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A theory of one-particle and two-particle motions in monatomic classical liquids, which
employs the bvo-particle position-dependent Green' s function in a fundamental way is devel-
oped. An equation of motion for the autocorrelation function is derived by assuming that a
Brownian particle diffuses in a mean-time-dependent field. The motion of the atoms which
generate the time-dependent field is described by the Green' s function. In addition, the Green' s
function is directly related to the Van Hove scattering function in a simple way. The velocity
autocorrelation function and neutron scattering cross sections are computed for liquid argon
by assuming a relaxation approximation for the bvo-particle Green' s function. Comparisons
are made with recent experixnental results.

I. INTRODUCTION

A description of the macroscopic consequences
of the coupled motions of molecules in a simple
liquid requires solution, either exact or approxi-
mate, of the N-body problem. Despite advances
in our understanding of the N-body problem, it is
not now possible to provide a completely satis-
factory quantitative description of time dependent
phenomena in simple liquids. The descriptions
which exist are either exact and sterile, because
evaluation in a form which may be compared with
experiment is impossible, or approximate and
therefore subject to controversy concerning the
fundamental physical and mathematical assump-
tions made. In view of this situation, we believe
it valuable to seek new representations from which
may be derived qualitative constructs useful in the
description of the properties of liquids. In this
spirit, this paper is devoted to the presentation of
-a new approximation for the velocity autocorrela-
tion function and the dynamic structure factor of a
simple liquid. Our approximation is related to the
concept of relaxation time in a fashion to be made
precise later in this paper.

The formal theory of statistical mechanics' pro-
vides a relationship for the time and space evolu-
tion of the N-molecule distribution function,
namely, the Liouville equation. %'e shall not be
concerned with the exact solution of the Liouville
equation, such as that presented by Prigogine and
co-workers and others, ' because the use of infi-
nite-order perturbation theory does not lead to for-
mulas useful for the description of liquids. More-
over, there is evidence that representation of the
transport coefficients as a power series in the
density is not fully satisfactory. '

Approximate solutions of the Liouville equation
can, of course, be generated many different ways.
First, the Liouville equation may be contracted to
provide an evolution equation for the reduced dis-
tribution function for n molecules, f(+). One ap-
proach to the solution of the contracted hierarchy
equation is to approximate f(&+ l) in terms of f (&),
thereby yielding an integral equation in f«) which
may be solved. For liquids in equilibrium, we
thus derive the Yvon-Born-Green equation by em-
ploying the Kirkwood superposition approximation

in which the three-body distribution is approxi-
mated in terms of the several two-body distribu-
tion functions. ' The corresponding three-body
integral equation, which represents the next higher
approximation, cannot be solved using presently
available computers. ' For liquids not in equilib-
rium, attempts to use approaches involving a time-
dependent superposition approximation have not yet
led to analytically tractable results. '

Alternatively, in 1946 Kirkwood demonstrated h
how the hierarchy equations can be simplified to
yield a description of a particle undergoing
Brownian motion. ' This work has been of consid-
erable importance, and we shall find some of
Kirkwood's ideas useful in our approximate theory.

Finally, relaxation methods have also been used
to provide representations of particle motion. ' "
In these analyses the detailed dynamical forces
which act on a subsystem of particles are not spec-
ified. Instead it is assumed that the forces which
are present tend to drive the system towards its
equilibrium configuration, and the interaction term
of the lowest hierarchy equation, or the flux equa-
tion arising from it, is replaced by a simpler
form. The relaxation approximation we employ in
this paper is quite similar to those recently pro-
posed by Gray' and by Singwi and Sjolander. "
Here, however, by making a relaxation approxi. -
mation for the two-particle Green' s function, we
are able to eliminate someof the conceptual and
computational difficulties encountered by previous
workers. The n-particle Green's function

K (I' I& ';t)

gives the probability that a subsystem of n particles
will undergo a transition from the state with phase
I'n' to that with phase I n in the time interval t."
Thus, we may find the n-particle distribution for
-any time if we know the distribution function at a
previous time as well as the corresponding Green's
function of the system. The function P(R', t IR, t),
which we introduce in Sec. II, is related to the
Green's function E&'&, being the integral of E&@
with respect to the momenta of both particles for
both times and with respect to the position of one
particle at the initial time.

