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It is argued that a particular distribution, in the Toiler co variable, of data from two- to three-particle
reactions plausibly described by the double-Regge model, covering a wide range of energies, is pat if the
two-Reggeon —one-particle vertex function in the amplitude is independent of co. A prescription for selecting
events useful for the test is given, and an estimate of the fraction of events thus selected is made.

I. INTRODUCTION
' 'N recent years increasing attention has been given
- - to the phenomenological multi-Regge model of pro-
duction amplitudes —a model which was formulated in-

dependently by numerous authors in terms of Mandel-
stam invariants: Koba' from a conjecture involving the
successive application of single-Reggeon exchange, Ter-
Martirosyan, ' Kibble, ' and Zachariasen and Zweig' on
the basis of multiple Sommerfeld-Watson transforma-
tions, and Polkinghorne' from a study of thehigh-energy
limit of certain Feynman amplitudes. Subsequently
Bali et a/. ' have shown how the multi-Regge model
might emerge from a generalization of Toiler's~ group-
theoretical analysis of scattering amplitudes, in terms
of a special set of variables ("Toiler variables" ). Most
recently two specific models based on Feynman dia-
grams have been suggested: that of Blankenbecler and
Sugar derived using the Reggeization techniques of
Van Hove' and of Durand' and that of Drummond"
derived using Gribov's" Reggeon calculus.

Detailed studies and applications of the model have
also been extensive. In the special case of double-

Reggeon exchange a few predictions'" have been made,
while some comparisons or Qts'~" to experimental data

' Z. Koba, Forschr. Physik 11, 118 (1963). See this paper for
references to previous conjectures.

~ K. A. Ter-Martirosyan, Zh. Eksperim. i Teor. Fiz. 44, 341
(1963) )English transl. : Soviet Phys. —JETP 17, 233 (1963)g;
A. M. Popova and K. A. Ter—Martirosyan, Nucl. Phys. 60, 107
(1964); K. A. Ter-Martirosyan, she. 68, 591 (1965).' T. W. B. Kibble, Phys. Rev. 131, 2282 (1963).

~ F. Zachariasen and G. Zweig, Phys. Rev. 160, 1322 (196/);
160, 1326 (1967).

s J. C. Polkinghorne, Nuovo Cimento 36, 857 (1965).
6 N. F. Bali, G. F. Chew, and A. Pignotti, Phys. Rev. Letters

19, 614 (1967); Phys. Rev. 163, 1572 (1967).
r M. Toiler, Nuovo Cimento 37, 631 (1965).
SR. Blankenbecler and R. L. Sugar, Phys. Rev. 168, 1597

(1968).' L. Van Hove, Phys. Letters 24B, 183 (1967).
"L.Durand, III, Phys. Rev. Letters 18, 58 (1967); Phys. Rev.

154, 1537 (1967)."I.T. Drummond, Phys. Rev. 176, 2003 (1968); and private
communication.

~V. N. Gribov, Zh. Eksperirn. i Teor. Fiz. 53, 654 (1967)
/English transl. : Soviet Phys. —JETP 26, 414 (1968)g.

"M. S. K. Razmi, Nuovo Cimento 31, 615 (1964); J. A.
Verdiyev, Nucl. Phys. 68, 673 (1965); I. G. Ivanter, A. M.
Popova, and K. A. Ter-Martirosyan, Zh. Eksperim. i Teor. Fiz.
46, 568 (1964) /English transl. : Soviet Phys. —JETP 19, 387
(1964)g.

G. M. Fraser and R. G. Roberts, Nuovo Cimento 47A, 339
(1967); E. L. Berger, Phys. Rev. 166, 1525 (1968); E. L. Berger,
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have shown quantitative agreement. Of particular im-
portance is the thorough discussion of kinematic-con-
straint effects and of the applicability of the double-
Regge model by Chan Hong-Mo et al."For exchange of
more than two Reggeons, the model has been used to
predict cross sections, multiplicities, and Anal-state
momentum distributions"" with good qualitative
agreement with experiment where data are available.

