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In this paper we consider some of the experimental data bearing on the hypothesis of universality of ao

coupling. The low-energy data on the coupling of the co meson and the high-energy data on the coupling of
the cu-type Regge trajectory have been considered. The data seem to support the universality hypothesis.
The universal u& coupling constant g„ /4n is estimated to be 4.96&1.24, which is higher than the universal

p coupling constant g,'/4v. =2.60&0.68, where g, and g„are so normalized that g =g, in the SU(6) limit.
To relate the Regge residues of vector trajectories to the universal coupling constant, we factor out the
angular momentum dependence of the former and introduce a "reduced" Regge residue and a scale param-
eter for each trajectory. The scale parameters for the ~ and the p trajectories turn out to be of the order of
290 and 186 MeV, respectively.

I. INTRODUCTION coupling constants through strong decay rates, dis-
persion relations, force parameters, and extrapolations
to unphysical regions give the mass-shell (not universal)
coupling constants at the correct physical angular
momentum while the Regge method gives the coupling
constants at the correct zero mass but at the incorrect
angular momentum. It appears however, that the
angular momentum dependence can be factored out and
the resulting "reduced" Regge residue can be studied.
It should be pointed out that electromagnetic decays'
do yield the "zero-mass" coupling constants directly.

The development of this paper is as follows: Section
II reviews the vector-meson universality hypothesis
from the point of view of the Lagrangian formulation of
Kroll, Lee, and Zumino. ' The form of universality
taken in this paper and the de6nitions of the various
coupling constants is given. Section III discusses
empirical evidence for the values of the p and co coupling
constants. Section IV presents a Regge-pole analysis and
gives additional evidence in favor of ou meson uni-

versal coupling. Section V compares the Regge analysis
made here for t&0 to those made in reaction studies for
t&0 and compares the two results by extrapolation.

'HE universality of the coupling of vector mesons
was first postulated in 1960 by Sakurai. ' Gell-

Mann and Zachariasen' extended these ideas and
related the electromagnetic form factors to the vector-
meson form factors and established the strength of the
coupling of vector mesons to the photon. These ideas
led to direct experimental checks. Sakurai' has recently
compared the relevant experiments which give the
p-meson coupling constants and has shown that the
universality theory is strongly supported regarding the
p meson. In the case of there meson, it was erst supposed'
that it coupled universally to the hypercharge current.
However, later experiments indicate that the co trans-
forms like 21V+ 7', a member of the "Okubo nonet, "4

where I' is the hypercharge and S is the baryon number.
Consequently, the universality theory would say that
the co is coupled to the above linear combination of the
hypercharge and baryon number current. Also, the
q meson4 should be coupled to the strangeness current.
There is at present enough experimental data to check
on these ideas.

The purpose of this paper is to summarize the experi-
mental evidence in favor of the universality of ~
coupling and to discuss the role of Regge residues in
analyzing this problem. It should be emphasized that a
universal theory deals not with the usual coupling
constants but with those evaluated at zero mass of the
vector mesons. Fortunately, this is the kind of informa-
tion one obtains in a study of Regge residues and indeed
the universality ratio for the coEE and cod/ residues
has already been reported. s A Regge residue is essentially
the coupling constant continued to zero mass and to a
value of angular momentum, n(0) which is generally
around ~ for the vector trajectory instead of the physical
value of unity. Consequently, the usual evaluation of

*Research supported in part by the U. S. Atomic Energy
Commission under Contract No. ORO-3765-2.' J.J. Sakurai, Ann. Phys. (N. Y.) ll, 1 (1960).

s M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 953 (1961).
e J. J. Sakurai, Phys. Rev. Letters 17, 1021 (1966).
e S. Okubo, Phys. Letters, 5, 165 (1963).
~ C. Levinson, H. Lipkin, and ¹ %all, Phys. Rev. L

17, 1122 (1966).