Many studies of liquids have emphasized the cal-
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culation of the zero-frequency transport coeffi-
cients, which characterize the matter, momentum,
and energy flows in liquids under gradients of den-
sity, flow velocity and temperature, respectively.
The transport coefficients, however, do not con-
tain a great deal of information concerning time-
dependent processes in liquids. As a result,
widely divergent approaches to the theory of liquids
have led to comparably successful calculations of
the transport coefficients. " However, with the
advent of high speed computers'~~" and the devel-
opment of neutron scattering techniques, '

& 7 it has
become possible to determine experimental dis-
tribution and correlation functions which contain a
wealth of information concerning time-dependent
processes in liquids. These new sources of infor-
mation ean be used to test the theoretical ap-
proaches in greater detail and to provide guidelines
for the improvement of the conceptual structure
of the theoretical analyses. In Sec. II of this pa-
per, we introduce a formalism which me utilize to
calculate the velocity autocorrelation function of a
particle in a liquid (Sec. III) and the two-particle
dynamic structure factor of a liquid (Sec. IV). The
experimental and theoretical functions are then
compared and the results discussed.

II. THE FORMALISM

lim P(R', f!R,f) = [pg(R
' —R)]& 0= pg(R').

t-0 (2)

where pg(R') is the ensemble-averaged probability
density that a particle is at R' if a different particle
is simultaneously at the origin. The behavior of
P(R', f I R, f) as t -~ is a bit more complicated. If
we assert that we know nothing more about the
motion of a particle than its positions at time zero
and time t, then for very long times, when the par-
ticle has "forgotten" its position at time zero, it
must be true that

lim P(R ', t I R, t) = pg(R '- R).
t ~ QO

In general, even for t large, P(R', t ~R, t) will be
a complicated functional of the path of the particle
in which the positions of the particle for t large
will be more heavily weighted than the positions
for t near t=0.

In order to discuss the single particle motion,
we introduce a mean force F(R, f) which is defined
to be the ensemble-averaged force acting on a
particle which was (0, 0) and has moved to (R, t).

%e begin our analysis with the introduction of the
function P(R', t I R, f), which is defined to be the en-
semble averaged conditional probability density that
a. particle is at the point R' at time f, (R, f), given
that a different particle which was at (0, 0) has
moved to (R, f)." In order that P(R', t I R, f) be
properly normalized, we require that

JdR P(R, f I R, f) = N- 1, (1)

where N is the total number of particles in the sys-
tem. In addition there is a boundary condition on
P which defines the behavior as t -0. From the
definition of P(R, t ~ R, t), it is seen that

G (R', f)= fdRG (R, t)P(R', tlR, t). (5)

In the work that follows, me generate approximate
forms for P(R', FIR, t) and use them to solve (4)
and (5). To avoid the problems associated with di-
rect solution of the Bogoliubov-Born-Green-Kirk-
wood- Yvon (BBGKY) hierarchy, we propose the
followin simple relaxation approximation for
P(R', tl, t). If we know that there is aparticle at
the origin, the ensemble-averaged probabiligden-
sity of findin~ a particle at the same time at R' is
given by pg(R'), provided there are no other con-
straints on the system. Let the particle at the
origin diffuse to a point (R, f). If there is instan-
taneous relaxation in the liquid then the structure
of the liquid about the diffusing particle will main-
tain its equilibrium configuration throughout the
motion, and we find that (3) remains valid for all
times. However, the forces in a liquid are not suf-
ficiently strong to require instantaneous relaxation
around the diffusing particle. The forces do, how-
ever, "drive" the liquid towards the equilibrium
configuration. Theref ore, without discussing the
exact nature of the propagation and destruction of
correlations in the liquid, it is suggestive to use
the approximate representation

—P(R'& f IR, f) = o[pg(R' —R) —P(R'& tl R, f)] (6)

which is the fundamental equation of this paper.
Equation (6) may be immediately integrated to

yxeld20

P(R ', t I R, t) = pg(R ')e

+ o& Jo dt'e pg[R' R(t')]&-
where the integral is to be taken over all physical
paths between times 0 and t. Equation (7) satisfies
the normalization condition (1) and the boundary
condition (2) as t approaches zero. For f) 0,
P(R', f ~ R, f) becomes a complicated functional of

If we assume that the interactions in a liquid are
pairwise decomposable and that there are no ex-
ternal fields present, we find

F (R, f) = —jdR'9 V(R' —R)P(R', f I R, f), (4)

where V(R'- R) is the two-body potential energy.
In Sec. III, we shall assume that the average mo-
tion of a particle in a liquid may be found by solv-
ing the classical equation of motion for a particle
experiencing the systematic force defined by (4),
as mell as a frictional force arising from random
fluctuations in the force field of the diffusing par-
ticle.

