000 MHz). Frequen-
cies were counted by use of Hewlett-Packard 52451
frequency counters and appropriate frequency-con-
verter plug-in units.

. C. Hairpins

The application of radio-frequency fields to an
atomic beam involves several difficulties; the
problems become particularly acute when one is
performing precision measurements. It is desir-
able to have an rf field uniform in both phase and
amplitude along the entire length of the region of
interaction with the beam of atoms. For preci-
sion measurements, the interaction region should
be as long as possible in order to have a narrow
(uncertainty principle) width for the resonance
line. However, as the length of the interaction
region increases, generation of a homogeneous rf
field becomes more difficult. This difficulty
can be avoided by use of the Ramsey separated-
oscillating-field technique, !* but then difficulties
are encountered (a) in identifying the central peak
or minimum of the resonance pattern, and (b) in
insuring that the rf field in the two hairpins is
either precisely in or precisely out of phase. Al-
though this presents no great problem in measure-
ments on stable isotopes, where the entire reso-
nance pattern may be readily examined at a glance,
the difficulties of doing this for radioactive atomic-
beam work often outweigh the advantages of this
particular technique.

In an attempt to overcome these problems, we
designed the hairpin illustrated schematically in
Fig. 2. It is of a simple box-type construction,
with a long center conductor shorted at the bottom
of the hairpin. During construction, care was
taken to keep all surfaces as parallel as possible;
these surfaces were also polished and silver-
plated. The magnetic field lines in this hairpin
consist of elongated ovals around the center con-
ductor. Because the static magnetic field is per-
pendicular to the length of the hairpin, the rf field
at the two ends of the hairpins will be in the direc-
tion of the magnetic field, while the rf field in the

FIG. 2. A schematic drawing showing the type of
hairpin used in this experiment.
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center of the hairpin will be perpendicular to the
static field. Thus the long central rf field will in-
duce Am =1 transitions, and the end rf field will
induce Am =0 transitions. Because the two end
fields are exactly 180 deg out of phase, they will
result (for Am =0 transitions) in a Ramsey pattern
with a central minimum.

This type of hairpin was constructed in two
lengths, 3 in. (7.6 cm) and 6 in.(15.2 cm). Before
it was used upon the radioactive gallium isotopes,
it was thoroughly tested with stable alkali atoms
(see Appendix, subsection A). In all respects the
hairpins behaved better than one would expect for
such a simple design. The 3-in. hairpin gave
consistent and accurate results with both the po-
tassium and rubidium, but the 6-in. hairpin ex-
hibited structure effects in looking at the (= 3000
MHz) transitions in rubidium.

We were particularly concerned about the possi-
bility that the end fields were not exactly 180 deg
out of phase, and that there might be a phase dif-
ference which would result in a nonsymmetric
resonance. The Am =0 transitions were examined
carefully, and no evidence for a phase shift was
found. The Ramsey patterns observed in 3°K with
the 3-in. and 6-in. hairpins, are shown in Fig. 3,
where they are compared with a similar pattern
obtained with the 2-in. (1.6 cm) rigid-coaxial-line
type of hairpin normally used in our work.
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FIG. 3. Ramsey patterns obtained by sweeping the
8y (2.0) = (1,0) transition with 3-inch and 6-inch hair-
pins of the type shown in Fig. 2, and a § -inch rigid-
coaxial-line hairpin. Note the increasingly narrow
maxima and minima as the hairpin length is increased.
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We were also concerned about shifts of reso-
nance lines caused by overpowering. Thus, a
careful study was made of the 3°K and #Rb reso-
nances as a function of rf power; the results of
this investigation are also shown in the Appendix,
subsection A, Typically, the Am =1 lines would
optimize at an rf power of approximately 15 mW
while the Am =0 lines usually required about 300
mW, with the 6-in. hairpin. The relative magni-
tudes of these optimization powers are an indica-
tion of the relative lengths of the rf fields inducing
these transitions. As the rf field is increased,
while one has the frequency set on top of a reso-
nance, the height of the resonance will pass
through several maxima and minima. This behav-
ior, as observed with the 6-in. hairpin, is illus-
trated in Fig. 4 for a Am =1 transition. Because
of the danger of distorting resonances by applica-
tion of too much rf power, a curve similar to Fig.
4 was obtained for each resonance observed in the
radioactive gallium isotopes.

D. Experimental Procedure

The atomic-beam apparatus used in this experi-
ment was of conventional flop-in design. The ho-
mogeneous magnetic field was provided by a Var-
ian 12-in. (30.5 cm) electromagnet. Field inhomo-
geneities were small enough so that no line broad-
ening was observed, even with the 6-in. hairpin,
for the field-independent gallium transitions meas-
sured in this experiment.

The beam of gallium atoms was obtained by heat-
ing gallium metal in a graphite oven with a 0.005-
in. (0.13 mm) slit. The atoms transmitted through
the beam apparatus were detected by collecting
them on a sulphur-coated button, which was then
counted in Geiger counters or Nal crystal count-
ers for "?Ga and %7Ga, respectively. The crystal
counters were set to observe the 90-keV gamma
ray emitted in the decay of 67Ga, and thus discrim-
inated against any other activity present in the
sample.
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FIG. 4. A trace of the height of the *K (2,0) «— (1, —1)
transition as a function of radio-frequency power. The
frequency was held constant at 445.9783 MHz and the
field was 44.14 G. The hairpin had a 6-inch length.
Note the nonlinear abscissa.
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Two beam normalization methods were employed.
In the earlier runs, the beam intensity was moni-
tored before and after each rf-on exposure, by
collecting a sample of the beam with the stop wire
removed. In the later runs, two sample collectors
were placed side by side at the detector position.
The central button could collect only atoms which
had undergone an rf transition, while the button
placed alongside it collected atoms on the Stern-
Gerlach peak, i.e., atoms which had not under-
gone a transition. The side button therefore pro-
vided a good measure of the integrated beam in-
tensity during the entire exposure of the center
button. The ratio of the counting rates of the two
buttons then provided a normalized measure of the
number of atoms undergoing transitions.