II. UNIVERSALITY HYPOTHESIS

A formal description of the neutral vector mesons
in a universal Lagrangian formulation has been given by
Kroll, Lee, and Zumino. ' They introduce Geld strength
tensors for the vector fields V„:

8 8
V„— V„.

ax~ ax"

The Geld equations for p„, @„,and to„are

r)Gev'/&see ntv'pv =gv Jv' = Kv',— (2a)

(2b)r)Gev /0selv nt~stov= ~v—
and

(2c)BG„„e/r)x„nte'rtv„= 9"„—&,

etters ' N. M. Kroll, T. D. Lee, and B. Zumino, Phys. Rev. 157, 1376
(1967}.
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where the currents 9"„&, 9"„",and V'„~ are conserved and (6), we have

~,=g, , ~e —(3/V2) ge =2gr/co%
d'x Jp&=Ig,

gy'I p, =cos8y V~~ —sln8y Vp,

givlV„= sin8iv 9'„&+cos8N 9"„", (5)

and Y„and E„are hypercharge and baryon currents.
These are conserved currents and the spatial integrals

of their time components are the hypercharge (V) and
the baryon number (Ã) operators. All fields above are
renormalized quantities. The particular form of uni-
versality we wish to discuss in this paper corresponds
to the assumption that

the Z component of the isospin. The Lagrangian is
chosen so that the electromagnetic-current operator is
given by

J„»= —(m, '/g, )p„2gr —'(—cos—8r ris~'P„
—sin8r m„'ro„), (4)

where parameters ey, 0~, gy, and gN are introduced
such that

v =3g = -2g&/sm8

The model used by Van Royen and Weisskopf' and

by Dar and Keisskopf' implies

y, = —m, /m. , p„=—3m„/rN, ye=3rle/V2m . (10)

Equation (10) was arrived at from their valuess of gr .

g, = m—,/m„g e= ris/em, and g„= m—/m, (11)

or

g s/4s =2.54 g s/4»r=2. 22, and ges/4ir=4 5g (12)

The form factors for the vector currents are normalized

by using the fact that the space integrals of the time

components of the vector currents can be expressed in

terms of isospin, hypercharge, and baryon number. For
the matrix elements with respect to a pseudoscalar
meson (M) we delne form factors.

&&r~P;+P.)/«P. P')") (13)

r„-= (2X„+V„)g./2,
&.'= (V. &.)ge/~~—. (6)

with t= (P—P')', where

These equations dehne the g„and g~ used in this paper.
This assumption follows if the p is a pure singlet of
SU(4) and the &o is in the 15 representation. The
gp g p and g„de6ned here become equal in the nonet
symmetry limit. The smallness of the decay ~p+rr and
the observed p and co masses have been used to argue
in favor of this assumption. ~ We would like to consider
Eq. (6), however, simply as an assumption independent
of any syrr11netry considerations and to show what
physical consequences it leads to when incorporated in
a universal scheme.

The assumed forms of V„"and V„& lead to two con-
straints on 8~, HN, g~, and g~, namely,

gy' cose~= —g~ slnoy,

g~ cosOy = —2gy sine~.

Eliminating gy and g~, we lnd

tan8~ tang~ ———,'.
If we take Oy =0~, as in the mass mixing model of Kroll,
Lee, and Zumino, ' we 6nd that Oy ——8N ——35', which
compares well with their values of 32' and 39' in two
variations of this model.

Coupling constants Vy are sometimes defined so that
the expression for the electromagnetic current is given
by J„»= Pr (mv /pre) V—„(x), where V means any
vector meson. In terms of the constants defined in Eq.

and
(16a)

(16b)

