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We have used the atomic-beam magnetic-resonance technique to measure the hyperfine-
structure separations and the differential hyperfine-structure anomalies of 78-hour Voa and
14-hour Qa in the P3 2' and P&&2 electronic states. From the differential hyperfine-st~cture3/2
anomaly we have deduced the standard hyperfine-stt'ucture anomaly for the two J states. We
have also calculated the nuclear moments from the measured hyperfine-structure separations.

t e, "6 (=p): (' )]2)= ~ ( ), (' y2)= . ( )
b('P, &,)=71.95750(55) MHE, "6"=2.51{13)x10-', "4 (P,&,)=5.0(1.4) x10 ', "4"('P )

=-20. 1(2.0) X 10 ', pI(unoorr) =+1.8454(3)pN, and @=+0.22 h; and for "Ga(I=3): &v(P,~2)
= —153.65266(53) MHz, tz( P3(2) =-6.256 98(ll) MHz, b( Py2) = 193.67365(80) MHz,
=2. 12(18) x10 4 7 4~2(2P&~2) =4. 2(1.2) x 10 5, 7 472(PS&2)= —17.0(2. 0) x10", pr (uncorr)
=-0.13186(2)p&, @=+0.59 b. The quoted values of the nuclear magnetic moments include

a correction for the hyperfine-structure anomaly, but do not include the diamagnetic cor-
rection.

I. INTRODUCTION

Historically, gallium has been an important and
frequent subject of atomic-beam studies. Because
gallium is readily detected by ionization on a hot
oxidized tungsten wire, its stable isotopes are
particularly amenable to study with the Rtomlc-
beam technique. Also, the metastable 'I', &, state
is mell populated by thermal excitation at the tem-
peratures required to produce a beam of gallium
atoms; the presence of two electxonic states in
the beam allows perfox'mance of interesting ex-
periments. As an example, measurement of the
electronic g factors of the two electronic states
of gallium permitted the first determination of the
anomalous electron magnetic moment. '

Another interesting parameter which may be de-
termined by study of the hyperfine stxuctuI'e of
two electronic states is the differential hyperfine-
structure anomaly. 2 ~ The hfs anomaly is very
small in a 'I', &, or 'I', &, state, and thus an ex-
tremely accurate measurement of the nuclear
magnetic moments is normally required in order
to determine this anomaly. Because such accurate
measurements of nuclear magnetic moments Rre
very difficult for radioactive isotopes in P elec-
tronic states, hfs anomalies which rely on this
measurement are not easily determined. However,
by measuring the hyperfine structure in two elec-
tronic states, one can determine the diff ex ential
hyperfine-structure anomaly; from this one may
deduce the standard hfs anomaly. ' The value of
the anomaly thus obtained can then be used to cal-
culate the nuclear magnetic moment, from the
observed hfs separations, with great accuracy.
Additionally, the hyperfine- structure anomaly is
itself of intrinsic interest, as it provides infor-
mation about the internal structure of the nucleus.

Because the hyperfine structure of the stable
gallium isotopes has previously been detexmined
with high precision, '& ' and because 6'Ga and "Ga
have convenient half-lives which allow performance

of precision experiments on these radioactive iso-
topes, we decided to investigate the hyperfine
structure of these two isotopes with a view to
measuring the hfs anomalies and nuclear mo-
ments to high precision.

A. The Hyperfme-Structure Interaction

The hyperfine structure Hamiltonian for an atom
of nuclear spin I and electronic spin J in an exter-
nal magnetic field is given by

„-J h3(& 7)&+y(l J)-I(I+1)Z(v+1)
2I(2I —l)J(2J —1)

+«&-g&(V, /h)Z H -gI(g, /)z)l H

where a, b, and c are the magnetic dipole, electric
quadxupole, and magnetic octupole interaction con-
stants, g~ = p& /J and gI = pI/I are the electronic and
nuclear g factors expressed in Bohr magnetons,
and op ~s given by

e =(10(l j)'+20(I J}'+2(l g)[-3I(I+1)Z(J+1)
OP

+I (I + 1) +J'(4+ 1) + 3] —4I (I + 1)J(J+ 1j

a[I(I 1)(2I-1}Z(Z-1)(u-1)]-'.

The magnetic octupole interaction constant e turned
out to be zero within the accuracy of this experi-
ment, and thus we will drop this term from our dis-
cussion. For the case J = 2, the quadrupole and
octupole terms drop out, and the remaining Ham-
iltonian maY be solved analgicall)j' to obtain a
closed expression for the energy as a function of

agnetic field 8 For the case J = &, the problem
is most readily solved by numerically diagonalizing
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a = 2g, p, [I.'I. + 1)/Z(Z+ 1)] (1/~3) av

b = 82Q[21 /(21 + 2)] (1/t'), S. ,

where p, , is the Bohr magneton Q is the nuclea
4

c ear
e ectr&c quadrupole moment, Pand (R are relativ-
istic corrections given by Casimir, "L, is the or-
bital angular momentum of the electron outside the
closed shells, and the average value is taken with
respect to this electron' s wave function.

Ideally, one would wish to use these formulas to
obtain values for Iljf and Q after measurement of
a and b. The problem in this procedure lies in the
calculation of (1/r')av Eva. luation of this quantity
depends upon a detailed knowledge of the wave
function of the outer electron, and this in general
i not well known. There are additional complica-
tions arising from configuration interaction; these
factors have been considered for Ga by Koster, '
who lists correction terms for Eqs. (3) and (4).
However, for the assumption of a point nucleus,
the quantity (1/x') should be a constant for the
various isotopes of a particular element. Thus,
if we take the ratio of Eq. (3) for isotopes 1 and
2 of an element, and do the same for Eq. (4) we
obtain the familiar Fermi-Segre equatxons f
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the Hamiltonian matrix with the aid of a computer.
The energy levels as a function of magnetic field
are generally plotted as the familiar Breit-Rabi

67
diagram; such a diagram for the 2P state f

Ga 1s shown in Flg. 1.
e 0

The interaction constants u and b are proportional
to the magnetic dipole and electric quadrupole
nuclear moments, respectively. The relationships
between these interaction constants and their as-
sociated nuclear moments, for the case of one
electron outside closed shells, are well known and
are given by the following formulas':

I22 (5)

b ~/b2 = Q~/Q2

We note from Eqs. (5) and (6) that if the nuclear
moments and hfs have been determined for a par-
icular isotope, then within the accuracy of the

equation one can readily determine the nuclear
moments of another isotope of that element merelDlere y
by measuring the hfs interaction constants a and b.
Thi.s is the technique normally used to determine
the nuclear moments of radioactive isotopes wher
d'1rect measurements of nuclear moments are very
difficult.

