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Helium Drag in the Theory of Impurity Mobility in Liquid Helium~
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A "helium-drag' effect is calculated for the mobility of charged impurities in He, and
He -He mixtures. For low enough temperatures, the momentum imparted by the impurities
to the helium may be partly trapped in the impurity-helium system, thereby raising the
conductivity. This effect gives rise to a term in the mobility proportional to the concentra-
tion of impurities, and varying as T for the lowest temperatures. It is estimated that the
impurity concentration for this effect to be observed is easily within experimental reach for
He -He mixtures, and possibly even for pure He .3 4

I. INTRODUCTION

The purpose of the present paper is to demon-
strate that at low temperatures there may exist a

dx'ag eff6ct 1D the mobility of charged impuri-
ties in He' or He'-He' mixtures. A number of
papers both theoretical' 4 and experimental' have
appeared in which the mobility of carriers in He'
or He4 has been discussed, but none of these have
considered the possibility of an effect arising from
the host materiaL, helium, not being able to get
11d of Rll of the momentum dellvex'ed to lt by the
accelerating impurities, If the helium-helium
1Dtel RctloD~ ox' helium-boundary lnterRc tlon ls
not strong enough, then the momentum increase
in the impurities caused by the electric field is
partially trapped in the impurity-helium system.
The mobility increases when this happens. In
this pRpex' we discuss the cons6quences of this
effect, which resembles closely the correspond-
ing behavior of an electron-phonon system. 7

The drag effect will obviously become moxe im-
portant when the number of scatterers decreases,
since then the interaction between them gets small-
er. If we wish to enhance the drag effect, we can
consider He~-H64 mixtures, in which the Hes per-
centage is small (say 5/z or less, as has been con-
sidered by some workers"). The reason for this
is that the mobility in a He'-He4 mixture is pri-
marily due to the scattering off of He' alone. This
feature of the scattering can be inferred from ex-
periments' in which the mobility of charged im-
purities in He4 is four orders of magnitude larger
than in He' (the former being a superfluid at low
enough temperatures). In a mixture of scatterers
the resistances add and we have

1
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Thus, in a mixture, it is still only the He' that
does any effective scattering. By making the per-
centage of He' small, we can enhance the drag
effect.

The calculations that have been made generally
rely on some simplifying assumptions about the
impurity-He' scattering, such as a constant cross
section. If the impurities are described by a dis-
tribution function N(p), p being momentum, vp
velocity and E& energy, then a constant cross

sect1on corresponds to choosing the parameter
a„a constant in the following expansion:

&(p) =&.(p) —,z-- 4{v),
p

(1.2)

Here S~ is the electric field, and N, the equilib-
rium Boltzmann distribution. Schappert' has
taken into account a polarization effect in the Hes,
but this just changes the constant a, at low tem-
peratures. In these calculations, the ultimate
low-temperature temperature dependence in the
mobility is T '. &He' is a fermion system; in

the boson He' system, the corresponding depen-
dence' is T 4. ) In the present paper we shall
also use the assumption that a, is a constant, and

we shall determine its value by a variationaL prin-
ciple (as Ref. 1 did in the nondrag case).

When the drag effect comes into play, the heli-
um itself is not in equilibrium. If its distribu-
tion function is called f(k)the ,equilibrium Fermi
distribution being f,(k), Fermi level Ey, then we

write analogously to Eqs. (1.1) and (1.2)

p(k)=$ v- b (1.4)

Again we shall choose b, as a constant and de-
termine it variationally.

In the nondrag problem, the helium atoms in-
teract with one another to such an extent that the
distribution function does not have a chance to get
out of equilibrium. ID this case the p term in Eq.
(l. 3) is very small, and f=f,. This is the usual
assumption. However, the collision time of he-
Lium-helium interactions gets large at low tem-
peratures (Baym and Ebner" and Wheatley" give
this time varying as T '), and the helium sys-
tem does not have a chance to reach equilibrium
wheD contlDQRlly bombarded by the 1nlpul"ltles.
Then the p term in Eq. (1.3) becomes important.
The problem is to solve for the g in Eq. (1.1) and

the p in Eq. (1.3) simultaneously.
In Sec. 2 we set up and solve the variational

probLem for these functions, and in Sec. 3 we

discuss the results.
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II. VARIATIONAL SOLUTION TO THE
COUPLED iON-He' SYSTEM

The problem is to solve simultaneously the
Boltzmann equation for the distribution function
X(p) for the Boltzmann system of impurities of
charge and wave vector p, which s'catter off of
Fermi He' particles with a distribution function
f(k), and wave vector k. The Fermi particles in-
teract not only with the impurities, but with each
other and with the He4 particles, in some fashion,
and all these other interactions are to be de-
scribed by a collision time v (k) which is supposed-
ly known, The intrinsic scattering yrobability
will be called P(p'k'Ipk) for a transition p'k'
-pk. Momentum and energy are conserved in the
interaction