All transitions were observed at their field-
independent points in order to minimize any
effects caused by inhomogeneity of the static
magnetic field. A list of the transitions observed
is given in Table I, which also lists the field at
which the transition is field-independent, and the
frequency at that field. Figure 5 shows the behav-
ior of most of the observed lines as a function of
magnetic field; the field-independent points occur
at the minima of the curves. The field was stabi-
lized with a NMR field-locking device to prevent
drift of the magnetic field during the course of a
run,

Because the hfs constants of 7Ga and 72Ga have
previously been determined to reasonably high
accuracy, 5,216 many of the normal search prob-
lems were avoided. The procedure we followed
was to calculate where a particular resonance
should lie, based on the earlier work, and then
to conduct a frequency sweep over that area. The
power used for this initial sweep was calculated
from the optimum power required to induce a
transition in the calibration isotope at the same
frequency, taking into consideration the relative

400 T
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FIG. 5. Frequency as a function of magnetic field for
several 'Ga and "Ga transitions. The transition labels
are explained in Table I.

transition probabilities for the two transitions (the
method of calculating these transition probabilities
is given in the Appendix, subsection B). After the
peak of the resonance was established by this ini-

tial search, a study was made of the height of this
resonance as a function of rf power. A typical re-
sult is shown in Fig. 6. Based on this result, an-

TABLE 1. Field-independent points of transitions in 67Ga and "Ga.

Electronic Transi- Field Frequency
Isotope state tion label Fy my Fy o @ (MHz)
Ga 2Py a 2 0 1 0 0 2457.727
b 2 0 1 -1 708.69 2373.322
2 c 2 0 1 1 31.47 263.608
d 2 0 1 0 60.09 252.049
e 3 -1 2 -1 143.19 575.752
“Ga Py f 5/2 5/2 /2 3/2 97.22 125.124
g 5/2 3/2 7/2 3/2 70.67 138.826
h 5/2 1/2 7/2 1/2 23.56 152.077
2Py, i 9/2 3/2 /2 5/2 1.98 116.921
j 5/2 5/2 /2 5/2 9.98 84.803




30 EHLERS, KABASAKAL, SHUGART, AND TEZER 176

20 T T T T T T T T T

-
)
/

counting rate
o o
T T
P—@—i\\
N
i

©
(0]
N
Z 5h -
o
IS
bl
(o]
p=4
oLl R N NN NN R

0 20

40

60

80

T T T T T T I T
56a 2p,

st / i 2 B
— Run 60 C
& $
Q.
(8] - -
(3]
S sL _

5.5 kHz

Normalized counting
[
o
S
1

Radiofrequency power (mWw)

FIG. 6. The height of the Ga Py, (9/2, 3/2) «~— (7/2,
5/2) transition as a function of radio-frequency power.
The frequency put into the 6-inch hairpin was held con-
stant at 116.921 MHz. H=1.9 G.

other sweep was made with an rf power of approx-
imately 70% of the optimum rf power. A typical
resonance obtained with the 6-in. hairpin on a

Am =1 transition is shown in Fig, 7. A similar
resonance obtained with the 3-in, hairpin at a high
frequency is displayed in Fig. 8, and displays the

(arbitrary units)
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FIG. 7. A resonance corresponding to the ?Ga ZP3 2
(9/2, 3/2) — (1/2, 5/2) transition at 1.9 G, observed
with the 6-inch hairpin.
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FIG. 8. A resonance corresponding to the 7Ga 2Py,
(2,0) ~— (1,~1) transition observed at a field of 708.7
with the 3-inch hairpin. If there were no perturbation
of the 2P, /2 state by the 2P /2 state (Clendenin effect),
the resonance would lie approximately 3 kHz higher.

quality of resonances obtained with this hairpin
even at such extreme frequencies.

Observations of Am =0 transitions posed quite
different problems. The major problem arose
from the Ramsey pattern obtained for this case.
Although it is quite easy to locate the central min-
imum when observing a stable isotope, both by
virtue of its position and because the central min-
imum is the lowest minimum in the curve (and in-
deed is at background level), it is more difficult
to observe this with a radioactive material. One
can, of course, trace out the complete resorance,
taking many points; this brute-force method was
used on one of the "2Ga lines to make a positive
identification of the central minimum, The result
of this extensive sweep is displayed in Fig. 9.
However, this is not an ideal approach, as it'is
extremely time-consuming and wasteful of mate-
rial, Although the latter consideration did not
affect our work on "Ga, where there was no short-
age of material, it became of prime importance
in the measurement of °Ga, where only limited
amounts were available. Thus a new search
procedure was established. It can be best under-
stood by referring to Fig. 3, where we note the
Ramsey patterns obtained with three different
hairpins. With the %- in. hairpin, only one
minimum is observed and is thus readily iden-
tified. The experimental uncertainty resulting
from such a measurement then includes only one
minimum of the 3-in. hairpin pattern, and that
is of course the central minimum. Similarly,
the central minimum of the 3-in. hairpin encom-
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FIG. 9. A sweep of the Ramsey pattern obtained in
observing the Ga Py, (5/2, 5/2) «— (1/2, 5/2) transi-
tion with the 3-inch hairpin at 10 G.

passes only one minimum of the 6-in. hairpin
pattern. Thus the procedure employed was simply
to observe the central minimum with the 3-, 3-,
and 6-in. hairpins in succession. A typical result
obtained with the 6-in. hairpin is shown in Fig. 10.

IV. EXPERIMENTAL RESULTS
A. Data

In each electronic state of each isotope, an at-
tempt was made to observe at least two and some-
times three different transitions at their field-in-
dependent points. One must observe at least as
many independent transitions as there are param-
eters to measure, and we attempted to observe one
additional transition, when possible, to provide an
internal check on the consistency and accuracy of
our results. Each resonance was swept at least
twice at a suitable rf power to establish the repro-
ducibility of the results. The transitionsobserved
are listed in Table I, and all the resonant frequen-
cies observed for these transitions are listed in
Table II. Also listed in Table II are the frequency
of the alkali isotope which was used to calibrate
the magnetic field, and the residuals (vopg —Vcalc)
calculated with the values of the experimental pa-
rameters obtained from the final least-squares
analysis.