(16c)

g p„FI„"(0)=g,I,(x),

g„,&„„&'&(0)=g L2E(x)+F'(x))/2,

g,.~, l &(O)=g P (x)-Zr(x))/a

Just as in the meson case, Fr „"'(m,')=0 and is

g, irrrriF, srsr(0) = g,I,(M), (14a)

g srjrF sriu(0) = sg.I:2&(M)+V(M))

g...F...(0)=«~V(M) ~(M))/~
where I,(M) is the value of I, for the meson M, and

similarly for IiI (M) (baryon number) and V (M)
(hypercharge). U the vector mesons were stable, then
we would normalize Fvsr~(mrs)= 1. However, follow-

ing Gell-Mann and Zachariasen we must normalize

Lsee their equation (3.161)):

Fvsisi($) I BFl'(f)/Ep($))VvMM($) q

where Vr srsi(mv )= 1 and her(i) is the renormalized

propagator and hr (t) is the free propagator (i—risr') '.
Vv~sr(i) is the proper vertex function for VMM.

The baryon form factors are defined (for baryon x)
by

&P'I ~.'«) I»=( .(P') I a"~"."(1) .
+i(pi.,/2M )Fp..&'i(t)o„„(P'—P)")IN, (P))

&& (~'/P&s')'" (15)

"Ii.. Harari and M. A. Rashid, Phys. Rev. 143, 1354 (1966).

R. Van Royen and V. F. Weisskopf, Nuovo Cimento 50, 617
(1967).

s A. Dar and V. F. Weisskopf (unpublished).
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1(~~~e+&) 1 m.s-m. ~s g„sq3

I'(m-' —+ y+y) n m„m. 2 4sr l 2
(17)

Similarly the partial decay rate for the decay of an cv

into a lepton pair becomes

r (td ~ I++& ) = (n'/27) (g /47r) '(1+2mt'/m ')
X (1—4mts/m. ')'"m, (18)

where m„, m, and m~ are the masses of the co, 7r, and
lepton.

In the recent compilation of data on particles and
resonances, Rosenfeld et al." quote 12.2&1.3 MeV for
the width of co and a branching ratio of (9.7&0.8)%
for the mode I'(&c~ rr'+y). The mean lifetime of rr'

has been quoted" to be (0.89+0.18)X10 " sec. Using
these values in (17), we get g '/4sr= 4.26&0.11. Using
this value for the coupling constant in (18), we predict
the value (3&0.8)X 10 ' for the branching ratio
I'(&c —+ e+ie )/I' (all). The most recent experimental
value, due to Hertzbach et alt. ,

"for this branching ratio
is (5.3»+")X10 '.

There are no other direct methods presently avail-
able for the evaluation of the co coupling constant from
decay processes. Several attempts have been made to
evaluate g„~~, the co-nucleon coupling constant, from
1V-1ll' and 1V-Ã scattering data. According to Eq. (16b)
we should expect g„rr&= sg„/F„zz(0) Basically the.se
attempts are of three types. The 6rst type employs a
single-boson-exchange model for the nucleon-nucleon
interaction. The second type uses a dispersion relation
for E-E forward scattering amplitude. The discontinuity
across the unitarity cut is given by the N-E cross
section, while that across the left-hand cut is given by
the S-X cross section. The dispersive part of the

"A. H. Rosenfeld, N. Barash-Schmidt, A. Barbaro-Galtieri&
L. R. Price, P. Soding, C. G. Wohl, M. Roos, and V, . J. Willis,
Rev. Mod. Phys. 40, 77 (1968)."S. S. Hertzbach, R. %. Kramer, L. Madansky, R. A. Zdanis,
and R. Strand, Phys. Rev. 155, 1461 (1967),

normalized to Frrsr~&" (t) = )At r(t)/As (t)$Vv»&'l(t)
and Vv„&t&(mp')=1. Thus, Fvsrsr(t) and Fy„&"(t)
have poles at the point t=mvs im—vI'v, where I'y is
the decay rate of the vector meson. The residue at this
pole is —myI'y. Hence, the lifetime of the vector par-
ticle determines F(t) in the neighborhood of t=M, s

and universality determines F(t) in the neighborhood
of t=0.