The hfs anomaly arises simply because the nucleus
is not a point„but has finite extent and structure.
Contributions to the hfs anomaly are primarily due
to two causes: (a) a difference in the distribution
of nuclear magnetism in the two isotopes (Bohr-
Weisskopf effect), "and (b) a difference of charge
distribution in the two nuclei (Breit-Rosenthal
effect). " These have been examined in detail by
several authors. " Because these hfs anomalies
can become quite large, care must be exercised
in calculating nuclear moments from hfs inter-
action constants.

In the case of gallium, which has a single P elec-
tron outside closed shells, one expects an extreme-
ly small hfs anomaly, due to the very small value
of the p-electron wave function at the nucleus.
However, Schwartz has shown that there is a sig-
nificant admixture of the s-electron wave function
in the 'P, /2 and 2P3/2 states of gallium, and thus
the hfs anomaly is larger than expected. ' Addi-

tionally, the 'I'» 2 anomaly is three times as large
as the P1/2 anomaly, contrary to what one would

normally expect.
We note that if we write Eq. (7) for two different

electronic states, J=2 and J = &, and divide one
equation by the other, we obtain

B. The Hyperfine-Structure Anomaly

Although Eqs. (5) and (6) are valid to rather high
a,ccuracy, deviations from Eq. (5) have been ob-
served. These deviations are collectively termed
the hfs anomaly, defined by"

'&'= (a, /a, )(gl /gr)- 1 .
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~a 5 a~) 1 +'n2 = 1, + bP —~g2 (6)

2 il/2 ~1)3/2 ] 1/2+ 1/2

where we have assumed

=(gf /gf ) (9)
1 21/2 1 23/2

and have neglected second-order terms in 4.
If we now define the differential hfs anomaly '6 2

as

PIG, 1. The Breit-Babi diagram for 0 th 2Pann e
electronic state. (A similar figure for Ga, sh
its inverted level structure, is displayed in Ref. 15.) we note that we can obtain the differential hfs
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anomaly simply by measuring the magnetic dipole
interaction constant a for tw'o different isotopes in
two electronic states. Furthermore, we expect
the ratio of the two hfs anomalies in the two elec-
tronic states to be a constant for all isotopes of an
element, as this ratio depends only on atomic prop-
erties and has little dependence upon nuclear
effects. ' Because this ratio has already been
measured for "Ga and "Ga, we can use this to ob-
tain the actual hfs anomalies for radioactive iso-
topes for which the differential hfs anomaly ha, s
been measured.

III. EXPERIMENTAL DETAILS

A. Isotope Production and Preparation

"Ga is easily produced by neutron bombard-
ment of natural gallium, with the (n, y) reaction
on "Ga yielding substantial amounts of "Ga; the
irradiated material could be placed without further
preparation directly into the oven in our atomic-
beam apparatus. The only difficulty in the han-
dling of this isotope resulted from its high decay
energy. This caused dangerously high levels of
radiation from samples of any appreciable size,
and required extensive shielding around the
atomic-beam apparatus.

The "Ga was produced from "Cu by an (n, 2n)
reaction, using first the 60-in. (152.4-cm) Crock-
er cyclotron, and later the 88-in. (228.5-cm)
cyclotron. Bombardments of 400 pA hours typi-
cally provided sufficient material for a 5-hour
run. The gallium was chemically separated from
the Cu target material by the diethyl-ether extrac-
tion of GaCl, from a 6N HCl solution. The copper
target was first dissolved in 10' HNO„which also
contained about 20 mg of gallium carrier. After
drying, the material was redissolved in 6X HC1
and the ether extraction was then performed. The
GaC13 was extracted from the ether with H,O, and
NaOH was added until a PH of 5.5 was achieved; at
this point the Ga precipitates as Ga(OH), . The
precipitate was redissolved in 10% NaOH, and the
Ga was then electroplated onto a short length of
platinum wire. Separation efficiencies of 85—90%
were commonly obtained.

tories amplifier (500-2000 MHz), and traveling-
wave-tube amplifiers (above 2000 MHz). Frequen-
cies were counted by use of Hewlett-Packard 5245L
frequency counters and appropriate frequency-con-
verter plug-in units.

. C. Hairpins

The application of radio-frequency fields to an
atomic beam involves several difficulties; the
problems become particularly acute when one is
performing precision measurements. It is desir-
able to have an rf field uniform in both phase and
a,mplitude along the entire length of the region of
interaction with the beam of atoms. For preci-
sion measurements, the interaction region should
be as long as possible in order to have a narrow
(uncertainty principle) width for the resonance
line. However, as the length of the interaction
region increa, ses, generation of a homogeneous rf
field becomes more difficult. This difficulty
can be avoided by use of the Ramsey separated-
oscillating-field technique, ' but then difficulties
are encountered (a) in identifying the central peak
or minimum of the resonance pattern, and (b) in
insuring that the rf field in the two hairpins is
either precisely in or precisely out of phase. Al-
though this presents no great problem in measure-
ments on stable isotopes, where the entire reso-
nance pattern may be readily examined at a glance,
the difficulties of doing this for radioactive atomic-
beam work often outweigh the advantages of this
particular technique.

In an attempt to overcome these problems, we
designed the hairpin illustrated schematically in
Fig. 2. It is of a simple box-type construction,
with a long center conductor shorted at the bottom
of the hairpin. During construction, care was
taken to keep all surfaces as parallel as possible;
these surfaces were also polished and silver-
plated. The magnetic field lines in this hairpin
consist of elongated ovals around the center con-
ductor. Because the static magnetic field is per-
pendicular to the length of the hairpin, the rf field
at the two ends of the hairpins will be in the direc-
tion of the magnetic fieM, while the rf field in the

B. Radio-Frequency Equipment

Because we were attempting a precision mea-
surement of the hfs, it was essential that the
radio-frequency- generating equipment be extr eme-
ly stable and accurate. All radio-frequency equip-
ment was phase-locked to an external James
Knight 100-kHz quartz-crystal frequency standard,
which was in turn compared periodically with an
Atomichron and the WEB frequencies. A Scho-
mandl FD3 frequency synthesizer was used to gen-
erate frequencies in the range 300-1000 MHz,
whereas a Schomandl ND5+NDF2 frequency syn-
thesizer provided frequencies below 300 MHz.
Frequencies above 1000 MHz were obtained by
crystal multiplication and amplification of the FD3
output. Radio-frequency amplification was
achieved by use of a Boonton model 230A ampli-
fier (0-500 MHz), an Applied Microwave Labora-

FIG. 2. A schematic drawing showing the type of
hairpin used in this experiment.
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beam normalization methods were employed.
In the earlier runs, the beam intensity was moni-
tored before and after each rf-on exposure, by
collecting a sample of the beam with the stop wire
removed. In the later runs, two sample collectors
were placed side by side at the detector position.
The central button could collect only atoms which
had undergone gn rf transition, while the button
placed alongside it collected atoms on the Stern-
Gerlach peak, i.e. , atoms which had not under-
gone a transition. The side button therefore pro-
vided a good measure of the integrated beam in-
tensity during the entire exposure of the center
button. The ratio of the counting rates of the two
buttons then provided a normalized measure of the
number of atoIQS undergoing translt1ons.