B. Least-Squares Analysis

A least-squares fit of all the observed data to
the Hamiltonian given in Eq. (1) was made (see
Appendix, Subsection B). Because.g; has previ-
ously been measured by Kusch'> 7 and because g7,
for purposes of this least-squares analysis, is
best taken as the value obtained from the Fermi-
Segré relation, it was necessary to vary only the
parameters a, b, and c¢ in our analysis. For J=3,
it was, of course, necessary only to vary a. The
results of letting ¢ vary in the J =3 state were in-
conclusive, and we may conclude that ¢ is negligi-
ble to the accuracy of our present experiment.
Thus only a and b were varied in the J =3 analysis.

We should also concern ourselves with any cor-
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FIG. 10. A sweep of the central minimum of the
Ramsey pattern corresponding to the 2Ga 2P3/2 (5/2,
5/2) = (1/2, 5/2) transition, observed with the 6-inch
hairpin at 10 G. Samples with zero radio-frequency
power were taken at the beginning and the end of the
sweep; both were identical.

rections to Eq. (1) required because one member
of the doublet is perturbed by the other member.
Fowler!® has written a computer Jprogram to cal-
culate these corrections, for I=3 and J=3. When
applied to ’Ga in the 2P,,, state, the calculated
corrections are on the order of or smaller than
the uncertainties in our results. Thus no definite
conclusion can be drawn, particularly because
the choice of certain parameters to be used in the
calculation is somewhat arbitrary. The correc-
tions should be even less important (compared to
our experimental uncertainties) in "2Ga, and the
calculation was not performed for this isotope.
For °’Ga in the 2P, ,, state, however, it is an-
other matter. Some of our measurements were
performed at higher magnetic field (709 G) and
the required field-dependent corrections are
substantial. The calculation of these perturbation
effects, first performed by Clendenin, '8 has been
extended by Lurio to include both the oft-diagonal
dipole and quadrupole matrix elements in addition
to those of the magnetic field; his result is given
in a paper by Eck and Kusch. ! The largest effect
of the perturbation by the 2P, /2 level is to replace
the actual value of g7 by an effective value, denoted
by g;/. Additionally, the interaction constant a
obtained from a direct measurement of Av, the
zero-field hfs splitting, must be replaced by a
corrected value, a’. Thus, for this case, a least-
squares fit was made to Lurio’ s formula (allowing
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TABLE II. Experimental data.
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Run No.

Isotope®

Calibration data

Frequency (error)

(MHz)

Transition?
label

Ga isotope data

Frequency (error)

(MHz)

Yobs ~ Veale
(kHz)

§iGa 2P, , 2544°

8'Ga 2Py

72Ga 2P1/2

72Ga 2P3/2

254B
257Ab
257Bb
604
608
60C
62E
62F

21040
2108P
2144P
2154P
2204b
220B
2484b
31

33

40

43
444
44B
558
55C
584
58B
624
62B
62C
62D

364
36B
36C
394
39B
39C
39D
63F
63G
63H

234
23B
23C
23D
29A
29B
29C
29D
29E

a0 QQQ0Q PRPEEEEQQQ PR EEEIEEIEESBEEP>E PR

1.6000(250)
3.6600(250)
2.1940(250)
2.9460(200)
0.8600(150)
606.5500(150)
606.5430(150)
0.6270(200)
0.6140(200)

1.6560(250)
1.6470(300)
1.6290(250)
29.4260(250)
1.8130(250)
1.7910(300)
74.9320(250)
11.0551(50)
11.1178(50)
11.1059(10)
11.1021(30)
52.0587(60)
52.0555(60)
11.1045(70)
11.1045(70)
74.8820(500)
74.8820(500)
74.8450(200)
74.8330(200)
29.3880(200)
29.3680(200)

106.3590(70)

106.3690(40)

106.3610(150)
34.9152(20)
25.1970(15)
25.1970(15)
25.1930(40)
34.8410(200)
34.8250(300)
11.1920(200)

1.4031(125)
1.4019(100)
1.4017(100)
7.3315(140)
1.4059(20)
1.4057(20)
1.4047(20)
1.4039(20)
7.3548(30)

0D ODODO0 00000000 AUFAUD N ODHTTOP PO

503 03 G0 0] 0] Fh Fh rh ok

L S A T

2457.7280(150)
2457.7400(400)
2457.7400(250)
2457.7520(200)
2457.7300(80)
2373.3213(30)
2373.3215(13)
2457.7275(8)
2457.7276(9)

277.8820(750)
278.4390(750)
597.1700(400)
252.0580(400)
278.4640(600)
21717.8380(750)
575.7360(350)
263.6100(120)
263.6110(70)
263.6077(25)
263.6079(15)
575.7530(80)
575.7540(60)
263.6077(10)
263.6075(15)
575.7520(25)
575.7523(11)
575.7523(8)
575.7524(4)
252.0497(9)
252.0496(8)

125.1210(30)
125.1215(30)
125.1210(35)
125.1215(35)
138.8260(30)
138.8264(13)
138.8263(10)
138.8261(9)

138.8265(5)

152.0772(7)

116.9200(150)
116.9200(75)
116.9210(85)
84.8020(85)
116.9215(25)
116.9215(25)
116.9210(20)
116.9210(15)
84.8015(20)

-1.33
1.98
8.85

17.75
2.14

-0.17
0.03

-0.08
0.03

-46.35
44.40
—45.07
8.60
36.19
-38.54
-16.35
1.57
2.84
-0.44
-0.24
0.65
1.65
-0.44
-0.64
-0.34
-0.04
-0.06
0.04
0.34
0.21

-3.15
-2.65
-3.156
—2.65
-0.39

0.01
-0.09
-0.30

0.09

0.50

-1.34
-1.34
-0.34
-0.84

0.16

0.16
-0.34
~0.34
—1.41
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TABLE II (continued)

Calibration data

Ga isotope data

Frequency (error) Transition® Frequency (error) Vobs ~ Veale

Run No. Isotope (MHz) label (MHz) (kHz)

%Ga 2Py 29F c 7.3668(60) j 84.8018(15) -1.18
29G C 7.3748(60) j 84.8018(12) -1.24

634 A 0.9040(200) i 116.9218(15) 0.32

63B A 0.8940(200) i 116.9217(8) 0.09

63C A 0.8850(200) i 116.9218(7) -0.01

63D A 4.6950(200) j 84.8028(9) ~0.03

63E A 4.6970(200) j 84.8031(4) 0.22

2 Transition labels are identical to those in Table I; in
addition, 2 represents (2,1) «— (1,1) transitions.

Ay and gl’ to vary), rather than to the standard
Breit-Rabi formula resulting from Eq. (1).