Most of these calculations were done by assuming a
multi-Regge form for the absolute square of the ampli-
tude, summed over final spins and averaged over initial
spins, with the ranges of the invariants restricted so that
one diagram was dominant. Furthermore, they all
neglected any dependence of the two-Reggeon —one-
particle vertex function on the Toiler u variable"
(called p in Refs. 15 and 16), the resulting reasonable
agreement with experiment lending support to the
notion that this dependence is weak. In any case until
recently there was no indication as to the form of this
dependence. Now the two available Feynman-diagram

odels'" each suggest a somewhat similar form for
this + dependence. Since this question is of some im-
portance, it is the purpose of the present paper to present
a way of determining experimentally whether the co

dependence of these vertex functions is actually severe
or not. Off hand, it might be thought that a simple
determination of the differential cross section in co

would be a good test. Unfortunately, both the theo-
retical distribution with neglect of co dependence and

E. Gellert, G. A. Smith, E. Colton, and P. E. Schlein, Phys. Rev.
Letters20, 964 (1968)."Chang Hong-Mo, K. Kajantie, and G. Ranft, Nuovo Cirnento
49A, 157 (1967).

"Chang Hong-Mo, K. Kajantie, G. Ranft, W. Beusch, and
E. Flaminio, Nuovo Cimento 51A, 696 (1967).» W. E. Ellis, D. J. Miller, T. W. Morris, R. S. Panvini, A. M.
Thorndike, and E. L. Berger, paper (from Brookhaven Bubble
Chamber Group) submitted to the Fourteenth International Con-
ference on High-Energy Physics, Vienna, 1968 (unpublished)."I.A. Verdiev, A. M. Popova, and K. A. Ter-Martirosyan,
Zh. Eksperim. i Teor. Fiz. 46, 1295 (1964) [English transl. :
Soviet Phys. —JETP 19, 878 (1964)g; I. A. Verdiev, O. V. Kan-
cheli, S. G. Martinyan, A. M. Popova, and K. A. Ter-Martirosyan,
Zh. Eksperim. i Teor. Fiz. 46, 1700 (1964) LEnglish transl. :
Soviet Phys. —JETP 19, 1148 (1964)7; K. Kajantie, Nuovo
Cimento 53A, 424 (1968);J.Finkelstein and K. Kajantie, CERN
Report No. Th.857, 1967 (unpublished); Chan Hong-Mo, J.
Loskiewicz, and W. W, M. Allison, CERN Report No. Th.866,
1968 (unpublished); J. C. Polkinghorne, Cambridge Report No.
DAMTP 68/16, 1968 (unpublished).

"The angle &u is defined in Refs. 6 and 15 (actually called y in
this latter reference). It is redefined in Sec. II of the present paper.
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experimental distribution seem to be strongly
peaked at ~=g '6'~ thus rendering any conclusions
regarding co dependence dificult to make. In the test
proposed below based on the dolble-Regge model, how-

ever, a particular distribution (using data at many in-

cident energies) will be pat if the vertex function is
independent of co', thus the test can be quite sensitive.

In Sec. II the double-Regge model is reviewed and an
expression for the cross section using Mandelstam vari-
ables as kinematic variables is determined. In Sec. III
the proposed test for co dependence of the model is
discussed and in Sec. IV an estimate is made of the frac-
tion of events at each energy that is useful for the test.
This latter calculation is intended to show that an un-

reasonable number of events at each energy ls not re-
quired for the test.

Throughout the paper the reaction PP ~Ps- 6++(1238)
is used as an illustrative example and all numerical
calculations are based on it. Needless to say, most re-
marks will app1y to any reaction that can plasuibly be
described by a double-Regge model.

II. DOUBLE-REGGE MODEL

Depicted in Fig. 1 is the double-Regge diagram under
consideration with Mandelstam variables dehned as
&o= (Pr+ Ps) ', &'= (P;—g')', and &,= (g~+gs)' for i = 1, 2.
It is Usually conjectured that the amplitude for this
diagram describes the whole reaction if the kinematic
variables are restricted to a certain domain. This do-

main is established as follows:

(i) The total energy ss is large.

(ii) The momentum transfers tr and ts are small;
otherwise diagrams with final particles permuted could
be important.

(iii) The subenergy sr is large enough so that the
leading trajectory on the left side of the diagram is domi-

nant; in the present case this is the Pomeranchukon.

(iv) Because of (iii) quantum numbers allow only a
limited number of trajectories on the right. Because of
the smallness of the pion's mass and its strong coupling
to the nucleon the pion trajectory may be expected to
dominate, at least for moderate values of s2.'~" Then

by Dolen-Horn-Schmid duality' "it is reasonable to
leave s2 unrestricted" if semilocal average effects and
no detailed structures in this variable are of concern.
Such is the case in the present work.