All transitions were observed at their field-
independent points in order to minimize any
effects caused by inhomogeneity of the static
magnetic field. A list of the transitions observed
is given in Table I, which also lists the field at
which the transition is field-independent, and the
frequency at that field. Figure 5 shows the behav-
ior of most of the observed lines as a function of
magnetic field; the field-independent points occur
at the minima of the curves. The field was stabi. —

lized with a NMR field-locking device to prevent
drift of the magnetic field during the course of a
run.

Because the hfs constants of 6'Ga and "Ga have
previously been determined to reasonably high
accuracy, "~'~" many of the normal search prob-
lems were avoided. The procedure we followed
was to calculate where a particular resonance
should lie, based on the earlier work, and then
to conduct a frequency sweep over that area. The
power used for this initial sweep was calculated
from the optimum power required to induce a
transition in the calibration isotope at the same
frequency, taking into consideration the relative

400'

200—

o
QP

l00-
~C

00 l i

50 I 00
Field (gauss)

FIG. 5. Frequency as a function of magnetic field for
several 67Ga and 726a transitions. The transition labels
are explained in Table I.

transition probabilities for the two transitions (the
method of calculating these transition probabilities
is given in the Appendix, subsection B). After the
peak of the resonance was established by this ini-
ti.al search, a study was made of the height of this
resonance as a function of rf power. A typical re-
sult is shown in Fig. 6. Based on this result, an-

TABLE I. Field-independent points of transitions in 6~0a and ~20a

Isotope
Electronic Transi-

state tion label

0
708.69

2457. 727
2373 ~ 322

0
0

31.47
60.09

143.19

263.608
252.049
575.752

5/2
5/2
5/2

7/2
7/2
7/2

97.22
70.67
23.56

125.124
138.826
152.077

116.921
84.803
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other swee was made with an rf power of approx-
imately Vo o of the optimum rf power. A typical
resonance obtained with the 6-in. hairpin on a
6m=1 transition is shown in Fig. V. A similar
resonance obtained with the 3-in. hairpin at a high
frequency is displayed in Fig. 8, and displays the
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FIG. 7. A resonance corresponding to the Ga P3~
(&/2, 3/2) (7/2, 5/2) transition at 1.9 G, observed
with the 6-inch hairpin.

FIG. 6. The height of the Ga &3/2 (9/2, 3/2) 0/2,
5/2) transition as a function of radio-frequency power,
The frequency put into the 6-inch haix'pin was held con-
stant at 116.M1 MHE. H=1.9 G.

Frequency ( M Hz I

FIG. 8. A resonance corx esponding to the ~ Ga ~P&~2

(2,0) (3.,-1) transition observed at a fieM of 708.7
with the 3-inch hairpin. If there were no perturbation
of the 2P~g& state by the 2P3y2 state (Clendenin effect),
the resonance would lie approximately 3 kHE higher.

quRlity of 1 esonRnces obtained with this hairpin
even at such extreme frequencies.

Observations of ~m = 0 transitions posed quite
different problems. The major problem arose
from the Ramsey pattern obtained for this case.
Although it is quite easy to locate the central min-
imum when observing a stable isotope, both by
virtue of its position Rnd because the central min-
imum is the lowest minimum in the curve {and in-
deed is at background level), it is more difficult
to observe this with a radioactive material. One
can, of course, trace out the complete resonance,
taking many points; this brute-force method was
used on one oI the»GR lines to make a positive
identification of the centx'al minimum, The result
of this extensive sweep is displayed in Fig. 9.
However, this is not an ideal approach, as it is
extremely time-consuming Rnd wasteful of QlRte-
rial. Although the latter consideration did not
affect oux' work on "Ga, whexe there was no short-
age of material, it became of prime importance
in the measurement of "Ga, where only limited
amounts were available. Thus a new search
procedure was established. It can be best under-
stood by x eferring to Fig. 3, where we note the
Ramsey patterns obtained with three different
hairpins. With the $- in. hairpin, only one
minimum is observed and is thus readily iden-
tified. The experimental uncertainty resulting
from such a measurement then includes only one
minimum of the 3-in. hairpin pattern, and that
is of couxse the central minimum. Similarly,
the central minimum of the 3-in. hairpin encom-
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PIG. 9. A sweep of the Ramsey pattern obtained in
observing the Ga Pt/t (5/2, 5/2) (7/2, 5/2) transi-
tion with the 3-inch hairpin at 10 G.
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passes only one minimum of the 6-in. hairpin
pattern. Thus the procedure employed was simply
to observe the central minimum with the ~8, 3-,
and 6-in. hairpins in succession. A typical result
obtained with the 6-in. hairpin is shown in Fig. 10.

IV. EXPERIMENTAL RESULTS
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A. Data

In each electronic state of each isotope, an at-
ternpt was made to observe at least two and some-
times three different transitions at their field-in-
dependent points. One must observe at least as
many independent transitions as there are param-
eters to measure, and we attempted to observe one
additional transition, when possible, to provide an
internal cheek on the consistency and accuracy of
our results. Each resonance was swept at least
twice at a suitable rf power to establish the repro-
ducibility of the results. The transitions observed
are listed in Table I, and all the resonant frequen-
cies observed for these transitions are listed in
Table II. Also listed in Table II are the frequency
of the alkali isotope which was used to calibrate
the magnetic field, and the residuals (vobs —alcaic)
calculated with the values of the experimental pa-
rameters obtained from the final least-squares
analysis.