The result of the least-squares analysis of our
data is given in Table III, where we have tabulated
the values obtained for the parameters which were
varied in the analysis. The constants used in the
analysis are listed in Table IV.

In Table III, we have also listed the x? values
obtained from the least-squares fit; note that they
are very low in view of the number of observations
being analyzed. These low x2 values indicate a
rather conservative assignment of uncertainties in
determining the center of each resonance. How-
ever, our choice of uncertainties is based upon the
confidence we have in the reproducibility and con-
sistency of our results, taking into consideration
the appearance of the resonance obtained, and the
behavior of our apparatus during the experiment.
In quoting our final results, we in fact increase the
uncertainties obtained from our least-squares anal-
ysis by a factor of 1.5 to allow for systematic er-
rors. We remind the reader, however, that these
uncertainties are purely experimental, and do not
reflect the calculational uncertainties arising from
fine-structure perturbations of Eq. (1).

We thus obtain, as the final result of our exper-
iment, the following results: for ’Ga,

AV(?P,,,)=2457. 727 26(90) MHz,

a' (?P,,,) = 1228, 865 82(45) MHz
(calculated from least-squares results for Av),

a(?P,,,) =175.097 36(15) MHz,
b(2P;,,) =71.95750(55) MHz;

for "*Ga,
AV(3P, ) = - 153. 652 66(53) MHz,
a(®P,,,) =~ 43.90076(15) MHz,
a(®P,,,) =- 6.256 98(11) MHz,

boiq data yielding results published in Ref. 3.
€A=%Rb, B=18cg, c=K.

b(®P;,,) =193. 673 65(80) MHz.

C. Hyperfine-Structure Anomalies

From the results given above, we maynow read-
ily calculate the differential hfs anomalies by use
of Eq. (10). We have also calculated the differen-
tial hfs anomaly for the stable isotopes of gallium,
69Ga and "'Ga, using the constants listed in Table
IV. The results we have obtained are listed
below?®:

87569=2.51(13) X105,
69571 = 3,15(13)x 1075,
71572=21,2(1.8)x 1075,

Calculating the standard hfs anomalies for the
stable gallium isotopes with the values of the inter-
action constants and nuclear moments listed in

TABLE III. Results of least-squares analysis.

Elec- No. of
tronic Best values observa-
Isotope  state of variables?® tions ¥

#Ga Py,  Av=2457.72726(60) MHz 9 1.01
&7'=6.655(13)x10—4

gy =6.705(13)x10 ~ ¢

6
'Ga 2Py, 4 =175.09736(10) MHz 21 3.83
b =171.95750(36) MHz
PGa Py, a=-43.90076(10) MHz 10 3.9
Py, a=-6.256981(69) MHz 16 2.78

b =193.67365(52) MHz

3Uncertainties given represent one standard deviation.
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TABLE IV. Values assumed for constants used in
our calculations.

General p/h=1.3996 MHz/G2

M,/M,=1836.12

Ga g (2Pyyy) = —0.665 821(40)P
gy (3Py;)=~-1.333 93(11)P
pr("MGa)/uy (%Ga)=1.270 624 2(20)°
Dlamagnetlc correction=1.002 624

Ga I=3/2
@=190.794 28(15) MHz®
b=62.522 47(30) MHz®
AV =2677.9875(10) MHz'
o (uncorr)=2.0108(3) “N
@=0.19 bd

Ga I=3/2
a= 242.433 95(20) MHz®
b= 39.399 04(40) MHz®
AV =3402.6946 (13) MHz'
br (uncorr) 2.5549(3) “N
@=0.12 pd

3k I= 3/2
g7 = —2.002 295 4(22)%
Br (uncorr)=0.390 88 py©
Av= 461.719 723(30) MHzf

¥Ry I=5/2
gy= —2.002 331 9(20)%
py (ancorr)=1.348 17un®
Av =3035.732 439(5) MHz8&

Bcg I=1/2
gy = —2.002 541 7(24)%
py (uncorr)=2.5641 ’_‘Ne
Av =9192.631 770 MHzh

3yalues recommended by the NAS-NRC Committee on

Fundamental Constants.
Ref. 1. We have recalculated these values using the

recently measured value of gJ( 23Na) (see Ref. 23).

CM. Rice and R. V. Pound, Phys. Rev. 99, 1036 (1955).

dG. H. Fuller and V. W. Cohen, Nuclear Moments
(Oak Ridge National Laboratory. 1965), Appendix 1 to
the Nuclear Data Sheets.

€1. Lindgren, Table of Nuclear Spins and Moments in
Alpha-, Beta-, and Gamma-Ray Spectroscopy, edited by
K. Siegbahn (North-Holland Publishing Co., Amsterdam,
1965), Vol. 2, p. 1621.

fs. Penselin, private communication.

8S. Penselin, T. Moran, V. W. Cohen, and G. Winkley,
Phys. Rev 127, 524 (1962).

hrhe B3cs A is the presently accepted frequency
standard.

Table IV, we obtain the following results!®:
89AT(2P, ,,) =6.2(1.7)X 1079,
89A™ (2P, ) = 2.52(19) X 1075,

As mentioned above, we can now use these to de-
termine the ratio of these same quantities in our
radioactive gallium isotopes, and thus determine
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the actual values of our radioactive hfs anomalies.
However, rather than simply taking the ratio of
these anomalies for the stable isotopes, we may
make a more accurate determination by using the
ratio of the anomaly in the ?P,,, state to the differ-
ential hfs anomaly, as the relative uncertainties of
these quantities are smaller. Doing this, we obtain

69A71(2P3/2)/69571 =0.80(7). (11)

This may be compared with the theoretical value®
of —0.76. The close agreement of these values
gives us confidence in the methods developed by
Schwartz’ and used in our analysis.