III. COUPLING CONSTANTS

There is strong empirical evidence that g,'/4sr
~2.5&0.3. The decay p —+ K++X indicates (cf.
Ref. 6 for the various assumptions made) that
g,'/4~= 2.8W0.6.

With our assumption Eq. (6), the ra, tio of
I'(&o ~ s'+p), the partial decay rate for the decay of
the &c into sr'+p to I'(sr'~ 7+y), the decay rate for
~'-meson decay becomes

TABLE I. Evaluations of (g ztr /4r). The last column gives
(4/9) (g~rrN /4n) which according to Eq. (14b) should be equal to
(g~'/4r)/F trx&'~ (0). From meson decays (g„'/4r)~4. 96&1.24.

Author Reference

Samurai

Amdt et ul.

Hara

Phillips

12

13

Method (4/9}(g.Ne/4 )

I;S term in N-N 4.5
interaction

N-N scattering 1.8
with unitarity

N-N forward dis- 4.0
persion relation

Regge hypothesis 4.5

amplitude can be found from the differential cross
sections. Using these facts and the dispersion relation,

g ~~ can be found. This calculation was carried out by
Hara. "The third method uses the Regge hypothesis and
was employed by Phillips. " This method involves
isolating the contribution of the &c trajectory (I=O,
C= —1) to the high-energy scattering amplitude and
then extrapolating to t=m„', where the scattering
amplitude should become 2g„~~'s/(t —m„'). The extrap-
olation from the physical region of the s channel, i.e.,
t&0, to the value t=m„2 requires a fairly reasonable
guess for the form of the t dependence of the Regge
residue function P(t). Some of the results of such in-

vestigations are presented in Table I. These values,
except for those of Ref. 14, are consistent with the
value of g„s/4sr found above from meson decays
)assuming F rr~(0)=1j, and, thus, lends support to
the universality of g„s/4r.

IV. REGGE-POLE ANALYSIS

"Y.Hara, Progr. Theoret. Phys. (Kyoto) 27, 429 (1962)."R. J. N. Phillips, Phys. Letters 3, 21 (1962)."R. A. Amdt, R. A. Bryan, and M. H. MacGregor, Phys. Rev.
152, 149G (1966).

» See, for example, E. D. Squires, Complex Angllur Momentlnt
artd Particle Physics (W. A. Benjamin, Inc., New York, 1963).

We discuss now the information about coupling
constants which can be derived from a Regge-pole
analysis. According to the Regge hypothesis" the
elastic scattering amplitude for the (x,y) process at
large s can be written as

I'(n;+-,')
A,„(s,t) = —s'"Q (2n +1)

' I'(n~+1)
—I~e-'-' -

p,,(t) p,„(t)
X s '. (19)

L2 sin(srn;) (q,s) ' (g„tt) '

The summation index i runs over the diferent Regge
trajectories which we will take to be Porneranchuk,
p', &c, E' (I= 1), and F' (I=0). We will assume that the
vertex functions discussed just below Eq. (16) are slowly

varying and hence the form functions do not vanish at
t=O. We thus conclude from Eq. (16c) that ge, ——0
whenever x is a nonstrange particle. This in turn
implies, as shown below, that the Regge residue
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P**"(t)=P'*(t)P'. (t) (20)

pe, (mes) =0 for nonstrange a. Using the further assump-
tions about the t dependence of P (t) discussed below, this
will allow us to neglect the p trajectory completely for
the processes considered here where at least one of the
particles is not strange. In the factor (1+e ' ) the
plus sign has to be taken for trajectories which are
even under charge conjugation and the minus sign for
the odd ones. n;=u, (t) is the trajectory function. The
dimensionless Regge-pole residue has been factored"
into the form

where b,,(t) is quite analogous to the reduced widths in
compound-nucleus theories. In these theories the level
widths have momentum dependences at threshold given

by (qR) ~, where R is the channel radius, and the reduced
widths are de6ned with this factor removed.