B. Least-Squares Analysis

A least-squares fit of all the observed data to
the Hamiltonian given in Eq. (l) was made (see
Appendix, Subsection B). Because. g& has previ-
ously been measured by Kusch'l "and because gI,
for purposes of this least-squares analysis, is
best taken as the value obtained from the Fermi-
Segre relation, it was necessary to vary only the
parameters a, b, and c in our analysis. For J= —,',
it was, of course, necessary only to vary a. The
results of letting c vary in the J= 2 state were in-
conclusive, and we may conclude that c is negligi-
ble to the accuracy of our present experiment.
Thus only a and b were varied in the J= 2 analysis.

We should also concern ourselves with any cor-

PIG. 10. A sweep of the centra3, minimum. of the
Ramsey pattern corresponding to the rtGa Pa/t (5/2,
5/2) (7/2, 5/2) transition, observed with the 6-inch
hairpin at 10 G. Samples with zero radio-frequency
power were taken at the beginning and the end of the
sweep; both were identical.

rections to Eq. (l) required because one member
of the doublet is perturbed by the other member.
Fowler" has written a computer program to cal-
culate these corrections, for I=-, and J= —,'. When
applied to "Ga in the 'P», state, the calculated
corrections are on the order of or smaller than
the uncertainties in our results. Thus no definite
conclusion can be drawn, particularly because
the choice of certain parameters to be used in the
calculation is somewhat arbitrary. The correc-
tions should be even less important (compared to
our experimental uncertainties) in "Ga, and the
calculation was not performed for this isotope.

For 'Ga in the 'P„, state, however, it is an-
other matter. Some of our measurements were
performed at higher magnetic field (709 G) and
the required field-dependent corrections are
substantial. The calculation of these perturbation
effects, first performed by Clendenin, "has been
extended by I urio to include both the oft-diagonal
dipole and quadrupole matrix elements in addition
to those of the magnetic field; his result is given
in a paper by Eck and Kusch. " The largest effect
of the perturbation by the 'P, &, level is to replace
the actual value of gI by an effective value, denoted
by gI'. Additionally, the interaction constant a
obtained from a direct measurement of 4v, the
zero-field hfs splitting, must be replaced by a
corrected value, a'. Thus, for this case, a least-
squares fit was made to Lurio' s formula (allowing
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TABLE II. Experimental data.

Calibration data Ga isotope data

Run No. Isotopec
Frequency (error) Transition

(MHz) label
Frequency (error)

(MHz)
t'obs "cale

(kHz)

Ga Pii2 254A,

2548
257Ab
2svBb
60A
60B
60C
628
62E

210Ab
21oBb
214A

22oAb
220B
248Ab
31
33
40
43
44A
44B
55B
55C
58A
58B
62k
62B
62C
62D

Ga Pgi2 36A
36B
36C
39A.

39C
39D
63'
63G
63B

72 2Ga P3)g

23B
23C
23D
29A
29B
29C
29D
29E

A
A
A
A
A
A
A
A
A

A
A
A
A
A
A

A

B

B

B

A
A

A
A
A
A

C
C
C
B
B
B

A
A
A

C
C
C
C
C
C
C
C
C

l.eooo(25o)
3.66OO(25O)
2.194O{2SO)
2.94eo(2oo)
o.86oo(iso)

606,5500 (150)
eo6.543o(iso)

o.e2v o(2oo)
0.6140{200)

1.6560 (250)
1.64vo(3oo)
1.629o(25o)

29.4260 (250)
1.S130(250)
1.7910(300)

v4. 932o(2so)
11.O551(SO)
11.11V8(SO)
11.1O59(lO)
11.1O21(3O)
52.0587(eo)
52.osss(eo)
11.1045 (70)
11.1o45(vo)
v4. 882o(soo)
74.8820 {500)
74.8450 (200)
74.8330{200)
29.3880 (200)
29.368O(2OO)

lo6.3s9o(vo)
1O6.369O(4O)
1O6.361O(15O)
34.9152{20)
25.19VO(15)
2s.19vo(ls)
25.1930(40)
34.S410(200)
34.8250 (300)
11.1920(200)

1.4031(125)
1.4O19(1OO)
1.4olv (loo)
V.3315(140)
1.405 9 (20)
1.4os v(2o)
1.4047 (20)
1.403 9 (20)
v. 3548(3o)

24sv. v28o(iso)
2457.7400 (400)
2457.7400 (250)
24sv. vs2o(2oo)
245v. v3oo(8o)
2373.3213(30)
23v3.3215(13)
24sv. v2vs (8)
24sv. v2ve(9)

277.8820 (750)
27 8.4390 (750)
597.1700(400)
2s2.o58o(4oo)
27 8.4640 {600)
277.8380 {750)
575.7360 (350)
263.61OO(120)
263.6110(70)
263.60vv(25)
263.607 9{15)
575.7530(so)
svs, vs4o(eo)
263.6077 (10)
263.6ovs(ls)
575, 7520 (25)
575,7523(11)
575.7523 (8)
svs. vs24(4)
252.O49V(9)

252.O496(8)

125.121O{3O)
125.l215(3O)
125.121o(3s)
125.1215(3S)
138.8260 {30)
138.8264 (13)
138.82e3(lo)
138.8261 (9)
138.8265(S)
152.ovv2(v)

116.9200(150)
116.9200 (75)
116.9210(85)

84, 8020 (85)
116.9215(25)
116.9215(25)
116.9210(20)
116.9210{15)

84.8ols {2o)

le33
l.98
8.85

17.75
2.14

—0.17
0.03

-0.08
0.03

-46.35
44.40

-45.07
8.60

36.19
—38.54
-16.35

1.57
2.84
0 44

—0.24
0.65
1.65

-0.44
-0.64
—0.34
-0.04
—0.06

0.04
0.34
0.21

-3.15
-2.65
—3.15
-2.65
—0.39

0.01
—0.09
-0.30

0.09
0.50

—1.34
-1.34
-0.34
-0.84

0.16
0.16

—0.34
-0.34
-1.41
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TABLE I& (contingent)

Calibration data Ga isotope data

Bun No. Is~ape
Frequency (error) Transitiona Frequency (error)

(MHE) label (MHz)
obs caIc

(kaz)

~2Qa I'3~2 V.3668(60)
v.av48(6o)
o.eo4o(2oo)
0.8940 (200)
O.8850 (200)
4.695O(2OO)
4.6ev o(2oo)

84.8O18(15)
84.8018(12)

116.9218(15)
116.921v(s)
116.9218(7)

84.8028(9)
84.8031(4)

-1.18
—1.24

0.32
0.09

-0.01
-0.03

0.22

Transition labels are identical to those in Table I; in
addition, k represents (2,1) (1,1) txansitions.