Assuming now that this ratio is constant for all
isotopes in gallium, we obtain

STAS9(2P;,,) =2.01(20) X 1075,

and AT2(2P, ) =17.0(2.0)X 1075,
For the %P, ,, state, we note that experimentally
89ATI(2P, ) /59671 = 0.20(6). (13)

Once again, assuming this ratio constant for all the
isotopes of gallium, we obtain from our observed
differential hfs anomaly for the 2P, ,, state the values

(12)

67A%9(2P, ,,) =0.50(14) X 1073
TAT2(2P, ) =4.2(1.2) X 1075, (14)

D. Nuclear Moments

The foregoing calculation of the hfs anomalies
now allows us to calculate the nuclear magnetic
dipole moments of 57Ga and "2Ga very accurately,
as it allows us to correct for the deviations from
the Fermi-Segreé formula used to calculate the val-
ues of these moments from our measured hfs inter-
action constants. In effect, then, we are using Eq.
(7) above to calculate the nuclear g factor, and
hence the nuclear magnetic moment, from our mea-
sured value of a and our calculated value of A, also
making use of a and g; for the stable isotopes. Ap-
plying this method, we obtain, for ¢’Ga,

uI(uncorr) = 1.8454(3)MN ,
and, for "2Ga,
ul(uncorr) =-0.131 86(2)uN.

These values are now corrected for the effect of
the hfs anomaly, but the diamagnetic correction
has not been included. If we include the diamag-
netic correction given in Table IV, we obtain for
67Ga

pl(corr): 1.8502(4);LN,
and for "?Ga
ul(corr) =0.132 20(3)uN,

where we have assumed a 5% uncertainty in the
value of the added diamagnetic correction.

The uncertainties assigned to these values of the
moments result only from the uncertainties in the
measured values of the nuclear moments for the
stable isotopes (see Table IV). Should these values
later be measured to higher precision, one can
then immediately use our hfs separations to recal-
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culate the nuclear moments of ’Ga and "2Ga to
higher precision.

Applying Eq. (6) to our results for the electric
quadrupole interaction constant, we obtain

Q(®°Ga) =+ 0.22 b
and Q(2Ga)=+0.59 b.

No uncertainty is included with this result, as
the uncertainty resides entirely in the calculation
of the quadrupole moment for the stable isotopes®
and no estimate has been made of this uncertainty.

V. CONCLUSIONS
A. Nuclear Moments

The nuclear spin of 7Ga has long been explained
as due to an odd 2p,,, proton. Configuration-.
mixing calculation of the nuclear moments and
comparison with experimental results favors
assignment of the (1f,,,)® (2p,,,)° configuration for
7Ga and °Ga, while the (1f;,,)® (1f;,,)? 2p,,, config-
uration is favored!? for *Ga. More recent calcula-
tions, ?° including the effects of the pairing inter-
action, yield values consistent with the experimen-
tal magnetic dipole moments of both 7Ga and ¢°Ga.

The case of "?Ga is much more puzzling, and in
fact the measured nuclear moment of 72Ga has
long caused difficulty for nuclear theory. At pres-
ent, this difficulty has not been resolved, and no
reasonable configuration results in a calculated
value of the nuclear magnetic moment in agree-
ment with the experimental value. 2!

The calculated value for the quadrupole moment
of 67Ga is in reasonable agreement with the experi-
mental results. For "2Ga, B. J. Raz?? has calcula-
ted a quadrupole moment of 0.58 b, in close agree-
ment with our experimental value of 0.59 b.

B. Hyperfine-Structure Anomalies

Because of the extremely small size of the hfs
anomalies for atoms in P states, the theoretical
interpretation is less clear than in the case of the
nuclear moments. Stroke et al.!3 have calculated
the Bohr-Weisskopf anomalies expected for the
two configurations mentioned above, and have ob-
tained A(®P,,,) =05 x107¢ for the first configura-
tion, and A(3P,,,) = (- 1+1)X10-5 for the second
configuration. One would expect a Breit-.
Rosenthal anomaly of roughly the same size.
Since the uncertainties for their calculations are
approximately the same as our experimental re-
sults for the anomalies, little can be deduced
from this result. However, from the values
Stroke et al. calculate for the b coefficient and the
9, radial integrals, we would expect that 57A69
would be approximately equal to 6°A7!, This is in
agreement with our experimental observation.

The situation for "Ga is more complex, due to the
odd-odd nature of this isotope. It is interesting
to note that the anomaly is a factor of 10 larger
than the others quoted above, while the nuclear
moment is a factor 10 smaller. This is not too
surprising, as one would expect a considerable
difference in the distribution of nuclear magnetism

and charge for "2Ga as compared with "*Ga, in
view of the observed small magnetic dipole mo-
ment and large quadrupole moment.
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APPENDIX
A. Hairpin Characterisitcs

In performing experiments of high precision, it
is essential that all systematic errors be detected
and eliminated. A major source of systematic
error in atomic-beam research arises from dis-
tortion and shifting of resonance lines, usually
caused by either (a) poor hairpin design, or (b)
application of too much radio-frequency power.
The hairpins used in this experiment were of a
new design, and therefore we tested them thor-
oughly before use. Because we believe the test
results will be of interest to other workers in this
field, and because they graphically illustrate the
importance of using the proper amount of radio-
frequency power to excite the transition, we in-
clude here a brief summary of the results.

The hairpins used in this experiment were of
two types: a§-in. rigid coaxial air line, 2% and a
3-in. and a 6-in. hairpin of the type shown in Fig,
2. Because the shorter hairpins were used only
for preliminary measurements, the long 6-in.
hairpin was tested most carefully. The method
used was to look at field-independent transitions
in %9K; in this isotope the AF =1 transition fre-
quencies are conveniently low (~450 MHz), but
yet are higher than most of the frequencies re-
quired in the gallium observations. Both Am==x1
and Am =0 resonances were traced out at various
radio-frequency powers. The results are shown
in Figs. 11 and 12. A plot of resonance height
versus rf power is shown in Fig. 4 for a Am =1
transition, and in Fig. 13 for a Am =0 transition.
It is apparent that great care must be exercised to
avoid over-powering observed resonances. Al-
though excess-power effects are immediately ap-
parent when working with stable atoms, they are
not easily detected with radioactive isotopes. Thus
it is essential to measure the optimum power for
each radioisotope resonance by tracing out a curve
such as Fig. 6.