In our analysis of Eq. (26) we will consider total
cross sections which give us ImA, ,„(s,0). Also, we

consider coupling constants involving vector particles,
which give A(s, t) in the neighborhood of the pole at
t=ns,'. m, is the mass of the vector meson on the ith
trajectory. Consequently, we will be able to evaluate

q, - is the center-of-mass momentum of the xS system
in the t channel and is given by

4(q„'+m, ')-=t=4(q„„'+m„')-. (21)

as well as
t/;, (m s)f/;„(mP)/s;

b;,(0)b;„(0)/s; s&'&.

Assuming that the "reduced widths" b are indepen-
dent of t, we can solve for them and for s,.Putting these
results back into Eq. (26), we then have the complete
s and t dependence of A „(s,t) which can be checked
against the s,t dependence found in various analyses
of reactions where t(0. This comparison is made in
Sec. V and it is verified that the A (s, t) fould in reaction
studies when continued to t&0 do in fact agree with
A(s, t) formulated in this paper when one considers
empirical A(s, t) functions which use a;(t) such that
nv(Mvs) =1.

The 5's can be evaluated in terms of the coupling
constants when t takes on values corresponding to
particle masses. For example, in the case of the x+x+
elastic scattering amplitude continued to t=mp', we
know that the amplitude is determined by the p-pole
term alone and u~(m, ')=1. The contribution of the
p pole (we follow the discussion of Ref. 17), at large
Sq 1S

The total cross section o&,t(x,y) is given by the optical
theorem

~...(x,y) = ImA, „(s,0),
2v'( q*.)

(22)

where q,„ is the center-of-mass momentum in the s
channel:

sl/2 —
(q 2+m 2)1/2+ (q 2+m 2)l/2 (23)

As pointed out by Frautschi, Gell-Mann, and
Zachariasen, 'r one would expect P;,(t) to behave like

q, ~s'(t). We therefore follow them and introduce a
dimensionless "reduced" residue f/;, (t), defined by

0;.(t)/q*"'= b'*(t)/s'"", (24)

where s; is a scale parameter of dimension energy
squared and b,,(t) is expected to be slowly varying in
t for suitable a choice of s;. As discussed by Desai" on
the basis of nonrelativistic Regge theory we would
expect s; to be related to the radius of interaction in the
t channel by s;= (1/R;)', where R; is the interaction
radius. From nonrelativistic considerations" E; is
related to du/dt by the equation

A + +(s,t) =2sg, '/(t m, '). —(27)

The Regge formula gives, in the neighborhood of
t= mp',

3a. s b,.'(m, ')
A + +(s,t)=

2 t—m, 'n'(m, ')sp
(28)

4x' 1 1 1

dt 4 2rr;+1 4(2n;+1) s; Consequently, we have
4

f/,.'(m, s) =—n'(m, ')g„.'s, .
3Ã

(29)This would yield s; (1/2m )s when the observed vector
trajectory slopes are used.

Equation (19) is now given by Similarly, for the no-spin-Qip amplitude in the xÃ
elastic scattering amplitude we And thatI'(~'+s)

A.„(s,t) = —vr'/sQ (2n;+1)
' I'(rr;+1) 4u'(m, ')

gP&NgP7r7rSP .
3Ã

bp (mp')bp/v(mp') = (30)

b„(mps) = (4x'(m, ')s,/3a. )'/'g p... (31a)

|']~e
~f,;.(t)f,;„(t)(s/s;)-'(o, (26) In general we conclude that

k2 sin(a.o.q)I

"M. Gell-Mann, Phys. Rev. Letters 8, 263 (1962); V. N.
Gribov and I. Y. Pomeranchncir, ibid 8, 343 (1962). .

'~ S. C. Frautschi, M. Gell-Mann, and F. Zachariasen, Phys.
Rev. 126, 2204 (1962).