The tmo-body correlations which arise from
molecular interactions are most conveniently
treated by introducing two additional functions,
which mere first used by Van Hove. " Given that
a particle is at (0, 0) the ensemble-averaged prob-
ability density that the same particle may be found
at (R, f) is called Gs(R, f), and the ensemble-aver-
aged probability density that a different particle
may be found at (R', f) is called Gd(R', f). From
the definitions of these functions, we immediately
obtain the relation
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the motion of the particle. In order to evaluate the
integral in (7), we will find it necessary to find a
representation of g[R'(t) —R(t')]. Using a Taylor
series expansion for g[R' —R(t')] about R'(t), we
find

g[R '(t) —R(t ')]= g[R '(t) —R(t)]+ [R'(t) —R(t')]

V-, -. ~[R'(t)- R(t)]+ ~ ~ ~,R'- R(tj

and substituting (8) in (7), it is found that

(8)

P(R', t!R, t) = pg(R')e

+(1 —e )pg[R '(t) —R(t)]

+ a jo'dt 'e ' p[R'(t) —R(t ')]

~ V -, .u.[R'(t) —R(t)]+ ~ ~ ~ .R —R(tp (9)

The reader should note the similarities between
this approximation and the one recently proposed
by Glass and Rice"

P(R'& t I R, t) =f(t)pg(R') (10)

[1-f(t)lpg(R —R),
lim f(t)=1, lim f(t)=0,
t 0

where f(t) is a function of time, one possible form
of which is specified in Ref. 18. Equation (10) is
useful in the description of the two-particle distri-
bution function in liquids. We will def er justifica-
tion for the implied truncation of the series in Eqs.
(8) and (9) until a later section.

III. THE VELOCITY AUTOCORRELATION
FUNCTION

A. The Modified Langevin Equation

In this section, we calculate. the velocity auto-
correlation function of a molecule in a simple liq-
uid using the representation introduced in Sec. II.
In order to carry out this calculation, it is neces-
sary to specify the equation of motion of a particle.
In the Kirkwood theory. of transport in fluids, a
friction coefficient is introduced to describe the
influence of the fluctuating force field of N- 1
molecules on the motion of some one selected mol-
ecule. Now the concept of a frictional force is
introduced in the classical theory of Brownian mo-
tion, " in which it is assumed that

(A(0) A(t))=o, (1la)
(v(0).A(t) ) = O, (11 )

where A(t) is a fluctuating force, and v (t) is the
velocity of the Brownian particle under observation.
The solution of the classical Langevin equation de-
scribing the motion of a massive Brownian parti-
cle with friction coefficient P,

mdv/dt = mPv+ A(t), - (12)

subject to (lla) and (lib), will be a good descrip-
tion for all times t)) ht, where ht is the interval
for which (lla) and (lib) are not satisfied. " For
a massive Brownian particle, At-10 "sec is so

small relative to other characteristic times in the
system (-10"-10 "sec) that the use of (12) with
(1la) and (lib) is accurate in the time domain of
interest. On the other hand, when the Brownian
particle is of the same mass as the surrounding
particles no such clean-cut separation of time
scales is possible within the dynamical framework
defined by (12).

Attempts to modify (12) have proceeded in two
separate directions. In one method, Mori" and
Kubo" postulate the existence of a force which sat-
isfies (lib) but does not necessarily satisfy (lla).
That is, the force acting on a particle is not cor-
related with the initial velocity of the particle, but
the force is not necessarily rapidly fluctuating.
When these assumptions are made, it is found that

dv(t) ftF ('t t I)~ (t I) A(t)
dt

where I'(t) = (I/mk T) (A(0) A(t)) . (i4)

Although (13) and (14) represent an elegant modi-
fication of (12), it should be noted that a large class
of processes may be represented by (13), and that
the force A(t) does not necessarily correspond to
a simple physical process. '4

The other method of extending the Langevin equa-
tion separates the force field in which a particle in
a liquid moves into two parts. One part is assumed
to be rapidly fluctuating and satisfies the conditions
of (11). The other part, however, does not fluctu-
ate appreciably, and therefore need not fulfill the
conditions cited in (ll). It is simple to identify a
force field in a liquid arising from the smoothed
distribution determined by the local geometry, to
which (11) does not apply. The existence of this
systematic force has been implicit in many of the
qualitative discussions of atomic motions in liq-
uids. In particular, it is now generally accepted
that, in the motion of an atom in a liquid, "back-
scattering" of the atom from the shell of nearest
neighbors occurs, resulting in a negative region
of the velocity autocorrelation function. "~" The
force responsible for the "backscattering" (in
which large momentum transfers between atoms
occur) is certainly correlated with the initial ve-
locity of the particle, but in principle, it is also
possible to define mathematically a random force
which gives the same effect, as Mori and Kubo
have done "