Old data yielding results published in Ref. 3.
cA="», ~=i33cs, c='

d, p and g&' to vary), rather than to the standard
Breit-Rabi formula resulting from Eq. (1).

The result of the least-squares analysis of our
data is given in Table III, where we have tabulated
the values obtained for the parameters which were
varied in the analysis. The constants used in the
analysis are listed in Table IV.

In Table III, we have also listed the y' values
obtained from the least-squares fit; note that they
axe vexy low in view of the number of observations
being analyzed. These low g' values indicate a
rather conservative assignment of uncertainties in
determining the center of each resonance. How-
ever, our choice of uncertainties is based upon the
confidence we have in the reproducibility and con-
sistency of our results, taking into consideration
the appearance of the resonance obtained, and the
behavior of our apparatus during the experiment.
In quoting our final results, we in fact increase the
uncertainties obtained from our least-squares anal-
ysis by a factor of 1.5 to allow for systematic er-
rors. Vfe remind the reader, however, that these
uncertainties are purely experimental, and do not
reflect the calculationa1 uncertainties arising from
fine-structure perturbations of Eq. (1).

%e thus obtain, as the final result of our exper-
iment, the following results: for "Ga,

b('P, z) =193.67365(80) MHz.

C. Hyperfine4tructure Anomalies

TABLE III. Results of least-squares analysis.

Elec-
tronic

Isotope state
Best values

of variables

No. of
observa-

tions

From the results given above, we maynow read-
ily calculate the differentialhfs anomalies by use
of Eq. (10). We have also calculated the differen-
tial hfs anomalyfor the stable isotopes of gallium,
"Ga and "Ga, using the constants listed in Table
IV. The results we have obtained are listed
below'9:

"P&= 2.51{13)X10-~,
-5- = 3.15(is) & io-,
"5'2=21.2(1.8)xlo '.

Calculating the standard hfs anomalies for the
stable gallium isotopes with the values of the intex-
RctloI1 constRnts and nuclear monlents listed ln

b, p(», i,) = 2457. 727 26(90) MHz,

g' (»,i 2) = 1228. 865 82(45) MHz

(calcu&ated from least-squares results for Lv),

s( PSI2) = 175 097 36(15) MHZ~

f ('P„,) = 71.9S7 SO(SS) MHz;

for '2Ga

Av(2P, (,) = —153.652 66(53) MHz,

g{2P, ) = —43. 90076(15) MHz,

&{2P„,) =-6.2S698(ii) MHz,

gl'= 6.655(13)x 10 4

gI = 6.705(13)X 10 4

a = 175.09736(10) MHz

b = 71.95750(36) MHz

2P~p a = -43.90076(10) MHz

a = -6.256981(69) MHz

10

b = 193.67365(52) MHz

Uncertainties given represent one standard deviation.

3.95
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TABLE IV. Values assumed for constants used in

our calculations.

P9/I1 =1.3996 MHz/Ga

M@M, =1696.1'

gJ ( Pgj2) = -0.665 821(40)b
g~ {2P3(2) 1 333 93{11)b
p&( Ga)/pi( Ga) =1.270 624 2(20)
Diamagnetic correction=1. 002 62d

I =3/2
a =190.794 28(15) MHz6

v=62. 522 47(30) MHz'» =2677.9875(10) MHz~

p, o (uncorr) =2.0108(3) Itj,&d
Q=0.19 bd

I =3/2
a= 242.433 95(20) MHze

b= 39.399 04(40) MHze

nv = 3402.6946(13) MHz'

JL(,I (uncorr) = 2.5549(3) p,

Q= 0.12 bd

the actual values of our radioactive hfs anomalies.
However, rather than simply taking the ratio of
these anomalies for the stable isotopes, we may
make a more accurate determination by using the
ratio of the anomaly in the 'I', /, state to the differ-
ential hfs anomaly, as the relative uncertainties of
these quantities are smaller. Doing this, we obtain

69~71(2P )/69671 P 8P(7) (ii)
This may be compared with the theoretical value'

of —0.76. The close agreement of these values
gives us confidence in the methods developed by
Schwartz' and used in our analysis.

Assuming now that this ratio is constant for all
isotopes in gallium, we obtain

673,69(2P,(2) = 2.01(20)X 10 ',
and 71a72(2P ) =17.Q(2.Q) x ip 6.

For the 'I'„, state, we note that experimentally
69+71(2P )/69571 Q 2Q(6) (i3)

Once again, assuming this ratio constant for all the
isotopes of gallium, we obtain from our observed
differential hfs anomaly for the 'I'y/2 state the values

I- 9/2
gg = -2.002 295 4(22)

Pl (uncorr) = 0.390 88 p~
~v= 461.719 723(30) MHzf

67&69(2P„2) =0.50(14)x 10-'
71m."(2P ) =4.2(1.2) x 1Q 6.

D. Nuclear Moments

(i4)

I = 5/2

g& = -2.002 331 9(20)»
pr (uncorr) = 1.348 17p~
Sv =3035.732 439(5) MHzg

'"C I = 7/2

Z~ = -2.002 541 7(24) 3

pl (uncorr) =2.5641 p,~e
d v =9192.631 770 MHz~

aValues recommended by the NAS-NRC Committee on
Fundamental Constants.

Ref. l. We have recalculated these values using the
recently measured value of g&( Na) (see Ref. 23).

cM. Rice and R. V. Pound, Phys. Rev. 99, 1036 (1955).
G. H. Fuller and V. %. Cohen, Nuclear Moments

(Oak Ridge National Laboratory. 1965), Appendix 1 to
the Nuclear Data Sheets.

eI. Lindgren, Table of Nuclear Spins and Moments in
Alpha-, Beta-, and Gamma-Ray Spectroscopy, edited by
K. Siegbahn (North-Holland Publishing Co., Amsterdam,
1965), Vol. 2, p. 1621.

fS. Penselin, private communication.
gS. Penselin, T. Moran, V. W. Cohen, and G. Winkley,

Phys. Rev. 127, 524 (1962).
hThe Cs 4v is the presently accepted frequency

standard.