's B. R. Desai, Phys. Rev. 138, B1174 (1965).
"See Eq. (4-22) in Ref. 15.

and for the ~ trajectory that

f/ .(m„')= (4n'(m„s)s„/3a)'/sg„. „(31b)
where the coupling constants are dered in Sec. III.
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In order to discuss total cross sections, we substitute
Eq. (26) into Eq. (22) and write

where

b;, (0)b;„(0) s ) '&"

or,.t, (x,y) =P C; —
~

2q.„gs s;i

I t-'(0)+lj
C = +-'s.+' L2u;(0)+1].

I'Lu'(0)+1j

(32)

(33)

Using the behavior under charge conjugation and
isospin rotations, we introduce the residue parameters
8 8;,—=b;.,(0).

~coK ~coX + ~coK

~coN= ~coy= ~rr)y= ~o)n= 8 con p

&pN=&pe= —&p (35)

~pK =~pK ~pX

The following five combinations of cross sections
share the feature that each depends on a single vector
trajectory:

(s/s-) "
A Ky+ AK n 8(aKB

(harv

$ So)

~pp+~r =8 NB rr

I'(u-+ s)
X (2 „+1), (36a)

r( „+1)

I (-.+!)
X (2u„+1), (36b)

r( „+I)
Ap

3/2

mQp

r(.,+-,)
X (2up+ 1), (36c)

I'(u, +1)
s sp

~Xp
—~en= &pN&pX

m~p
I'(u.+s)

X (2u,+1), (36d)
I'(u, +1)

' V. Barger and M. Olssen, Phys. Rev. 146, 1080 (1966).

The plus sign goes with positive signature, or equiva-
lently, for the trajectories studied here, with those
trajectories even under charge conjugation.

%e will discuss the trajectories which are odd under
charge conjugation. Following Barger and Olsson"
we isolate the contributions of the p and the co trajec-
tories by considering combinations

A.„—=o t,.&(x,y) —~&.,(x,y).

(s/s, )"
A„~—6„„=8pNB„~

m~p
I'( +-')

(2u,+1), (36e)
I'(u, j1)

where mar is the target nucleon mass and p is the labora, —

tory momentum of the projectile. We have used the
notation u; =—u, (0).

In Table II, we present the values of the first four
combinations based on the experimental data of
Galbraith et at. ,"for momentum ranging from 6 to 18
BeV/c. The experimental errors for the fifth cornhina-
tion (36e) is larger than the mean values. Hence (36e)
has not been used in the present analysis. It is clear
that the ratio of (36b) and (36a) will give us the ratio
8 rr/B„K and, similarly, the ratio of (36c) and (36d)
will give us the ratio 8, /28, K. These are presented in
columns 4 and 7 of Table II. From Eqs. (31) and (14)
we see that

b„rv (m„')/b„K(m„') =g„err/g„KK 3F„sr'(——0) /F„KK( 0),
(37)

b„(m,')/2b, K (m, ') =g, /2g, KK F, ,(0)/—F—,KK(0) .
If we assume b(t) is independent of t, then we obtain
the same ratios for the 8's:

B.N/B. K=3F.N~(0)/F. KK(0)=3, (3ga)

8,./28, =F...(0)/F, (O)=1. (38b)

We are assuming here that the form factors are close
to unity at zero momentum transfer. This point is
discussed further by Kroll et ut. ' In particular, refer to
their equations (7.9) and (7.10). Earlier discussions of
this point are given in Ref. 2, cf. their equations (6.3)
and (6.4).

The experimental data of Galbraith et al."have been
6tted to a Regge-pole formula by Barger, Olsson, and
Sarma" using a least-squares Gtting procedure, where
the coupling of the vector Regge trajectories to the
hadrons was constrained to be invariant under SU(3).
Thus, in their analysis Bp was restricted to be equal
to 28,K. They found that 8„„/B„K=3.4&0.7. This is
implicit in Eq. (9) of Ref. 22. In a recent paper" Barger
and Olsson have shown that 8, /28, K~1 without the
constraint of SU(3) symmetry. The purpose of pre-
senting an analysis of the experimental data in this
paper is to show that the conclusion regarding the
coupling of the co trajectory is also independent of any
assumption concerning SU(3) symmetry.