The preceding considerations lead us to consider
describing the motion of a molecule in a liquid as
if it were a Brownian particle in a nonrandom force
field. Problems of this sort are not new; Ornstein
and Uhlenbeck" considered the Brownian motion of
a harmonically bound particle, and this simple
model was recently used by Rahman, Singwi, and
Sjolander to describe a liquid. " However, in the
work of Rahman, Singwi, and Sjolander, care was
not taken to make the velocity autocorrelation
function obey the boundary conditions at zero time.
Another closely related study is the computation,
by Nossal, of the velocity autocorrelation function
of a Brownian particle confined to a square well. "
Finally, Sears and others have developed a model
in which the "center of oscillation" of a particle in
a liquid is assumed to undergo Brownian mo-
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Eq. (15) is the equation of motion assumed to be
valid for our model. We shall also assume that
the systematic part of the intermolecular force is
defined by the ensemble-averaged, two-particle,
conditional distribution function P(R', t!R, t), Eq.
(4), and that the stochastic force results from rap-
id fluctuations in the soft part of the intermolec-
ular potential field.

B. Calculation of the Velocity
Autocorrelation Function

We now examine the calculation of the velocity
autocorrelation function def ined by

$(1)= (v(0) v(t))/(v') (16)

subject to the conditions"

,",q(f) =1,

lim d(
0 dt

llm d2$ 1 (~2 V)0 dt2 3nz

(17a)

(i7b)

(17c)

(i7d)D=(a r/m)f dt's(f).

We obtain two differential equations for g(t) by
multiplying (13) and (15) by v (0), taking the en-
semble average, and using (11) and (16). The two
equations which result are

dP/dt = —f dt 'I'(t —t')g(f ') (i6)

tion. ~ ' We consider the concept that the particle
is constantly bound to a center of oscillation to be
somewhat artificial.

A model more closely related to that being pro-
posed herein is present in the work of Rice,
Allnatt, and coworkers. ' In the Rice-Allnatt model,
two forces are identified: a rapidly fluctuating
force arising from the motions of molecules mov-
ing only in the soft long-range part of the intermo-
lecular potential, and the forces provided by the
short-range strongly repulsive core collisions,
which are responsible for the "backscattering"
of the molecules. In the Rice-Allnatt theory the
relaxation time due to the Brownian motion of the
particles is considered to be sufficiently short (it
is calculated to be -0. 34x10-" sec in liquid Ar)
that the successive strong repulsive collisions are
dynamically uncorrelated with each other. This
theory allows one to compute with good accuracy
the zero-frequency transport coefficients of the
liquid .

In this paper, we also assume that the fluctua-
tions arising from motion of the molecules in the
iong-range soft part of the intermolecular field are
sufficiently rapid to result in an irregular
Brownian motion. However, we shall represent
the effects of the strongly repulsive core collisions
by a time-dependent average force field. The
equation of motion thus obtained is identical to the
one proposed by Chandrasekhar, " and corresponds
to the Langevin equation to which has been added a
second systematic force term:

mdv/df = —m Pv(t)+ F(R, t)+ X(t).

dg/dt = —pp+ (v(0) ~ F(R, t))/m(v') . (19)
&ithough (18) can be shown to be isomorphous with
an exact transcription of the classical equations of
motion, and is therefore valid for all time if
I'(t- t') is correctly interpreted, (19) is in princi-
ple not valid for all time. For the friction coeffi-
cient is only a meaningful concept for times which
are long compared to the period of the rapidly
fluctuating forces. Therefore, as t -0, (19) can-
not be valid. If the failure of Eq. (19) is restricted
to a small time interval near t= 0, it is possible
to use that equation over the larger time interval
provided the correct values of $(0) and (d g/dt )~
are imposed. Despite the fact that (19) cannot be
valid as t-0, we now assume that by differentiat-
ing (19) with respect to time we obtain a second-
degree equation for g(t) which is valid for all times.
This procedure, in effect, allows us to introduce
two constants of integration so that both of the
boundary conditions displayed in (17a) and (17b)
may be satisfied. We emphasize that in this way
we can insure proper limiting values of the auto-
correlation function for t = 0 even though, formally,
(19) is not valid for extremely short times. The
justification for our procedure can only come, a
Posteriori, from a comparison between prediction
and observation.