Table IV, we obtain the following results":
69z"'('P 2) =6.2(1.7) x 10-'

&"('P6q2) = 2.52(19)x 10 '.
As mentioned above, we can now use these to de-

termine the ratio of these same quantities in our
radioactive gallium isotopes, and thus determine

The foregoing calculation of the hfs anomalies
now allows us to calculate the nuclear magnetic
dipole moments of "Ga and "Ga very accurately,
as it allows us to correct for the deviations from
the Fermi-Segre formula used to calculate the val-
ues of these moments from our measured hfs inter-
action constants. In effect, then, we are using Eq.
(7) above to calculate the nuclear g factor, and
hence the nuclear magnetic moment, from our mea-
sured value of a and our calculated value of 6, also
making use of a and gl for the stable isotopes. Ap-
plying this method, we obtain, for "Ga,

pl(uncorr) =1.8454(3))1&,

and, for "Ga,

)J1(uncorr) = —0.13186(2) )1&.

These values are now corrected for the effect of
the hfs anomaly, but the diamagnetic correction
has not been included. If we include the diamag-
netic correction given in Table IV, we obtain for
"Ga

p, (corr) = 1.8502(4))1&,I
and for "Ga

p. i(corr) = 0.132 20(3) )1&,

where we have assumed a 5k uncertainty in the
value of the added diamagnetic cor'rection.

The uncertainties assigned to these values of the
moments result only from the uncertainties in the
measured values of the nuclear moments for the
stable isotopes (see Table IV). Should these values
later be measured to higher precision, one can
then immediately use our hfs separations to recal-
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culate the nucleax moments of "Ga and "Ga to
higher precision.

Applying Eq. (5) to our results for the electric
quadrupole interaction constant, we obtain

Q("Ga) =+ 0.22 b

and Q("Ga) =+0.59 b.

No uncertainty is included with this result, as
the uncertainty resides entirely in the calculation
of the quadrupole moment for the stable isotopes'
and no estimate has been made of this uncertainty.

V. CONCLUSIONS

A. Nuclear Moments

The QucleR1" spin of GR hRs long been explRined
as due to an odd 2p», proton. Configuration-.
mixing calculation of the nuclear moments and
comparison with experimental results favors
assignment of the (lf7&,)' (2p, &2)~ configuration for
"Ga and "Ga, while the (lf,f,)' (1f„,)' 2p», config-
uration is favored'3 for "Ga. More recent calcula-
tions, "including the effects of the pairing inter-
action, yield values consistent with the experimen-
tal magnetic dipole moments of both "Ga Rnd "Ga.

The case of "Ga is much more puzzling, and in
fact the measured nucleax moment of "Ga has
long caused difficulty for nuclear theory. At pres-
ent, this difficulty has not been resolved, and no
reasonable configuration x esults in a calculated
value of the nuclear magnetic moment in agree-
ment with the experimental value. "

The calculated value for the quadrupole moment
of "Ga is in reasonable agreement with the experi-
mental results. For "Ga, B.J. Raz" has calcula-
ted a quadrupole moment of 0. 58 b, in close agree-
ment with our experimental value of 0.59 b.

8. Hyperfme-Structure Anomahes

Because of the extremely small size of the hfs
anomalies for atoms in I' states, the theoretical
interpretation is less cleax than in the case of the
nuclear moments. Stroke et a/. "have calculated
the Bohr-Weisskopf anomalies expected for the
two conf lgu1Rtlons mentioned Rbove, RIll hRve ob-
tained 6('P~i, ) =0+5x10 ' for the first configura-
tion, andh('P„, ) =(—1+1)&&10-'for the second
configuration. One would expect a Breit-.
Rosenthal anomaly of x'ougMy the same size.
Since the uncertainties for thei. r calculations are
approximately the same as oux experimental re-
sults for the anomalies, little can be deduced
from this result. Howevex', from the values
Stroke et aE. calculate for the b coefficient Rnd the
z' radial integrals, we would expect that 87469

would be approximately equal to 694". This is in
agreement with our experimental observation.
The situation for "Ga is more complex, due to the
odd-odd nature of this isotope. It is interesting
to note that the anomaly is a factor of 10 larger
than the others quoted above, while the nuclear
moment is a factor 10 smaller. This is not too
surprising, as one would expect a considerable
difference in the distribution of nuclear magnetism

and charge for '2Ga as compared with "Ga, in
view of the observed small magnetic dipole mo-
ment and large quadrupole moment.
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APPENDIX

A. Hairpin Characterisitcs

In performing experiments of high precision, it
is essential that all systematic errors be detected
and eliminated. A major source of systematic
error in atomic-beam research arises fx'om dis-
tortion and shifting of resonance lines, usually
caused by either (a) poor hairpin design, or (b)
RppllcRtlon of too much rRdio-frequency power.
The hairpins used in this experiment were of a
new design, and therefore we tested them thor-
oughly before use. Because we believe the test
results will be of interest to other workers in this
field, and because they graphically illustrate the
importance of using the proper amount of radio-
fxequency power to excite the transition, we in-
clude here a brief summary of the results.

The hairpins used in this experiment were of
two types: a& -in. rigid coaxial air line, '3 Rnd a
3- in. and a 6- in. hairpin of the type shown in Fig.
2. Because the shorter hairpins wex'e used only
for preliminary measurements, the long 6-in.
hairpin was tested most carefully. The method
used was to look at field-independent transitions
in '9K; in this isotope the ~I' = 1 transition fre-
quencies are conveniently low (=450 MHE), but
yet axe higher than most of the frequencies re-
quired in the gallium observations. Both 4ng = +1
and &m = 0 resonances were traced out at various
radio-frequency powers. The results are shown
in Figs. 11 and 12. A plot of resonance height
versus rf power is shown in Fig. 4 for a &m =1
transition, and in Fig. 13 for a '~m =0 transition.
It is apparent that great care must be exercised to
avoid over-powering observed resonances. Al-
though excess-power effects are immediately ap-
parent when working with stable atoms, they are
not easily detected with radioactive isotopes. Thus
it is essential to measure the optimum power for
each xadioisotope resonance by tracing out a curve
such as Fig. 6.

Although the center mlnlmuIxl of the APE = 0 x'eso-
nance did not shift as rf power was increased, the
s1de minima and ma 1ma did sh1ft outward from
the center.
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FIG. 11. Observation of the 39K doublet {2, -1)
(1, 0), (2, 0) (1, -1) as a function of rf power. Hair-
pin length: 6 inch. As rf power is increased, the two
resonances broaden and become distorted until they
merge and become indistinguishable.

The high-frequency behavior of the hairpins was
tested by observing the &I" = +1 transitions of "Rb.
The observed &m =+1 resonances (=2600 MHz)

FIG. 12. Observation of the 3~K {2,0) {1,0) transi-
tion as rf power is increased. Hairpin length: 6 inches.

are shown in Fig. 14 for the three different hair-
pins, and the 4m =0 resonances (= 3000 MHz) are
shown in Fig. 15. It is clear that the 6-in. hairpin
is unsatisfactory at these frequencies, but the
3-in. device appears to be acceptable. The wave-
length is about 4 in. at these frequencies, and
most likely standing-wave patterns are set up in
the 6-in. hairpin, leading to the anomalous line
shapes.