"G. F. Chew and A. Pignotti, Phys. Rev. I,etters 20, ].{)78
(1968)."B.Haber, U. Maor, G. Yekutieli, and E. Gptsman, phys.
Rev. 168, 1/73 (1968).

"The question of a pion conspirator is ignored here. Q pne is
necessary, then Ref. 26 suggests the modified viewpoint required.

, Phys. R
402 (,1967};Phys. Rev. 166, 1768 (1968).

"C.Schmid, Phys. Rev. Letters20, 689 (1968). See, however
P. D. B.Collins, R. C. Johnson, and E.J. Squires, Phys. Letters
278, 23 (1968);V. A. Aiessandrini and E.J. Squires, Phys. Letters
27B, 300 (1968).

"Acutally for large s2 other trajectories, e.g. , Q2 are probably
important. However, for present purposes they may be neglected
since most of the data are at small s~.

Pro. I. Double-Regge dia-
gram for pp ~ pg Q++ ($238)
with Pomeranchukon {P) and
pion (s) exchange. p, and q;
denote four-momenta, while m;
and p,;denote masses, The usual
Mandelstam invariants are de-
fined in the text.

From Bali et aE.' each helicity amplitude correspond-
ing to Fig. 1 has the parametrization, neglecting helicity
labels,

M ~fr(tr)(cosh2i r)~&&'»fs(i, ,ts&o)(cosh21 s)~~&"&f (ts) (1)
for large values of the Toiler variables cosh2$, . In fact,
is it reasonable to assume this form to hold for all values
of the variables in the domain described by (i)—(iv)
above "".The definition of the variable cosh2$, may
be found in Ref. 6. It suKcies here to note for interest's
sake that cosh2$, is linearly dependent on s;, so that,
for large s, , Eq (1) .is essentially the form of the ampli-
tude used in most of the studies referred to in the
Introduction. The one remaining undefined variable co

is conveniently described" as the angle between the
plane of y~, g~ and the plane of y2, q2 in the frame q3=0.
Specifically,

(p, xq, ) (p, xq, )
costs =- -in the frame q3 ——{).

jpiXe f fpsXqs(

It may be put in terms of so, s,, and t;.'" Thus so and
co may in a sense be viewed as complementary variables;
it is convenient to think of either so or cv along with s~,
s2, ty, and t2 as a complete set of kinematic invariants.

For present purposes it is important to note that (1)
is given most conveniently in terms of the second set
of invariants, in which so does not appear explicitly. The
same remains true of the absolute square of the ampli-
tude summed over Anal and averaged over initial spins.
It is the co dependence of this latter quantity, P ~

M
~

',
that the test will study. That is, in a sense, the average
+ dependence of the middle vertex of Fig. 1 will be
measured by the test."As mentioned in the Introduc-
tion, two different Feynman-diagram models' " of
multi-Regge behavior each give an indication of the co

dependence of fs(tr, t, ,~) in (1).For the reaction depicted
in Fig. 1 the form is (taking the minimal-derivative-
couphng case in Ref. 8)

fs(i, ,i„~)=g(1„1,)W--&'»,
with

8'= 2ps'L(ps' —ti —is)+2(1rts)'I'coscol/)b, (tr, 4,ps'), (2)
where X(x,y, s) =x'+y'+s' —2xy —2ys —2sx.

'6 The presence of more than one contributing trajectory on the
right is not likely to alter the ability of the test to determine the
exisreece of eu dependence. Information on how much and what form
this dependence takes will be unavailable for the most part,
however.
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with limits (B1)—(B4), independent of &u (and so). Note
the significant fact that the only co dependence is in the
matrix element which is of the form (1).The severity of
this dependence is thus indicated in an average way by
the distribution (11).