We may now substitute the approximation for
P(R', t!R, t), which was developed in Sec. II, into
(4) in order tofindthe mean force under which the
particle moves. Taking only the first three terms
of (9) leads to

P(R', FIR, t)

= e pg(R')+ (1 —e )pg(R' —R). (20)

Substituting (20) into (4) and using the fact that the
mean force acting on a particle in an equilibrium
ensemble is zero, we immediately find that

F(R, t) = e fdRpg(R ')V V[R '(t) —R(t)]. (2i)

Note that the strong short-ranged repulsive inter-
molecular forces are not hard-core forces, hence
V'V is well defined. Because the forces considered
are of short range, VU is nonzero only when R'(t)
—R(t) is small. Moreover R(t) is itself small rel-
ative to an intermolecular spacing for times of the
order of magnitude of the diffusion time. Then,
consistent with the expansion displayed in Eq. (8),
the expansion of (21) for R(t) small yields

F(R, t) = —R(t)e p (V V(R))+ 0 (FP) . (22)

Equation (22) describes a spherically symmetric
harmonic-force field which decays exponentially as
time increases. An examination of mean potentials
found using the cell model shows that, for liquid
argon at temperatures and densities near to the
normal melting point, a harmonic potential should
be a good approximation to the real potential. "
However, at elevated temperatures (where the dif-
fusion coefficient and hence R(t) is larger), the
mean potential tends to flatten near the origin, and
it may then be necessary to compute explicitly terms
of order R' or higher in (22). Then, although it
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would still be possible to adjust the wel1. parameters
to yield agreement with experiment, the simple
equation which is solved below would no longer be
valid, and the present computation would have to be
extended. It will be instructive to compare the re-
sults obtained using the derived time dependent
mean force in (22) with the results found for a
Brownian particle diffusing in a static harmonic
weQ. The latter results are reviewed in the Ap-
pendix.

Substituting (22) in (19), we find

d
= —Pg+&o, e f dt'g(t'), (23)

where ~,' is defined in (17). However, neither (17)
nor the theoretical relation between P and the auto-
correlation functioning of the fluctuating force can
currently be evaluated numerically with greater
accuracy than about +10/~, and the algebraic manip-
ulations are greatly simplified if we regard &, as
a parameter. Dropping the subscript on w, and
differentiating (23) with respect to time, we find

dt, +(n+P)dt+((o e +nP)(=0.d'( dg 2 —nt

To solve (24), subject to (17), we substitute"

u = (2(u/n)e

to find

g(t)=e ' + p) v(u),

where v(u) is a solution of Bessel's equation

u v "+un'+ v[u' —(n- P)~/n']= 0.

(24)

(26)

(27)

We have been describing a simple model of the
atomic dynamics for which a ~ioxi calculation of
e is not possible. We know that e is a molecular
relaxation time, but we know little more. It is
therefore convenient to now assume that the two re-
laxation times n and P are equal, since (27) then
simplifies and may readily be solved analytically.
From a physical point of view, this is a reasonable
assumption. The decay of the mean force results
from the loss of correlation of the surrounding
first coordination shell and is due to the diffusion
of the atoms of this shell. Since all atoms are
equivalent, the relaxation time for the motion of
these atoms should be about the same as the relax-
ation time for the motion of the initial particle.
Therefore, assuming

(26)

we immediately find for the solution of (22)

f dxxl', (ax) = Y,(a)/a+ 2/va'. (34)

The integrals found when (29) is substituted in (1V)
can readily be cast in this form. When the inte-
gration is performed, we find

(P/(o')(1+ c2/v) = ma/k 7'. (»)
Substituting the definition for p, and ~, in (A6$ and
(AV), we find

(o=(u y(1+&)

P ~ (l~q)-x/2
(36)

where y is determined by solving the equation

1+c,/m=(6, /(o, ) y'(1+ y') (37)

We noted earlier that the evaluation of the equation
defining +, is subject to errors of +10/q. Instead
of attempting an evaluation of &„we accept the re-

Differentiating (30), applying the boundary condi-
tions (1V), and utilizing (31), we find

I.(2y) —yl, (2y)
CI =

y [~,(2y)I,(2y) —~, (2y) I;(2y)]

Z, (2y) —ye, (2y)

y[&,(2y)y, (2y) —~, (2y) I;(2y)]
By taking the second derivative of (31) at t = 0, and
substituting the values of c, and c2 found in (32), we
now obtain

~ (1+1/y2) = (V2P/3~. (33)

In order to apply the condition displayed in (1V) we
note that"

1

f dxxZ, (ax) = Z, (a)/a,

y(t) = e [c,J,(u)+ c, I( )u], (29)
where Jo and 7, are zero-order Bessel functions of
the first and second kinds, respectively, e, and c,
are constants of integration and

u=2ye P', y= /-P. (30)
In the following, we make use of the recursion re-
lations for any zero-order Bessel function Zo(u)»:

z, '(u) = —z, (u),

Z, "(u) = z, (u)/u —z,(u). (31)
FIG. l. Both sides of (43) are plotted as a function of

p for the qase Po =~0 .
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FIG, 2. The velocity autocorrelation function P(t) as
a function of time for argon at T= 85.5'K. The computer
results, found by Nijboer and Rahman33( )
are compared with the results found using (A4)
(—————) and the results found using (35) (—~ —~ —).

suit of the small-step diffusion approximation, "~ 4'

which seems to be reasonably accurate. Then,
using

p0= (@0=k~T/mD, (38)

we can solve (36) for y. In Fig. 1 both sides of
(37) are plotted as functions of y. We note that
there is one root, from which

y= 1.795, —c, = 1.864, c2= 1.794. (39)
We have now solved (24). The approximations dis-
played in (28) and (38) have eliminated two param-
eters so that the only remaining parameter is the
diffusion coefficient, which is well known from ex-
periment.