B. Computational Methods

Because our computer routines have been considerably modified since they were last described in the
literature, '~ and because they are now in use in a number of laboratories throughout the world, we believe
it desirable to summarize the main features of our present computational methods.

Three basic computational problems are encountered in atomic-beam research: (a) calculating the fre-
quency of transition between two energy levels of the Hamiltonian given in Eq. (1}, ,(b} calculating the prob-
a ility for such a, transition to occur, and (c} performing a least-squares fit of the adjustable parameters
to the observed data.

Transition Frequencies

To calculate transition frequencies, we must obtain the eigenvalues of Eq. (1}. A method has been de-
veloped which takes advantage of two particular properties of the matrix representing th' 8 'ltonian:
(a) i may be arranged in block form, with each submatrix corresponding to a given m value, and (b)
within each submatrix, all elements that are more than 1 off the diagonal are zero.

Upon examining Eq. (1), we see that the diagonal matrix elements of the Hamiltonian are
A =(EmlXIEm)=aa +bb +cc +(-g +g )(p jh)IId -g (p, /h)Hm

p p p Z I ' p I (Al)

where
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Repetition of this process then yields improved values for E(E, m) which approach any desired precision.
The initial trial value of E is selected by beginning the computation atz, ero magnetic field, where ep = 0

and the roots are easily identified [E(E,m) =Ap(E, m) for H = 0 j .The eigenvalues E are then calculated at
increasing values of H until the desired magnetic field is obtained. Finally the desix'ed frequency is given
by

v(E, m-E', m') =E(E, m) -E(E', m'). (All)
In addition, the standard program calculates other derivatives of interest, namely Bu/BH, Bv/Ba, Bv/Bb,
Bv/Be, Bv/Bgf, and Bv/Bg~. The procedure used to compute these derivatives is to obtain various recur-
sion relations involving derivatives of D~, and then to use these to compute the desixed derivatives. For
example, we obtain Bv/Ba from

Bv/Ba = BE(F, m)/Ba —BE(F', m')/Ba, (AI2)

BE/Bg=-(BD /B )/(BD /BE), (AIS)

BD /Ba=(~ -E)(BD I/Ba)+a D e (BD 2/Ba), (AI4)

and by using BDp/BE from Eq. (A9).

Transition Probabilities

The probabjljty of inducing an hfs magnetic-dipole trailsitlon from state az to state aj by use of an oscil-
lati„g rf field H Hexpz&o-t is proportional to g~zH, '(a;I T I a )', for rf powers such that the transitio»s
weil below saturation (neglecting the effect of the iiuclear moment). " Thus by calculating (a I J I a') we ob-
tain a convenient parameter indicating the relative magnitude of tlie transition probability.
transitions, we need only (az I Je laz); for b,m = el we require (azI X~I aj) .

For H)0 we csn express (azIJ Iaz} iil tel'iils of tlie matrix elements of J between states a't H=0, l.e.,
in terms of the elements (Eym If I +fmf} of the (E m) representation

(a. IZ I a.) =5 (a. I E~m~}&F~m~ IJ I Efmf}(Elms I a. } .

Because the elements (EymyI O' I Elms& at H =0 are well known, '4 our problem thus reduces to determining
the coefficients (az I Eymi, &

. But these are the components of the eigenvector I g;) satisfying the equation
Xlag=Ezla ), or(~ E.)Ia ) =0. Writing this out in terms of the matrix elements listed in Eqs. (Al)-
(AS), wez have

{'X I)" ( a. I E~m}

('x-2) (a, I E~ lm)

(e }ilz AH S
—E.

(a.IE,m)
(Ale)

i 1 i 2

(e,)"' 2, —E.

Niex enberg" has deduced that an unnormalized solution to this equation is

&' Ex &=De I &'IEx- I &=-- 'iv- I}"'Dx-2 &'IE~ 2 &='x- I'lv 2'"Dx s ".
&a,. lE,m)=(-l) (e~ Ie~ 2. e,)'"fi„(a,.lE,m}=(- I) +

(e~ Ie~ 2" e,e,}"',

where DE is the determinant given by Eqs. (AV) and (AS). Thus we see that the p4irticulariy simple form
of our Hamiltonian matrix allows us to calculate the (a IE&m&) and thus the (a. I J Ia.

&
in terms of quanti-jties previously obtained when computing tx'ansltion fx'equencies.
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I.east&quares. Analysis

The information gained from a typical atomic-beam experiment consists of many sets of data, with each
set made up of (a) a measurement of a magnetic field (measured in terms of the resonant frequency of a
known transition in a calibration material) and (b) a measurement of the resonant frequency of a particular
transition in the isotope under study. This latter frequency depends upon the values of the parameters a,
b, c, g&, and g~ for that isotope, and thus a measurement of this frequency provides information about
the actual values of these parameters. Because there are many such sets of data, involving observation
of various transitions at several magnetic fields, and because each of these transitions has a different de-
pendence upon the parameters of the Hamiltonian, it is desirable to develop a method of simultaneously
fitting all the data to the Hamiltonian, Eq. (1). The least-squares method offers such a standard objective
procedure.

The principle of least squares requires that the quantity

Q=Q[v. —f.(a, &, c,gfg~)]'(u.

be a minimum for the best-fit values a, b, c, gl, andg&. Here the sum runs over all sets of data i, v

is the experimentally observed resonant frequency for a transition, f. is the value calculated [from Eq.
(1)] for that frequency for the given values of a, 5, c, g&, and g&, and &u& is the measure of precision of
the observation (the so-called statistical weight). One long-standing definition of the measure of precision
of a single observation is &oi = I/oi2, where oi' is the variance (Oi = standard deviation), and indicates that
the observation comes from a population whose distribution is given by

P(v) = (2ro')-"' exp[ —(v- ()'/20'],

where $ is the mean vafue of v.
Because the parent population must normally be inferred from a single sweep of a resonance, the

measure of precision of the peak position is compounded from a fixed fraction (4vi) of the resonance line-
width and from a quantity (~) describing the uncertainty in the magnetic field,

(A20)

The technique used to minimize the function Q follows a method outlined by ¹erenberg. 28 If we have a,

function Q of n variables x„~, x„, the condition for a minimum of Q(x„~,x ) is that dQ= 0, or BQ/ex.