We have, thus, experimentally verified the uni-
versality ratio for b„&(0)/b„K(0) and b, (0)/b, K(0).
We emphasize that this supports the particular form of
universality assumed in Eq. (6).

"W. Galbraith, E. W. Jenkins, T. F. Kycia, B. A. Leontic,
R. H. Phillips, A. L. Reid, and R. Rubinstein, Phys. Rev. 138,
B913 (1965).

~ V. Barger, M. Olsson, and K. V. L. Sarma, Phys. Rev. 147,
1115 (1966).

~ V. Barger and M. Olsson, Phys. Rev. Letters 15, 930 (1967).
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TA33LE lL Comparison of the predictions (38a) and (38b} with experiment. See text for fuller explanation.

Momentum
(BeV/c)

6
8

10
12
14
16
18

(36a)

11.4~0.5
8.7~0.5
8.5~0.5
7.2~0.5
6.8~0.5
7.6a0.7
7.1&1.3

(36b)

35.6~4.4
33.7~4.4

~ ~ ~

25.7+4.2
24.8~4.2
23.0&4.2
26.8~9.0

BraN/+ ex

3.1~0.4
3,9~0.5

~ ~ ~

3.6~0.7
3.7~0.7
3.0+0.7
3.8~1.3

(36')

2.3~035
2.4+035
1.7+0.35
1.7+0.35
1.5~0.35
1.7~035
1.5~1.35

(36d)

2.6~0.5
3.9~0.5
1.9a0.5
1.4+0.5
1.4~0.5
1.0~0.7
0.7~1.3

Bp,/2B, »

0.9 ~0.25
0.62~0.12
0.9 ~0.3
1.2 ~0.3
1.1 ~0.3
1.7 &1.3
2.1 ~4.2

V. EVALUATION OP b; AND s; PARAMETERS

In this section we will assume b;, is independent of t and evaluate it and s; in terms of the coupling constants
and the cross-section data. Combining Eqs. (29)—(31) we find that

3 F( +1)(g g sr~) s ) " 2A

BeV' 64m-'" I' np —,
' 4m BeV' n '

r(np+1) fg~xxgrrrrr s ) ' ~x,—+xsr

64'-s" F (n +-') 5 47r BeV') I
Qp

r(n„+1)pg„s -'t s qi---~„+~,~
64ws~s r(n„+s) k 4x (BeV') n '

r(nN+1) /g~xxg~NN '( s )' "Axp+AXN

64wsts r(n.+-,') I 4w &BeVsi n.

(39a)

(39b)

It is interesting to note that Van Royen and Keiss-
kopf in constructing a quark-antiquark wave function
for the vector mesons demand that

I fv (0) I

'= mvm7r'/2.

Since this is an s wave function we Gnd an approximate
radius from the condition

which yields

—;x~v'I4v(o) I'=1

Z~(1/m. )I (-;~)(m./mv) j'&'.

The resulting values E„=Rp=0.62 F are consistent
with the scaling lengths obtained by us, which are
s -»2-~ I., s„-~~2-0.7 F.

As already verified, Eqs. (39a) and (39b) are essen-

tially independent of s for the data shown in Table II.
Hence average values were used in the evaluation of
s;. The values of b, and b„N~ were found using Eq.
(31) and the values of g, and g„~x discussed in Sec.
III.

We find that

sp'»~486 MeV,
s„'I'~290 MeV )

bp„,—, 1.02,
3b„„„~0.62.

in the neighborhood of a vector-meson pole at 0,=1.
We consequently define a new function which is real
and dimensionless,

Gv'(t)/kr=Av(s, t)/47r $(t)I sn'(t) j~~'i. (41)

In this equation, Av(s, t) is the contribution of a single
vector trajectory to a given process. In the neighborhood
of a vector pole atn(mv )= 1 for a process x+y ~ x+y,

Gvs(m vs)/4r =gv*.g v„/4x.