%e may now compare the velocity autocorrelation
function derived in this work with that derived from
the simple harmonic model which is noted in the
Appendix (A4). Displayed in Fig. 2 are the theo-
retical and experimental autocorrelation functions
at T=85'K, D=1.88x10 'cm'/sec for liquid ar-

0 I I

io
cu (~o' sec ')

l5

FIG. 3. The power spectrum g(~) as a function of e
for argon at T = 94.4'K. The computer results, found

by Hahman ( ), are compared with the re-
sults found by substituting (A4) (————-), and (35)
( . . ) in (46).

gon. " In Fig. 3, we plot the power spectrum de-
fined by

g((o) = (u~T/mD) f dt cos(gt q(t) (40)

for T=94.4'K, D=2.43x10 'cm'/sec for liquid
argon. " In the simple model of a Brownian par-
ticle in a static harmonic well, the oscillatory be-
havior of the autocorrelation function is over-em-
phasized, while, in the present formulation, using
the approximations (28) and (38), the oscillatory
motion seems to be somewhat underestimated.
However, we consider the deviation from experi-
mental results which we find to be small. By re-
laxing either (28) or (38), a better fit to the experi-
mental data could have been achieved.

IV. THE DYNAMIC STRUCTURE FACTOR

In this section, we compute the dynamic structure factor for a simple liquid using the approximations
described in Secs. II and III. Consider the scattering of neutrons by a simple liquid. " Let hv and 5~ be
the momentum and energy loss of a scattered neutron and A and X the initial and final neutron wavelengths.
Then

(o= (2n'5'/m )(I/X ' —I/X') ~'=4m'(X. '+).' —2LXcose)/X. 'x'
8 (41)

where mz is the mass of the neutron and 8 the angle between the directions of motion of the incoming and
outgoing (scattered) neutron. Since we have used a classical representation of the liquid distribution func-
tion, it is necessary to correct the results for quantum effects in real systems. Several authors have dis-
cussed how this may be done. " ~' For systems in which the first Born approximation is valid, the neutron
scattering cross section is

(42)

where 0. n and oc "are the incoherent and coherent scattering cross sections, respectively, and the total
scattering cross section is defined by



(44)

tot inc coh
(48

In (42) the:dynamic structure functions S'"c (Tl„&o) and Sco" (v, &o) are related to the Van Hove distribution
functions of (5) by

G(R, f)=G, (R, t)+ G (R, f),

S" (Pc, (o)=(2w) j dt jdRe e G (R, t), (45)

S (Tl, (o)=(2n) j dt jdRe ' e' '
G(R, t).

A. The Incoherent-Scattering'Function

Before calculating the total neutron scattering cross section, we first must evaluate the cross section for
incoherent scattering. For argon at 94.4'K, Rahman s computer experiment indicates that the non-Gaus-
sian behavior of Gs(R, t) is rather small. " Hence we assume that

G (R, t) = [4 p(t)] ' xp[ —R'/4p(t)], (47)

where p(t) is, for classical liquids,

p(t)=%. r/I) j dt'(t —f')q(t'). (48)

The velocity autocorrelation g(t) has been discussed in Sec. III. It is important to note that the incoherent-
scattering function is quite insensitive to the model which is used to calculate p(t), because p(t), defined in
(48), reaches its asymptotic value after a rather short time (-10-"sec). In Fig. 4 and 5 we compare, for
two representative values of the momentum transfer, the computer simulated incoherent structure factor
for argon at 85.5'K" with the theoretical incoherent-structure factor based on (29) and the simpler func-
tion (A4). Although the use of (29) does give a slightly better fit to the experimental data, than does the use
of (A4), the incoherent-scattering cross section is adequately represented by both approximations. In the
following section, we use (A4) to calculate the coherent-scattering cross section.

B. The Coherent-Scattering Cross Section

It is instructive to consider some of the models which have been suggested for the computation of
Gd(R', t). A more complete review may be found in Ref. 18 and a recent paper by Desai and Yip. ~ The
earliest one of interest to us is the convolution approximation proposed by Vineyard in 1958.O' Vineyard
argued that the probability that a particle which was at a point (R, 0) would diffuse to (R, t) is Gz(R' —R, t).
This leads to the approximation
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G '(R', t)=pfÃG (R' -R, t)g(R)=pfdRG (R, t)g(R'-R).