= 0 for all i (assuming the xi to be independent). Expanding the 8Q/8»i about their minimum at xl', . . . , x„',
we see

(A21)

By definition Q = 0.
8x. ~ o

Z
Z

Letting 5». =x. —x.', denoting by ', and ignoring higher-order terms, we
ex.x.i j

see that

For i = 1, , n, we get a set of n equations in the n unknowns sx . If we let ft be the (n xyg) matrix with
element~ &ii = 2(s Qo/&xiex&), let & be the column matrix with elements t}»i, and P the column matrix w;th
elements r~(BQ/exi), then we see that p=A 5, and the solution for f} is

Note that the relation P =B5 differs from the set of Eqs. (A22) by inclusion of a factor —,
' on both sides

of the equation. Although this alters neither the equation nor the values of the gx obtained as solutions,
this factor must be inserted at this point if we are to interpret 8 ' as the variance-covariance matrix,
where the variances and covariances have the customary meanings assigned them in the standard linear
(Gauss) least- squares procedure.



Thus by selecting trial values for the x~, evaluating 8 and P for these x~, and solving for the 5x, we
obtain new trial values given by

x.' = x.—6x. ~ (A2

This process i.s repeated until the 5x become arbitrarily small; the xesulting values of the x& then yieM
the minimum value for Q.

This minimization method proceeds in a quadratic fashion as contrasted to the standard linear {Gauss)
method. Thus it approaches the minimum more rapidly, but involves the added complexity of calculating
the second derivatives. For the problem at hand, the advantages of the quadx'atic method outweigh the
disadvantages.

The variance-covariance matrix is given by 3 '. The diagonal elements axe the variances of the fitted
variables [i.e. , (R-')&f =&exp] and the off-diagonal elements are the covariances [i.e., (R ')q~ = pffoxfcrx&,
where the p~& are the coefficients of correlation]. These quantities may be determined from the matrix R
by

(R ') .. = (cofactor R. .)/lR I .
U gi

(A25)

The value of Q at its minimum is denoted by )P. The y.
' is important in the analysis, because its distri-

bution function can be calculated. From its distribution function its average value is the number of degrees
of freedom=k-n, whexe 0 =number of observations and n =number of variables. The variance on y' is
2(k —n). A consistency factor [){'/(k —n)]'I' is expected to be I + [1/2(k- n)]'". There is a probability of
68/o that the value of the consistency factor will lie within the error interval. If the consistency factor of
a fit is much smaller than unity, it is probable that the o; attached to the input data are very conservative.
On the other hand, if the consistency factor is improbably large, the input data may be less x'eliable than
supposed, or certain data may be inconsistent. It is also possible that a large y may result from attempt-
ing to fit an incorrect functional form to the data. After inconsistent data are-ruled out, the proper pro-
cedure is to multiply the variance-covariance matrix by the value of ){'/(k- n). The result is called the
error matrix by external consistency. [We generally ignore the factor g /(k —n) if it is less than 1 and
include it if it is greater than 1.] The square roots of the diagona, l elements of the error matrix are then
the standard deviations of the fitted parameters.

The residuals of the fit are the vf- ff(xf, ~ ~ ~, x„) calculated for the best-fit values of the xf. A careful
examination of the residuals will frequently result in detection of inconsistent data (usually resulting from
incorrect preliminary calculations), and also often aids in the discovery of systematic errors.

The foregoing discussion has been general, involving n parameters x&,
~ ~ ~, g„. For the specific pxoblem

of fitting our data to Eq. (1), the xf are a, 5, c,gi, and g&. The derivatfves required in the solution of Eq.
(A23) are obtained from Eq. (AS) in a manner analogous to that used to derive Eqs. (A9) and (A14).

To illustrate the foregoing discussion, consider the simple case when c, g, and g& are known and may
be held fixed, while a and b are the parameters to be varied in the minimiza ion procedure. The &Q/&a

may be calculated by use of Eq. (A12), and the other required derivatives (e.g., O'Q/Ba', s'Q/&ash, etc. )
may be similarly computed, The Eqs. (A22) become

sQ 8'Q s'Q sQ s'Q s'Q
~- =~, 5a+~ ~~5b, =~~~ 5a+~~2 5b,

and the matrices 8, 5, and P are given by

(k s'Q/s~' '»0/ss&tI (t)s) (.8Q/8&)
R=/, 5=. , and P=

-'- 82 ebeg -'a ~ eh~
'

6h -'8 Sb

The variance-covariance matrix has the fo1'm

o 2 pg 0
B

po' 0'~ g

where the elements are obtained by use of Eq. (A25), For example, the variances are given by

o '= {R-&)» = (cofactorR»)/iR) = —,'{»Q/ef')/iRI

and v '= (R -')2, = (cofactorR22)/iRI= ~ (e'Q/&n')/(@, ,

(A2S)

(A29)

In summary, the least-squares analysis is performed by minimizing the function Q given in Eq. (A18),
using a quadratic method of generating new tx'ial values from given trial values of the pertinent parameters.
The method of calculating aQ the required derivatives and eigenvalues is based upon the recursion formula,
Eq. (AS), with Newton's method used to calculate the energy eigenvalues. The net result of the procedure
is to produce the values of the parameters that yield a minimum value for Q, which is then the. y

' of the fit.
The standard deviations o~ are then obtained from the variances that are diagonal elements of the variance-
covariance matrix.
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The effect of an external xadiation on the energy levels of an electron system is treated by
R Gr66D 8-function technique. The 6xtelDRl I'Rdiation ls treRted classically RDd ls RssuII16d

to be totally incohexent. Using the statistical properties of the external radiation, an aver-
aged one-electron Green's function which describes the properties of the electron system i.s
defined Rnd evaluated. The formalism includes the vacuum radiation corrections to the
electx'on system. Expressions for the energy shifts Rnd linewidths induced by the external
radiation are obtained.

l. INTRODUCTION

If an electron system, such as that of an atom, is
subject to an external electromagnetic radiation, .

its energy levels are shifted and the linewidths
change. We must stress the fact that we are con-
sidering here an external radiation different from
the electromagnetic radiation of which the electron

currents themselves are the source. The latter
field we will call the self-field. It gives rise to
shifts (e. g. , Lamb shift) and the natural linewidth.

The effect of an external radiation on the energy
levels of atoms has been investigated by several
authox s, both theoretically'-' and experimentally. '~'
In this theoretical work one tries to construct a
density matx ix for the electron system. Sometimes