Unfortunately, (11) is not in a form amenable to
experimental application, since data for all values of the
variables, which implies for all energies so, are needed.
Consequently it is necessary to And a way of restricting
the ranges of the integration variables in (11) in such
a way that (a) only data at pertinent available energies
are used, while (b) no a& (or so) dependence is introduced

by the restrictions. The procedure will be to find re-
strictions on the range of s2 so that in (10) co will still
have range 0—~, while in (6) the range of so will be con-
tained in a given, Axed, extreme range s,—sb. That is,
for all allowed values of the integration variables in
(10), subject to the proposed restriction on s2, the value
of so calculated from (8) will lie between s, and sb

A convenient starting point is to look at the physical
ranges of s2 and so in (6) for given physical values of the
other invariants. This region in the so-versus-s2 plane is
bounded by L= 0 as discussed in Appendix B.Equation
(BS) then shows that this bounding curve lies in the
region where Ly&0 and has as tangents the lines s~

=A34(1,+) which solve I.i=0. Additional information
follows from (5), with

L4= —24[so—A ia(4,+)j[so—A i3(4,—))
and

Aia(4, &)=sl+» +[( sl ~2+ml )(~2 m2 +» )
~y($ m 2 p 2)i~2/(s, $, mi2) ~&@/2(2. (]2)

Thus, since L3&0, the curve L=O as solved by (5)
exists only where L4& 0, and in fact the lines

so ——Aia(4, &) which solve L4 Oare tangent to ——L=0.
The desired region may now be exhibited in the so-

versus-s2 plane. Two distinct cases occur according as
k2) 0 or t2&0; these are shown in Figs. 2(a) and 2(b),
respectively. In both cases, for fixed s2, co=0 (s) is the

largest (smallest) value of so on I.=O. The dashed
straight line, shown for purposes of orientation, is the
curve co =-',~ obtained from (8). Furthermore, it follows
from (8) and (9) that all curves for &o fixed (NO, ~7r, m)
intersect L= 0 only at the points 8'+ and 8', where, in
fact, they are tangent to the latter curve. Letting 8'~
denote also the sf) coordinate of this point, it follows
from (BS) that

W.=»+»'-l (~.,~2,»')-'1'». I.,=»«i..i (»)
Also of interest are the following points deduced from
(S) and shown in Fig. 2:

s,(b,a)=A34(a)
~ „„,

s2(a, a)=A34(a)
~ „,.

Now for given s and sb it is desired to 6nd the range
of s2 such that for s2 in this range co can vary over the
full range 0—x without so leaving the extreme range s —sb.
The cases (a) $2) 0 and (b) tg &0 will be remarked upon
separately and then a comprehensive set of limits on
s2 will be written down.

(a) t2) 0. A study of Fig. 2(a) shows that, depending
on the relative ordering of the horizontal lines, there
may be as many as three ranges of s2, which will be
denoted by s2(1,—) to s&(1,+), s2(2, —) to s2(2,+), and
s2(3,—) to s2(3,+), with s2(1,+)&s2(2, —) and s2(2,+)
(s2(3,—). It is also convenient to use this notation
even when there are fewer than three ranges. The actual
limits may be written by inspection of Fig. 2(a) and in
order to obtain a set compatible with (b) it is proper to
interpret sq~Ai3(4, +) subject to sq)Aia(4, —) or
sg) W as L4~.,=.,)~0.

(b) t2(0. The limits here are found by inspection of
Fig. 2(b). There are at most two ranges of s2, and so
s2(3,—) =s2(3,+) must be taken. Also, a range exists
only if sq) W [)A i3(4,—)j, which implies I.4

~ „=„)0.
In accordance with these instructions a comprehen-

sive set of limits is

s~(3,+)= As4(1,+),
=s,(3,—),

s2(3,—)=s, (b,+),
=s2(1,+),
= max[s2(a, +), s,(b, +)],
= s2(a,+),
= s2(3,+),

s2(2,+)= s2(b, —),
=»(2,—),

s2(2, —) =s,(a,+),
=s,(2,+),

s (1,+)=s (»—)
=s, (3,—),
= min[s2(a, —), s&(b, —)j,
=s2(a, —),
= s2(1,—),

s,(1,—)= Ag4(1, —),
= s2(1,+),

if
if
lf
lf
lf

s,& A ia(4, —), L4
s,&Ai3(4, —), I.4

s.)Ai, (4, —), L4
s,)Ail(4, —), L4
s,&S' or sb&W
s &8' &sb,
s &8" or sg,&8'