Gde(R', t) is called the convolution approximation to Gd(R', t); the equivalence of both expressions on the
right-hand side of (49) may be demonstrated by use of a change of variable. A comparison of (49) with (5)
shows that the convolution approximation is equivalent to taking

P(R', t IR, t)= pg(R' —R) (50)

for all times. In the discussion following (3) and preceding (6), we have noted that (50) can only be correct
if we consider relaxation of the liquid about a moving molecule to be instantaneous. In fact, this is not the
case. Therefore it is unrealistic to expect that the convolution approximation will give the correct sum
rules, since the lower moments of S(IT, ~) are relevant to the behavior of the liquid only for short times.

In 1964, Rahman tested the convolution approximation using the results of computer simulated molecular
dynamics experiments. " He found that for liquid argon at 94.4'K the convolution approximation predicted
a decay of Gd(R', t) which was too rapid. In order to correct this rapid decay, Rahman proposed that a,

delayed time be employed in place of the true time variable. In particular, he suggested that

G (R', t)=G '(R', t„), (51)

where t =t —v[1- e —(t'/&')e ].t/7, —, —t2/~2

R
(52)

The particular form displayed in (52) was chosen to give the proper second-moment of Gd(R', t). By ad-
justing v, Rahman found he could obtain good agreement with experiment for & = 1.0&&10 "sec.

More recently an alternative form has been suggested" which successfully corrects the convolution ap-
proximation to give a less rapid temporal decay. The interpolation form displayed in (10) was deduced for
P(R', t I R, t) by requiring the correct limiting behavior for both long and short times. It is important to
note that (10) is not strictly correct for long times although it does appear as the leading term of the ex-
pression in (9). Using (10), Glass and Rice find

G (R', t)=G '(R', t)+f(t)[g(R') G—'(R', t)]. (53)

Since f(t) is a positive function for all times, (53) leads to an approximation for Gd which also decays less
rapidly than does the convolution approximation. Glass and Rice attempted to use the sum rules to find
f(t). However, the present approximation is not valid for small z (in the hydrodynamic range) and there-
fore fitting f(t) by using the moment expansions valid for small v may lead to spurious results.

It is clear that the dynamical model we have introduced is best suited for qualitative or semiquantitative
descriptions of the behavior of a liquid. So as to emphasize the qualitative details rather than the numer-
ical details, which are inevitably sensitive to parameter selection, in the present work we do not consider
the power series expansion used in Sec. III, but rather evaluate approximately the integral in (7). If we
define

n f, dt'e h(t'}= (1 —e )(h(t)),

Equation (7) immediately becomes

P(R ', t l R, t) =e pg(R ')+ (1 —e )p(g[R'(t) —R(t)]) .

If we now approximate

(g[R '(t) —R(t)]) = g[ R '(t) —R (t )],

(54)

(55)

(56)

where t -=[t —(1/n)+e /n](1 —e ) (57)

and substitute (55) in (5) we obtain

Gd(R', t)=Gd (R', t)+e [pg(R')- Gd (R', t)]. (58)

It is important to note the similarities between-this approximation and the two previously discussed ap-
proximations. The leading term he~ rs analogous to tIM. delayed time term in the Rahman approximation,
and the second term is analogous to the second term in the results found by Glass and Rice. In addition,
(58) contains only one parameter, which is the fundamental relaXation time introduced in (6).

In order to compute the cross sections using (42), we choose vcoh/aine = 0.675 found by Henshaw for ar-
gon at 84'K. 4' Then, once we have fixed a value for z, we can calculate the neutron scattering cross sec-
tion. In the calculation reported in Sec. III, the value of ~ was found to be 4.61 x10"sec ' at 7= 85.O'K

and 3.93 x10"sec ' at T = 94.4'K. As noted above, our intent is to understand the qualitative features of
the scattering data. Because many approximations were made in Sec. III, no systematic effort was made
to determine the best fit between theory and experiment. Therefore the values of 0. quoted should not be
considered to be "best fits. " An indication of the magnitude of ~ comes from Rahman's fit to the delayed
time convolution approximation at 94.4 K." In order to make the function we use here give the same
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asymptotic limit for long times, we would have to choose ~ = 1.0 ~10"sec-'. In Figure 6 we compare t
with fR, (5S) and (63), for g= ]..0 xl0"sec ' and ~= 3.93 x10" sec '. Since there are in our model two
mechanisms which decrease the rate of decay of the two-body distribution function, we should expect that
the data can be fit with our model using a smaller time delay than found by Rahman. We compare our
theoretical cross sections with the neutron scattering results of Chen et al.4' and the more recent results
of Skold and Larsson" in Figs. 7 and 8. The cross sections are plotted to give equal amplitude at X = 5.3A.
There is rather good agreement with the latter set of results. Unfortunately, since these cross sections
cover only a small region of space, a detailed analysis of the validity of the approximation we suggest here-
in is not now possible.