=0 y Z P(p'k'Ipk){Ã(p') f(k')[1-f(k)]
yp'k'

=- Z q(p'k'Ipk)[q(p)+V(k)
pp tel

—P(P) —V(k')]+-'f' (2. 6)

The problem is to solve Eqs. (2. 4) and (2. 6)
simultaneously. We do this by a variational prin-
ciple which says that if we maximize M with re-
spect to variations of p and (j), where

y'+k' =y+k, (2. 1) M-=-,' Z Q(p'k'lpk)[(j)(p)+y(k)
pp'kk'

p' k p
(2. 2)

W'e do not need to know the detailed form of P
in this paper, as it will appear ultimately only in
a term which corresponds to the nondrag problem,
and which has been calculated already in the pa-
pers cited. ' 4 %e shall use, however, the sym-
metry property

P(p'k' I pk) = P(p& I p'k') . (2. 3)
The Boltzmann equation for the impurities of
charge e is then

- 4(p') —V(k')] ' - -'-
BE-v (k)k

subject to the side condition

X M+-,'Ze " ' v 8 (j)g) =0gg (N
8E~ p, x x

p p

(2. 7)

(2. 8)

then the two equations, (2.4) and (2. 6), emerge if
X = —2. In verifying this, notice for example that

5 M = Z Bp(k) Z Q(p'k'Ipk)[(j)(p)+p(k)
(8N(5) )

BN(p)
)

dr ift coll. —4(p') —V(k')]— (2. 9)

——e P) ~ 8+ Z P(p'k' lp k)
BP kki ~P

p

x{N(p')f(k')[1-f(k)] —N(p) f(k)[1-f(k')]]

Z Q( 'k'I k)
p~x x

p p

The quantity therefore upon which variations are
taken is

Z=-(I+~)M--,'Xe Z ~ v q(p)$8E px x
p p

= ~Z Q(p'k' I p k) [tt)(p) + q (k) —(j)(p') —y(k')] '

x[(c)(p)+y(k) —$(p') —((v(k')] . (2.4) Bf„p(k) g BXp
((p) g

k BEk v(k) BE '
p, x x

p p
The last form for the collision sum has been lin-
earized in the electric field using Eqs. (1.1) and
(1.3). Here The current is then

(2. 10)

Q(p'k'ipk) = Q(pklp'k') = (0 T) 'P(pklp'k')

(2. 5)

8 k 8 k

drift coll.

xK, (p)f,(k)[1 —f,(k')] .
The symmetry statement in Eq. (2. 5) just means
detailed balancing when the electric field is off.
The drag effects in Eq. (2. 4) appear through the
cp terms.

To find the effect of these y terms, we must
obtain the Boltzmann equation for the He' parti-
cles. Using the r(k) factor for all collisions not
involving the charged impurities, and linearizing
using Eqs. (1.3) and (1.1) again, we get

S (vk —vk, )[bp —(m/M)ap], (2. 12)

where m is the mass of the helium atom, and M

~(~) p BN„(p) (( )
2M

x p, x 9E p, x h
p p p x

(2. 11)
using Eq. (2. 8). Thus the quantity that gets maxi-
mized is the conductivity. Anything we find by an
approximation will constitute a lower bound to the
conductivity.

To solve the variational problem approximately,
we shall use Eqs. (1.2) and (1.4). The factor in
square brackets in Z becomes, upon using the con-
servation of momentum, Eq. (2. 1):
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of the impurity, and vk =5k/m, vp=5p/M. Thus
we can write

mixture. For pure He', Schappert' has shown
that at low temperatures v;on can be written

Z = [b, —(m/M)a, ] 'd+ b, 'y —a,n,

where

d =-,'ZQ(p'k'Ipk)(v —v, )',k', x

(2. 13)

(2. 14)

0 41~ M o'o

ion ~ (k~T)'vp (M+m)' o

(3. 1)

y= ——,'Z (sf/sE )v- 'r(k) '
k 0 k k, x

n = —eZ (aN0/sZ )v
p 0 p p~x

(2. 15)

(2. 16)

in Eq. (2. 15), 7' ' can be removed at its value
averaged over the Fermi surface:

Here we have inserted, above and below, the cross
section 0, which gives the hard-sphere value 10-'
cm'. The ratio p'0/vseatt gives the correction
from better scattering calculations. Schappert's
calculation of the polarization effect provides
op/oscatt = 5 x 10-4, a tremendous effect. The
value for A, is computed using M/m = 40, and m
the bare He' mass:

y
—= (w(k) ') NH ~/(2m) A -=ip-»see. ('K)'a /n1 0 scatt

(2. 17) =—5xip "sec ('K)'. (3.2)

which defines vHe3. Here NHe3 is the number of
He' atoms in a unit of volume. The integral in
Eq. (2. 16) ean also be evaluated:

n = (e/M)N. , (2. ie)

—2(m/M) b, + 2(m/M)'a, —n/d = 0,

b, —(m/M)a, +b, y/d = 0.