Although the center minimum of the Am =0 reso-
nance did not shift as rf power was increased, the
side minima and maxima did shift outward from
the center.



36 EHLERS, KABASAKAL, SHUGART, AND TEZER 176

4+ -4k .
5mwW 50 mW
oL 1 1 —o0 1 |

(107" a)
D (@)
T
o
3
E3
1
(@] n D
T T
B ;
o
3
1 L=

2 -
+ 1 .
o
4 250 mW
5 0 ' . 4 -
o
5 20mw /J\/\‘\
L
s ar 42k -
w
el
£ 1 1
S 2r 10 1
fas)
VAU
opb—~L—
35 mW

-

445,970 446.000 445,970 446,000
Frequency (MHz)

FIG. 11. Observation of the K doublet (2, —1) ~—
@, 0), (2, 0) == (1, -1) as a function of rf power. Hair-
pin length: 6 inch. As rf power is increased, the two
resonances broaden and become distorted until they
merge and become indistinguishable.

The high-frequency behavior of the hairpins was
tested by observing the AF =+1 transitions of ®Rb.
The observed Am =+1 resonances (~2600 MHz)
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FIG. 12. Observation of the %K (2,0) ~—(1,0) transi-
tion as rf power is increased. Hairpin length: 6 inches.

are shown in Fig. 14 for the three different hair-
pins, and the Am =0 resonances (~ 3000 MHz) are
shown in Fig. 15. It is clear that the 6-in. hairpin
is unsatisfactory at these frequencies, but the
3-in. device appears to be acceptable. The wave-
length is about 4 in. at these frequencies, and
most likely standing-wave patterns are set up in
the 6-in. hairpin, leading to the anomalous line
shapes.

B. Computational Methods

Because our computer routines have been considerably modified since they were last described in the
literature, 2 and because they are now in use in a number of laboratories throughout the world, we believe
it desirable to summarize the main features of our present computational methods.

Three basic computational problems are encountered in atomic-beam research: (a) calculating the fre-
quency of transition between two energy levels of the Hamiltonian given in Eq. (1), (b) calculating the prob-
ability for such a transition to occur, and (c) performing a least-squares fit of the adjustable parameters

to the observed data.

Transition Frequencies

To calculate transition frequencies, we must obtain the eigenvalues of Eq. (1). A method has been de-
veloped which takes advantage of two particular properties of the matrix representing this Hamiltonian:
(a) it may be arranged in block form, with each submatrix corresponding to a given m value, and (b)
within each submatrix, all elements that are more than 1 off the diagonal are zero.

Upon examining Eq. (1), we see that the diagonal matrix elements of the Hamiltonian are

A= (Fm13¢| Fmy=aa, +bb, +cc p* (~g; +g)uo/n)HA -8 [o/WVHm, (A1)

p P

where



HYPERFINE STRUCTURE OF ¢"Ga AND 7"2Ga 37

2
Central minimum .
| :—__—_/_____,..—" 5/8-in. hairpin
o 1 | 1 1 1 Il ] 200 mw
First side maximum 7
<
TO —_ | I B A
. < 261,600 .630 .660 690
TO .
o 3-in. hairpin
g 60 mW
2 0 | | ! 11 ] 1 € i
1 @
3 First side minimum <
N 3+ -1 3 —
2 S
s °l ’ 8
2 2 _
3 i S
£ PR N RN N B E
go g Lo b byl
o gl Second side maximum ] 2611,640 .646 652 658 664
6-in, hairpin
80 mw
o . | , | | | | I I N N R T |
0 2 2 6 8 2611,642'%%¢ 654 662 .670
rf Power (watts) Frequency  (MHz)

FIG. 13. Height of various peints on the Ramsey - FIG. 14. The ¥Rb (3,1) - (2,-2) resonances obtained
pattern resonance shown in Fig. 12, as a function of rf with various hairpins. The severe distortion of the res-
power. The signal level at zero rf power indicates the onance obtained with the 6-inch hairpin is evident. The
detector background. A similar curve obtained for a frequency displacements from one trace to another re-

Am = +1 transition in 3K is shown in Fig. 4.

sult from changes of the magnetic field between the suc-

cessive days on which the traces were obtained. All
sweeps were made at optimum rf power.

ay=(Fm T J1Pmy=4[F(F+1) - II+1) - J@ + 1)), (A2)
bpz(FmI QoplFm) =[3a1->2+%ap—l(l+ 1) +1)][2127- 1)I(27 - 1)]-1 (A3)
cpz(le OoplFm)={10ap3+20ap2+2ap[— SIT+ 1)U +1) +II+1)+J(T +1) + 3] - 41T +1)J(T + 1)}

X[I({I - 1)@I- D)JJT = 1)(2J - 1)]-* (A4)
dp=(leleFm) =m[F(F+1)+J(J +1) = I(I +1)] /2F(F + 1) (A5)

andp =1 for F=Fmi w P 2 for F=Fmin +1, etc. The square of the matrix elements 1 off the diagonal is

given by

ep=(FmIJCIF+»1,m)’
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=[(—gJ+gI)(uo/h)H]2(F+ 1-I+DNF+1-1+0)T+J+2+F)

X [+ = F)NF+1-m)(F+1+m)[4(F+1)? (2F+3)2F+ 1], (A8)

We require the solution of the N-dimensional secular determinant
D, = lHN—IE(F, m)|=0, (AT)
where Hp is the particular N-dimensional submatrix under consideration, E(F, m) is the eigenvalue of that

submatrix corresponding to the quantum numbers (F,m), and I is the identity matrix. The method of solu-
tion is given in Ref. 24. It involves the use of the recursion relations

Dp:(Ap—E)Dp_l—ep_le_z, (A8)
where by definition D,=1 and D_;=0, and
-(A - - 8D ) - .
aDp/aE (Ap E)(aDp_l/aE) ep_l( p_2/aE Dy 4 (a9)