V. DISCUSSION

2.0

red.

(lO ' sec)

I.Q

0
t (IO sec )

2,0 3.0

FIG. 6. A reduced time plotted as a function of time
using various expressions in the text. We compare tH,
Eq. (52), ( ) with t, Eq. (57), for @=3.93
x 10 sec (———-) and for +=1.0&& 10 sec
(——~ —)

In this paper, we have presented a simple micro-
scopic theory of molecular motion in classical mon-
atomic liquids and shown how it may be used to
compute correlation functions which are expected
to be valid for the regions of (v, ~) space which
correspond roughly to those probed by neutron
scattering experiments. In other theoretical de-
scriptions of molecular motion in liquids, attempts
have been made to introduce elementary "quasi-
phonon" excitations in analogy with the behavior of
solids. 4'~4' However, it is not presently clear
whether or not these formulations will prove to be
adequate representations of the molecular motion
in simple liquids. In this respect, it is important
to note the following:

In his recent study of elementary excitations
in a liquid, Zwanzig predicts lifetimes of "phonon-
like" excitations in the limit v-0, &- ~ of about
10-"sec.

2. In Sec. III above, we show that the velocity
autocorrelation function can be adequately calcu-
lated by assuming that the "period of oscillation"
of a particle in the mean potential created by its
neighbors is of the same order of magnitude as the
lifetime against decay of the harmonic well.

The approach we use here does not in the pres-
ent form provide an accurate description of the
long-wavelength, low-frequency regions which ar~
probed by light scattering experiments. These
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FIG. 7. Comparison of the neutron-scattering ex-
perimental results of Chen et al (circles), 4~ and SkoM
and Larsson (triangles)4 for 8= 60, with the present
approximation for G.'=4.60 x 10 sec (—————), and
a=1.0~10" sec '
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regions of physical space can be accurately de-
scribed by considering the fluid to be a continuum
and by solving the linearized hydrodynamic equa-
tions. " However, it should be possible, and may
not be difficult, to include the long-distance and
long-time correlations corresponding to excita-
tions with a (frequency-dependent) velocity of sound
in the two-particle Green's function, P(R', f!R,t).
We have not yet accomplished this generalization.
In addition to the hydrodynamic and neutron scat-
tering limits, it should be remembered that there
are large regions of physical space for which prac-
tically no theoretical or experimental results
exist. In order to successfully treat the behavior
of a liquid in these intermediate regions, it will be
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If this were the case one could introduce a re-
tarded friction coeff icient, in similar fashion to
that proposed by Kubo, along with the mean force.
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APPENDIX

In analogy with the theory of solids, a simple
model which may be considered for liquids is that
of a Brownian particle diffusing in a harmonic
well. "~ 28 Substituting in (19) the representations

F (R, t) = —rncoo'R(t),

R(t)= J, dt'v(t'),

where z, is the characteristic frequency of the
harmonic well, and differentiating, we obtain

FIG. 8. Same as Fig. 7 for 0=75'.

necessary to develop theoretical models of liquids
which properly reproduce both the hydrodynamic
and neutron scattering results.

Several additional extensions of this work seem
feasible. From a formal point of view, it would
be interesting to study the conditions which must
be imposed to derive (15) from the BBGKY hier-
archy. Equation (15) seems reasonable, but a for-
mal derivation is lacking. It would also be inter-
esting to investigate the ansatz proposed empiri-
cally, using computer simulation studies. By com-
puting a, mean force using the formulas in the text,
it should be possible to see if the results could be
fitted using a dynamical friction coefficient P. It
is possible that the long-range, rapidly fluctuating,
soft forces do not have a period of fluctuation suf-
ficiently short so that they can be adequately de-
scribed using a dynamical friction coefficient.

d'( dg
Ddt+ 0 0=

Using the boundary conditions displayed in (17),
this equation may be immediately solved to give

q(t)= e ' ' [cosset+ {p,/2()singt], {A

where E' = ~,'- p, '/4,

(u, ' = (v'v)/Sm,

P, = (mD/uB 7')(u, '

This result has also been obtained by assuming
that the retarded friction coefficient in (18) is a
simple exponential. '4~~4 Substituting

I"(t) = (u,'e

in (22) and differentiating, we immediately obtain
(A2).
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