This result can be checked explicitly for xm scattering
by referring to Eq.)(27) where A (s,t) is given in the
neighborhood of the pole at t=mp'. In terms of our
parameters for x+y -+ x+y,

Gv'(t) r(n+s) &v.&v,
(2n+1)

Sx'" r(n+1) (sv ')" (42)

where we make the assumption'~ that by„b~~ are

VI. COMPARISON WITH OTHER
EVALUATIONS OF A(s, t)

Rather than compare various evaluations of A(s, t)
directly, it is more convenient to take out the factors
((t)s t'& which they all have in common. Here

((t)= (s
—* —1)/sinxn 2/xn'(t) (t—mv') (40)
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FIG. 1. Plot of G,'( )f/4vr against n(t)

Chiu, and Phillips. '4 LTheir solution (1a) was used. )
Ke did not use their co-traj ectory results since their
a (f), when continued to positive t, missed the point
e„=1 at t=nz„' by a large amount, and their value of
G„s/4r at a„=1 differed considerably from the approxi-
mately known values of the coupling constants.

The earlier analyses of Phillips" did constrain
a (es„')= 1 and we present his G„'(t)/4s. for the to

trajectory. The comparison is quite good when made in
the region 0(t(mvs. This lends support to the form
assumed in Eq. (42). It should be pointed out that for
t&0 the residues go through zero'4 and this character-
istic is Not a feature of the formula in Eq. (42).

independent of t. At n = 1 this reduces to

Gvs (mvs) = 4svr[bv, bv„/s, a'(mvs)j

and gives back the relations in Eq. (31).
At t=0 and using the high-energy approximation

s'~'q ~s,

Gvs(0)/4s = so v(s)/4w'Lsav'(0) j v('), (43)

where o v(s) is the magnitude of the contribution of the
trajectory in question to the total cross section.

Hence, Gv (0)/4r and Gvs(mvs)/4s are empirically
given in terms of ov(s), av(0), av'(0) and the coupling
constants. The behavior for 0(t(nzvs goes as 2s'~sq, „s
(2a+ 1)$I' (a+—,')/P (a+ 1)g (s;a') in our model. This
behavior is compared to two reaction analyses in Figs. 1
and 2. For the p trajectory we present G,'(f)/kr de-
rived from the recent analysis of Rarita, Riddell,

l2

10

6
Ol

CO

VII. CONCLUSIONS

We have used the Frautschi, Gell-Mann, Zachariasen'~
model for the Regge residue P(f) given by Eq. (24)
where it is assumed that the reduced residue b (t)
is independent of t and a scaling parameter s; was
introduced. Using inf ormation about total cross sec-
tions, the value of b; were shown to be in the ratios
given by the form of the universality hypothesis given
in Eq. (6). The particular ratios are given in Eqs.
(38a) and (38b). The scaling parameters indicate a
characteristic length of the order of (0.7—1.0) F which
is consistent with the observed slopes (dn/dt) as dis-
cussed in Sec. IV. The various methods for determining
the ~ coupling constant were discussed in Sec. III and
it was verified that the universal value of g„coming
from x' decay is consistent with the value of g„NN
coming from the nucleon-nucleon scattering thus
lending support to the universality hypothesis. The
simple t dependence of P (f) which follows from a
t-independent reduced residue was found to be con-
sistent with the phenomenological analyses of P (f)
for 0& t&mvs which appeared in Refs. 13 and 24.

We, therefore, conclude that the concept of a reduced
residue slowly varying in t with an associated scale
parameter is a physically meaningful one and quite
useful for the study of coupling theories. In particular,
the universality theory of couplings gains support
through this type of analysis, and in the sense that the
p meson is coupled to the I, we conclude that the co

meson is coupled to ~s (21V+ Y). The explicit state-
ment is given in Eq. (6).

0
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