For a particular trial value of E, Dy and 8Dy/9E can be calculated by repeated application of Egs. (A8)
and (A9). An improved value of E can then be obtained by Newton’s method

Ei+1:Ei— DN/(aDN/aE). (A10)
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Repetition of this process then yields improved values for E(F, m) which approach any desired precision.
The initial trial value of E is selected by beginning the computation at zero magnetic field, where ep=0
and the roots are easily identified [E(F, m) =Ap(F, m) for H=0]. The eigenvalues E are then calculated at
increasing values of H until the desired magnetic field is obtained. Finally the desired frequency is given

by

W(F, m—~F',m')=E(F, m)-E(F',m’). (A11)
In addition, the standard program calculates other derivatives of interest, namely 9v/8H, 8v/8a, 8v/0b,
av/ac, 8v/agI , and 9v/dg J - The procedure used to compute these derivatives is to obtain various recur-
sion relations involving derivatives of Dy, and then to use these to compute the desired derivatives. For
example, we obtain 8v/da from

9v/da=0E(F, m)/da - dE(F', m') /oa , (A12)
9E /9a= - (aDN/aa)/(aDN/aE) , (A13)
8D, /a=(A ~EX8D, ,/%a)vaD, . ~e, (D, f2a), (A14)

and by using 8Dp/9E from Eq. (A9).

Transition Probabilities

The probability of inducing an hfs magnetic-dipole transition from state a; to state a; by use of an oscil-
lating rf field H, = H expiw? is proportional to g,72H,*(a;! Jl a;)?, for rf powers such that the transition is
well below saturation (neglecting the effect of the nuclear moment).!® Thus by calculating (a;1J la;y we ob-
tain a convenient parameter indicating the relative magnitude of the transition probability. For Am =0
transitions, we need only (a;lJzlgj); for Am==1 we require (a;lJdylaj).

For H>0, we can express (a;lJ 1aj) in terms of the matrix elements of J between states at H=0, i.e.,
in terms of the elements ( F kmklj Ilizlml) of the (F, m) representation. We have

(a; 1T la) =%}l<ailemk)(kali \Fymp)(Fymylaj) . (A15)

Because the elements ( FpmplJ | Fymj)at H=0 are well known, 1 our problem thus reduces to determining
the coefficients (a; | Fpmp) . But these are the components of the eigenvector |a;) satisfying the equation
Klaj=E;la;), or (3 - E;)la;)=0. Writing this out in terms of the matrix elements listed in Eqs. (A1)-
(A6), we have

” 1/2 0 —_— —
1/2 0 . . . g .
en_ 1" Ay_17F; Cn-2) (@1 Fy_gm)
172 —-
o lex_9)"* Ay_27F; (ey_a)"” . . .
0 0 ley_g Ay_3-F; =0,
‘. ) (A16)
A-E, (e)¥2 0 (a,| Fym)
(62)1/2 Az_Ei (_el)l/z <az lem)
] 0 (e)v2 A, - E,] 9, |F m) ]

Nierenberg? has deduced that an unnormalized solution to this equation is

- P i / - N
(@; Fymy=Dy 4, (a|Fy_ m)= (eN_ 1)1 Dy _g (@,|Fy 2m)-(eN_ 1eN_2)1/2DN_ go oo

N+1(e

(a;1Fmy=(- DN(e “+e)2D,, (a Fymy=(-1)

N-1°N-2 N - 1eN_2”°eze1)“2,

where Dp is the determinant given by Eqs. (A7) and (A8). Thus we see that the particularly simple form
of our Hamiltonian matrix allows us to calculate the (a; Ikak) and thus the (a; |J laj) in terms of quanti-

ties previously obtained when computing transition frequencies.
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Least-Squares Analysis

The information gained from a typical atomic-beam experiment consists of many sets of data, with each
set made up of (a) a measurement of a magnetic field (measured in terms of the resonant frequency of a
known transition in a calibration material) and (b) 2 measurement of the resonant frequency of a particular
transition in the isotope under study. This latter frequency depends upon the values of the parameters «,
b, ¢, g1, and gy for that isotope, and thus a measurement of this frequency provides information about
the actual values of these parameters. Because there are many such sets of data, involving observation
of various transitions at several magnetic fields, and because each of these transitions has a different de-
pendence upon the parameters of the Hamiltonian, it is desirable to develop a method of simultaneously
fitting all the data to the Hamiltonian, Eq. (1). The least-squares method offers such a standard objective
procedure.

The principle of least squares requires that the quantity

Q=2lv; - fla, b, c,g78,)]%; (A18)

be a minimum for the best-fit values a, b, ¢, g7, and g 7 Here the sum runs over all sets of data 7, v;
is the experimentally observed resonant frequency for a transition, f; is the value calculated [ from Eq.
(1)] for that frequency for the given values of a, b, c, &y, and g7, and w; is the measure of precision of
the observation (the so-called statistical weight). One long-standing definition of the measure of precision
of a single observation is w;=1/0;2, where 0;* is the variance (0;=standard deviation), and indicates that
the observation comes from a population whose distribution is given by

P(v) = (2m02)- 12 exp| - (v- £)2/207], (A19)

where £ is the mean value of v.

Because the parent population must normally be inferred from a single sweep of a resonance, the
measure of precision of the peak position is compounded from a fixed fraction ( sz-) of the resonance line-
width and from a quantity (AH) describing the uncertainty in the magnetic field,

W= (0, 240y B)1= [(sz.)2+ (afi/aH)z(AHi )2]-1, (A20)
1 1

The technique used to minimize the function @ follows a method outlined by Nierenberg.? If we have a
function @ of » variables x,, ***, %, the condition for a minimum of Q(x,, *+ ,xn) is that dQ=0, or 8Q/ axl.