(2. 19)

(2. 2o)

To get the current in Eq. (2. 11) we need P, i. e. ,
a, . From Eqs. (2. 19), (2. 20), and (2. 11)

o=8' /S=na = —,'(M/m)'n'(d '+y '). (2. 21)x

Using Eqs. (2. 17) and (2. 18) and writing d in
terms of the collision time 7'ion for the ions not
including the drag effect, this result becomes

W 2 .

He'
. (2. 2i)

The first term is the "normal" term for the mo-
bility of the ions, the second is the drag effect.

III. DISCUSSIONS AND RESULTS

Before discussing the results, notice that the
conductivity has separated into two terms: One
is the ordinary term and the other is the drag
term. The latter looks very much like a Drude
conductivity, but for the helium. It is as if the
helium becomes endowed with an effective charge
e (it has a mass m to begin with) and relaxes
through 7H 3, i. e. , through collisions not in-
volving the impurities.

In comparing the two terms in Eq. (2. 21) we
shall first consider the pure He' case, then the

where the number of impurities is ¹„the func-
tion N(p) being normalized to N& per unit volume.

The solution to the variational problem in this
approximation is obtained by maximizing Eq.
(2. 13) with respect to a, and then with respect to
b, :

For the other term in Eq. (2. 21), vHe is of the
same form" ~

lim (vH ~ ') '=A2T 2,
T-O

where for A, we use the "diffusion" relaxation
time value"

A, —= 3 x 10 "sec ('K)' . (3.4)

Using M/m =40, we find that the two terms in Eq.
(2. 21) are of the same order of magnitude when
the number ratio is

N. /N, =0. 5xlp 4 . (3. 5)

(7'H, ') ' =A3 T ', (3.5)

A~ =—2 x 10 "sec ('K)' (3. 7)

Again the temperature dependence will not dis-
tinguish the drag from the normal term, but the

Such a ratio would seem to be within the reach of
experiment, and the drag effect in pure He' de-
tectable.

Notice that the temperature dependence is the
same for both terms. However, the Nf/NHe3
factor in the drag term indicates that such an ef-
fect can be determined experimentally through a
concentration dependence in the mobility.

For the He'-He4 mixture, if we neglect the in-
teraction of the impurities with the He4, we may
use again Schappert's result cited in Eqs. (3.1)
and (3.2). The reason for this is that all factors
that referred to the density of the He3 (e. g. , the
Fermi wave vector kF) have canceled out in ar
riving at Eq. (3. 1), so that there is in fact no
dependence of 7 ion on the density of scatterers
(in the limit T -0).

The second term in Eq. (2. 21) can be computed
for the He'-He mixture using the results of Baym
and Ebner, "who found for 5% He'
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concentration dependence will.
The ratio ¹~/NHe3 that makes the two terms in

Eq. (2. 21) equal for the mixture using M/m =40
again is for 5/o Hes

N. /N» ——0.4x10-' .i He' (3.6)

This is certainly within experimental reach, and,
in fact, unless care is taken, we should expect
that experiments would under ordinary conditions
be seeing a drag effect in the mobility.

To sum up then, we find that in the mobility of
charged impurities in He' or He'-He4 mixtures, a
drag effect should be found for large enough im-
purity concentration. The effect would appear to
have the same temperature dependence at the
lowest temperatures as the normal term, but it
contains a concentration dependence which dis-
tinguishes it from the normal term. At higher
temperatures, a distinction could possibly be
made in the temperature dependence, but we
have not attempted to analyze that here.
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The nuclear spin polarization of dilute solutions of He in superfluid He in contact with a
polarized pure He bath is calculated for He concentrations between zero and 6.37% for vari-
ous values of the spin relaxation time and transfer rate of He into solution.

If liquid He' is in contact with liquid He at very low temperatures, the former will dissolve into the lat-
ter up to a concentration somewhat above 6/0 (6. 37+0.05% according to Ifft et al. '). The inverse process
is negligible. Should the liquid He have polarization Py, then the polarization P~ of the He in solution
will depend on the bath polarization P~, the He' concentration x, the spin relaxation time v' of the He' in
solution, the transfer rate of He atoms across the phase boundary, and the spin dependence of the He'
chemical potential p, ~(x) in solution.

To determine P~ the following approximations are made at the outset: The temperature is sufficiently
low so that thermal excitations in the superfluid He~ can be neglected, the polarization Of the He3 bath Pb
remains constant, the polarization of the solution is uniform (i. e. , polarization gradients due to local
effects near the phase boundary or walls are ignored), the transfer rate of He' across the phase boundary
is proportional to the difference of chemical potentials p. ~ —p, ~(x) in each phase, and the spin relaxation
time ~ is independent of He' concentration.

With these approximations the density of up-spin He' atoms ny in solution obeys the simple rate equation

dn~ /dt = —~ '(n )
—n ) + n [p, )

—p,
~ (x)],