so=st& Oy

so=st & Oy

sp=sb& 0~

sp=sb& 0~

and s &8' &sb
and s &8' &sb
and s,&lV &sb
and s &W &sb

lf $~&8+.&Sb
if s &tV+, sb&8'+, or t2&O

if s~&Ai3(4, —), s~(Aia(4, +), and s,&W+(sq
if s,(Ai3(4, —), sg)A»(4, +), and s &W+(sg
if s,&Aia(4, —), sq&Aia(4, +), and. s &W+&sq
if s )Ai~(4, —), sq)Aia(4, +), and s,&W+&sq
if s,&W+, sb&8'+, or t2&0
if s,)Ai3(4, —), L4~ „„&0,and s,(a+)&s2(b, —)
otherwise

if s,)Ai, (4,—), L4~ „„)0, and s2(a,+)&s2(b, —)
otherwise

(15)
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o$4

sb

t,&O

A„(l,+)

s,(b,-) s,(bp)

A13(4.+)I

0+

and so from (6), (10), and (16) there is the relation

00 JM

dspF(sp)trrt (sp) = dttt, (18)
my+m2) p lM

where, because of (15), o z (stt) = 0 except for s (sp(sb.
It then follows from (18) that

W

3 (0;) s,(o,+)
I l

II S

As~(I, ) A

Ie~(b;)

Ij
/

t t
Igt4,$ Sg&4.+)

A„(4,-)

el(b, &)

A)3(4,+)

dolt (sp)
dssF(ss) (19)

where do 12 (sp)/dM is the obvious differential distribution
in ot of events contributing to o 12 (ss).

According to (19) the distribution d" 12/dot can be
constructed directly from experimental data for those
reactions that have been studied at many energies over
a reasonable range of energies. In order to be truly a test
of the co dependence of the middle vertex of Fig. 1 only
those data plausibly explained by the amplitude of Fig.
1 can be used with restriction (15). As mentioned fre-
quently above, this means restrictions (ii) and (iii) on
s&, t&, and t2. The methodical procedure in applying the
test is then to select at each energy only those events
with

Fro. 2. Physical region in the s0-versus-s2 plane for Baaed s1, t2,
and tt, with tt )0 in (a) and tt (0 in (b). In (a) the allowed region
is the interior of the ellipse L=O, while in (b) it is the interior
of the upper-right branch of the hyperbola L=O. The dashed
Straight line iS the CurVe co =22tr Obtained frOm (g). TheSe CurVeS

are not drawn to scale.

where A24(1,&) is defined in (B6), 14 and Als(4, &)
in (12), W~ in (13), and s2(a, &) and S2(b,&) in (14).

It is then concluded that, in (10) with the limits (15)
on s2 and co anywhere between 0 and x, the dependent
variable sp lies between s and s~. This permits the pro-
posed test, discussed with respect to (11), to be recon-

sidered. In particular, suppose the s~, t2, and tj limits to
be given by (B1)—(B3), subject to restrictions (ii) and

(iii) given at the beginning of Sec. II, and the s2 limits

to be given by (15). Denote this set of (ot- and ss-

independent) limits and all quantities defined by inte-

gration using them by the subscript R. Then (11) be-

comes

Qpf g
dsldtsdtlds2 (p ~M

~
')&(tlttsttts ) '". (16)

I et E' denote the analogous set of limits appropriate
to (3), i.e., with sl, t2, and tl limits given by (A1)—(A3),
subject to restrictions (ii) and (iii) of Sec. II, and s2

limits given by the overlap's of (5) and (15). Then (3)
becomes

ort~(ss) =F(s&&) ' dsldtsdtlds2 (P ~~~')(—L)-"', (17)
B'

"These new limits on s~ are determined in Sec. IV for the case
4&0.

(A) tl and ts small enough so that only the diagram
with the desired ordering of particles in the 6nal state is
appreciable. Since the reactions are highly peripheral,
these are not stringent restrictions.

(B) sl large enough so that the left-hand side of Fig.
1 is dominated by a single Reggeon. In practice, this
can mean s& above any pronounced resonances. This re-
striction can eliminate many events.

(C) ss selected according to (15). The effect of this
restriction is studied in Sec. IV.

It should be stressed again that the above cuts on
s~, t~, and t2 must be independent of co and sp. The claim
is then that the distribution in (19) is fiat for 0(co& 2r

if the middle vertex of Fig. 1 is independent of ot.

IV. EFFECT OF s2 RESTRICTIONS

This section is concerned with estimating the fraction
of data at each energy eliminated by the restriction (15)
on s2. Certainly the test is feasible only if this fraction
is not excessively large. Although the reaction pp-+
plr 5++ will be considered for definiteness, the general
features should be true of any suitable reaction.