=0 for all ¢ (assuming the x; to be independent). Expanding the 8Q/dx; about their minimum at x,°,...,x,°,
we see
29 _2Q _x0).2%Q
5 =B +é 1% - %) s70% +oee, (a21)
¢ Hlyo L x.9x.°
i 1’77

By definition 29
%7

2,
by 5}3—970- , and ignoring higher-order terms, we

i ,=x,—x.° denoti 8%Q
Letting éxj x] x] , denoting 53

X 0 [
7 1%; % ij
see that
2@ _ % 4. Zan . (A22)
o o1 TN

For i=1, *-°, n, we get a set of # equations in the » unknowns 3x;. If we let R be the (nX%) matrix with
elements R;j =3(32Q,/9x;9x;), let 8 be the column matrix with elements 6x;, and P the column matrix with
elements %(aQ/axi), then we see that P=R §, and the solution for § is

5=R-'P. (A23)
Note that the relation P =R differs from the set of Egs. (A22) by inclusion of a factor 3 on both sides
of the equation. Although this alters neither the equation nor the values of the 6x; obtained as solutions,
this factor must be inserted at this point if we are to interpret R-! as the variance-covariance matrix,
where the variances and covariances have the customary meanings assigned them in the standard linear
(Gauss) least-squares procedure.
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Thus by selecting trial values for the x;, evaluating R and P for these x;, and solving for the dx;, we

obtain new trial values given by
L. -

x; =%, bxz.. (A24)
This process is repeated until the Gxi become arbitrarily small; the resulting values of the x; then yield
the minimum value for Q.

This minimization method proceeds in a quadratic fashion as contrasted to the standard linear (Gauss)
method. Thus it approaches the minimum more rapidly, but involves the added complexity of calculating
the second derjvatives. For the problem at hand, the advantages of the quadratic method outweigh the
disadvantages.

The variance-covariance matrix is given by R~!. The diagonal elements are the variances of the fitted
variables [i.e., (R-1);;=0x.?] and the off-diagonal elements are the covariances [i.e., (R"%)j= PEjOxOx;
where the pij are the coefficients of correlation]. These quantities may be determined from the matrix R
by

=1 =
(R )ij = (cofactor Rﬁ)/ IRI. (A25)

The value of @ at its minimum is denoted by x2. The x* is important in the analysis, because its distri-
bution function can be calculated. From its distribution function its average value is the number of degrees
of freedom= % —#, where k=number of observations and » =number of variables. The variance on x?2 is
2(k-mn). A consistency factor [x2/(k-n)]1/? is expected to be 1+ [1/2(k~n)]/2, There is a probability of
68% that the value of the consistency factor will lie within the error interval. If the consistency factor of
a fit is much smaller than unity, it is probable that the o; attached to the input data are very conservative.
On the other hand, if the consistency factor is improbably large, the input data may be less reliable than
supposed, or certain data may be inconsistent. It is also possible that a large x 2 may result from attempt-
ing to fit an incorrect functional form to the data. After inconsistent data are ruled out, the proper pro-
cedure is to multiply the variance-covariance matrix by the value of x2/(—n). The result is called the
error matrix by external consistency. [We generally ignore the factor x 2/(k—n) if it is less than 1 and
include it if it is greater than 1.] The square roots of the diagonal elements of the error matrix are then
the standard deviations of the fitted parameters. .

The residuals of the fit are the v;~ f;(x;, -+, x,) calculated for the best-fit values of the x;. A careful
examination of the residuals will frequently result in detection of inconsistent data (usually resulting from
incorrect preliminary calculations), and also often aids in the discovery of systematic errors.

The foregoing discussion has been general, involving n parameters x;, *++,x,. For the specific problem
of fitting our data to Eq. (1), the x;are a, b, c, &p and g;. The derivatives required in the solution of Eq.
(A23) are obtained from Eq. (A8) in a manner ahalogous to that used to derive Eqgs. (A9) and (A14).

To illustrate the foregoing discussion, consider the simple case when ¢, g7, and g; are known and may
be held fixed, while ¢ and b are the parameters to be varied in the minimization procedure., The 8Q/3a
may be calculated by use of Eq. (A12), and the other required derivatives (e.g., 82Q/3a?, 82Q/0adb, etc.)
may be similarly computed. The Eqs. (A22) become

9Q _9%2Q 82 9Q _ 3%Q 32Q
3 0% *+5555 %01 55" ~5hag O +ap2 00, (A26)

%a  da a
and the matrices R, §, and P are given by

102Q/0a  48°Q/0a0b 5a 39Q/%a
E = ’ é = , and P= ' (a27)
$0%Q/oboa $02Q/0b* ) T \ &b, T \z9Q/2b

The variance-covariance matrix has the form

c? poo
R-= a a’b ? (A28)

po 0y .obz
where the elements are obtained by use of Eq. (A25), For example, the variances are given by
o *=(R ), = (cofactorR,,)/|Rl=z (82Q/25%)/| R|
and ;%= (R "), = (cofactorR,,)/|RI=}(82Q/24)/| R . (A29)

In summary, the least-squares analysis is performed by minimizing the function @ given in Eq. (A18),
using a quadratic method of generating new trial values from given trial values of the pertinent parameters.
The method of calculating all the required derivatives and eigenvalues is based upon the recursion formula,
Eq. (A8), with Newton’s method used to calculate the energy eigenvalues. The net result of the procedure
is to produce the values of the parameters that yield a minimum value for @, which is then the x 2 of the fit.
The standard deviations o; are then obtained from the variances that are diagonal elements of the variance-
covariance matrix,
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The effect of an external radiation on the energy levels of an electron system is treated by
a Green’s-function technique. The external radiation is treated classically and is assumed
to be totally incoherent. Using the statistical properties of the external radiation, an aver-
aged one-electron Green’s function which describes the properties of the electron system is
defined and evaluated. The formalism includes the vacuum radiation corrections to the
electron system. Expressions for the energy shifts and linewidths induced by the external

radiation are obtained.

1. INTRODUCTION

If an electron system, such as that of an atom, is
subject to an external electromagnetic radiation,
its energy levels are shifted and the linewidths
change. We must stress the fact that we are con-
sidering here an external radiation different from
the electromagnetic radiation of which the electron

currents themselves are the source. The latter
field we will call the self-field. It gives rise to
shifts (e.g., Lamb shift) and the natural linewidth.
The effect of an external radiation on the energy
levels of atoms has been investigated by several
authors, both theoretically'-* and experimentally.5,®
In this theoretical work one tries to construct a
density matrix for the electron system. Sometimes