At a laboratory momentum Plz, =28.5 GeV/c the
following expression of the form (1) for the spin-aver-
aged square of the matrix element for the reaction
pp ~p~-6++ was found to give reasonable fits to ex-
perimental distributions'~ ":
Q ~

M
~

'= Cesti{psl —t2—mrs+ (t412 —m12 —tl)

X( tl t2+t4 2)/2tljs01 1)2az(tt)

X{p2 tl m2 + (tt2 m2 t2)

X (—tl —t2+tls')/2tsjS22 —')' .t"
Xlrsn '(t2)2/L1 —coslrtr (t,)), (20)

"E. L. Berger (private communication).
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with sttr ——ms ——ttr ——0.94 GeV/c' tts ——0.14 GeV/c'
tts ——1.24 GeV/c', soa=1 0 GeV', s02=0.7 GeV', trr (tr)
=1, n. (t,)=~.'(t, )(t,—0.02), and n '(ts)=1.2 GeV ',
and where C is a scaling factor. Cross sections are in mb
if, in addition, s; and t; are in GeV' and C= 1.1&(10'.

Since, as just remarked, this or-independent expression
gives reasonable results, it might be concluded that
there is no co dependence of the middle vertex of Fig. 1.
However, some distributions (notably that of the Trei-
man-Yang isotropy test in the psr rest frame) are not
completely accounted for, and if or dependence is neces-
sary to Qt them, it is desirable to know what form it
takes and how severe it is. The proposed test hopefully
will shed some light on these questions.

For present purposes it is assumed that (20) describes
the reaction at all energies of interest subject to restric-
tions (A) and (8) of Sec. III, which are taken as (A)
tr& —2.0 GeV' t & —0.6 GeV' and (8) sr)3.5 GeV'.
Then to study the effect of restriction (C) two calcula-
tions are done. The first gives o(so) from (3) with the
above cuts (A) and (8) but with no ss restriction, while

the second includes the ss restriction (15), giving, in

fact, o'tt (sp) of (17).In this latter calculation the precise
limits on s2 are easily determined from the overlap of

(5) and (15). They will not be written down for the
general case, but for the reaction at hand, where t2&0,
they are

s,(2,+)= min[s, (b, —),As4(+) J,
= ss(2, —),

ss(2, —) = max[ss(a, +),A34( )),
=s, (2,+),

ss(1,+)= min[s2(b, —),As4(+) j,
= mln[ss(b» —),ss(G~ )j,
=»(-),

s, (1,—) = A, 4(—),
=Ss(+),

if

if

if

if

if

s,&Art(4, —) and s,&(W,ss)&ss
s,&Ai, (4,—) and s.&(?V,so) &ss
$ +W S +$0 Sb+W 01 Sb4$0

s.& (W,sp) & ss
s &W, s,&so, sb&lV, or sb&so.

d s.&At, (4,—) and s,( t+t)&s, (b, )—
otherwise

if s,&Art(4, —) and ss(a, +)&ss(b, —)
otherwise

The results of the calculations are shown in I'ig. 3,
with s, and ss corresponding to prr, of 10 and 30 GeV/c,
respectively, where the lower cutoff is determined more
or less by the restriction on sr (&3.5 GeV') and the
upper cutoff is limited by the highest beam momentum
at which the reaction has been studied experimentally,
namely, 28.5 GeV/c. Also shown in the figure is the
trend of the total cross section, "without any restric-
tions on the kinematic variables. It is apparent from
this figure that about 9% of the total number of events
in the above beam-momentum range is useful for the
test. This is not too unreasonable, especially in view of
the fact that distributions in co at all energies of interest
are combined, according to (19), to get a single distribu-
tion. The crucial requirement, of course, is that the
reaction be studied over a wide range of energies.

V. CONCLUSION

An experimental test to detect any or dependence
of two-Reggeon —one-particle vertex functions in the
double-Regge model of high-energy production reactions
was formulated. It should be especially suitable for
those two- to three-particle reactions which can be
studied conveniently over a wide range of energies,
e.g. , pp-+ psrh, pp —+ psrk, srp-+ srpp, etc. In view of

"P.L. Connolly, W. E. Ellis, P. V. C. Hough, D. J. Miller,
T. Q'. Morris, C. Ouannes, R. S. Panvini, and A. M. Thorndike,
Brookhaven National Laboratory Report No. BNL-11980 (un-
published); report of a talk presented at the Third Topical Con-
ference on Resonant Particles, Athens, Ohio, 1967. References
to original works can be found in this paper.
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FIG. 3. Cross section 0 (so) for the reaction pp —& pm. 6++, with
(a} no restrictions on the kinematic variables (Ref. 32}, (b)
t&) —2.0 GeV', ts& —0.6 GeV', and s&)3.5 GeV' and (c) t&, ts,
and s2 restricted as in (b) and s2 restricted as in (21).The ratio of
(c) to (a) then indicates the fraction of the total number of events
at each energy useful for the test. Error bars are not shown, since
only orders of magnitude are of interest here —the curves can
safely be viewed as having a maximum possible uncertainty of
perhaps 25'%%uo.

the present lack of dehnitive theoretical understanding
of these vertex functions, this test could be quite useful
in suggesting a phenomenological model for them.
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Sl(+)= ($0'I' —t42)',

»(—) = (t 1+t 8)', (Ai)

t2(&) $1+ml +L( $0 $1+t42 )($0+ml m2 )
&x ($0,ml', m2') ') (s0,sl, t42') 87/2$0, (A2)

APPENDIX A: INTEGRATION RANGES
FOR FIXED $'p

The unrestricted limits of integration in (3) for the
order shown there, namely, fdsldtldtlds2, are easily
derived using the results of I, with the substitutions
S=$2) $=Sl) I= $1) '5= Sp) K = $2) m1 p2) m2 pa) m3 pl)
m4 ——m&, and m5 ——m2. Indeed, as was shown in the study
of the physical region in the $-24 plane (which here be-
comes the s2 tl pla-ne), the ranges of the variables are
(i) s0 such that L23&0, (ii) sl such that L34 L14&0,
(ui) t2 such that LS&0, (iv) ti such that Li&0, and (v)
s2 such that X&0.Using the techniques explained in the
Appendix of I, the limits follow, for s0& maxL(ml+m2)2,
(t41+t42+t43) 7 of course,

tl(+) t81 +ml +L($1 t43 +t41 )(t2 $1 mi )
&x(sl, t2,ml')' 9 ($1)t41' t4 ')'I'7/2$1. (A3)

The limits on s2 are given in the text. Note that the
symbols L, L;, etc., have digerer4t definitions here than
in the text.

APPENDIX B: DTTEGRATION RANGES
FOR FIXED m

The unrestricted limits of integration in (6) for the
order shown there, namely, jdsldt2dtlds2ds0, are also
derived using the results of I, but with the substitutions
s= sp) $= $2) Q= s2) 0= sl) zo= $1) ml ml) m2 mc)
m3 t42 m4 t48 and m8 ——t41. Just as in Appendix A, the
ranges of the variables are (i) sl such that L23&0, (ii)
t2 such that L34 L14&0, (iii) tl such that LS&0, (iv)
s2 such that Li&0, and (v) s0 such that L&0. Again
using the techniques of the Appendix of I, the limits
follow:

»(+)="
»(—) = (t 1+t 3)',

t.(+)=0,
=n11np(m2 t42) ($1 ml) 7

if ($1't' —ml)(m2 —t42) &0
if (sl'I' —ml)(m2 —t42) &0

(81)

t.(-)=--,
tl(&) t2+t43 +L( $1 t2+ml )(sl+t48' —t41')&x(sl, t48' tll )'t9, (sl t2,ml')'t'7/2$1,

(82)
(83)

s2(+) =g84(1,+), if t~&0
if t2&0

where

s2(—) =234(1,—),
$0(&)=218(+)=$1+t42 LU184%(LXLS) 7/X(tl)t2)t43 ) q

284(1 &)=t42 +t48'+ (2t2) 'E(t2 m2 +t42 )(tl t2 t43 )+li(tl t2 t48 ) X(t2 m2 t42 )
I.,=-2t,L$,—a„(1,+)7L$,—aS.(1,—)7,
LS———2$1t tl —t,(+)7Ltl —tl(—)7.

(84)
(85)

(86)

The change of variables s0 —4 40 can be effected as in the text in order to reach (10). The limits on the integrals
in the latter expression remain as above. Note that the symbols L, I.;, etc., have the same definitions here as in
the text.


