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for three-point functions. " Since our results do not
depend upon the subtraction constant, we may take,
for simplicity, vs=0. With this choice, from Eqs. (2)
and (4) it at once follows that Fs(v,q') satisfies an
unsubtracted dispersion relation and that Ii5 leads to a
superconvergent relation.

To sum up, we have shown that the current-algebra
results for virtual-photon-pion scattering are consistent
with dispersion relations, provided that we write OSDR
for the amplitudes F1 and Ii ~. In other words, we have
shown that hard-pion results for a four-point function
in the forward direction can be easily obtained by
writing OSDR, and by determining the subtraction
constant from the soft-pion current algebra'4 for the

"For the 6rst three sum rules, see papers quoted in Ref. 3.
For the last sum rule, see Ref. 8 and D. G. Sutherland, Nucl.
Phys. B2, 433 (1967)."The 6rst successful application of current algebra to determine
the subtraction constant in OSDR was made by S. Okubo et el. ,
Phys. Rev. Letters 19, 407 (1967) for the decay E ~ 2n. Later,

four-point function and the dispersion integral from the
hard-pion three-point function. The only anomaly is
that with the neglect of the Regge cuts, it is expected'
that Ii& and F2 should satisfy unsubtracted dispersion
relations. Thus, the algebra of currents and Regge
pole theory (without cuts) lead us to different results.
Similar calculations are in progress for xA1 and mp

scattering amplitudes, and perhaps these will help in
reaching a more definite conclusion.
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Kinematic singularity- and zero-free invariant amplitudes for Compton scattering of spin-one particles
are derived, Gauge invariance is automatically satisfied. A complete set of low-energy theorems is obtained.
In addition to the well-known erst-order theorems, higher-order theorems also exist. It is shown that up to
second order in the photon energy the 12 independent amplitudes are determined by the static moments of
the target particle plus four dynamic structure-dependent constants; up to third order they are determined
by the static moments plus eight additional constants. Dispersion relations may be written down for the
invariant amplitudes without any ad hoc subtractions. The asymptotic behavior of these amplitudes is
carefully examined, leading to a systematic derivation of possible sum rules and superconvergence relations.
Generalizations of previously known sum rules as well as new ones are obtained.

I. INTRODUCTION

ECENTLY, there has been much interest in
studying the analytic structure of the scattering

amplitude due to Lorentz transformation properties of
the externu/ particle states involving spin. Detailed
analysis of these kinematic singularities and zeros of
the scattering amplitude has led to physically interest-

ing results. In particular, for processes involving photons
these analytic properties are intimately related to gauge
invariance. Detailed analysis of these analytic proper-
ties has helped in clarifying the meaning of the well-

known low-energy theorems as well as in deriving new
ones for various photon processes. '

The kinematic structure of the two-body helicity

*Present address: Institute for Advanced Study, Princeton,
N. J. 08540.

'H. Abarbanel and M. Goldberger, Phys. Rev. 165, 1594
(1968); K. Bardakci and H. Pagels, ibid. 166, 1783 (1968); S.
Choudhury and D. Z. Freedman, ib/d. 168, 1739 (1968).

amplitudes has been extensively studied recently 2 It is
shown that regularized helicity amplitudes can be de-
6ned such that they are free of kinematic singularities.
However, they must satisfy certain kinematic con-
straints which make their use in certain applications
rather cumbersome. For example, if one wants to write
down dispersion relations for these amplitudes, one
must make ad hoc subtractions in order to ensure that
these constraints are satis6ed.

Qn the other hand, there exist invariant amplitudes
which, if properly chosen, are free of both kinematic
singularities and zeros' (constraints). In obtaining these

' Y. Hara, Phys. Rev. 136, B507 (1964); L. L. (:, +fang ib/d,
142, 1187 (1965); H. P. Stapp, ibid. 160, 1251 (196/); G. Cphen-
Tannoudji, A. Morel, and H. Navelet, Ann. Phys. (N. p.) 46, 239
(1968); J. P. Ader, M. Capdeville, and H. Navelet, Nupvp Ci
mento 55A, 315 (1968). The last reference deals with twp-body
scattering amplitudes involving at least one massless particle.

e A. C. Hearn, Nuovo Cimento 21, 333 (1961);K. Hepp, Helv.
Phys. Acta 36, 355 (1963); D. N. Williams (unpublished).
D. Zwanziger, in Lectssres in Theoretica/ Physics (The University of
(".olorado Press, Boulder, Colorado, 1965), Vpl, QIg A.
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invariant amplitudes, all requirements imposed by
Lorentz invariance, crossing, and, for photon processes,
gauge invariance are explicitly taken care of from the
beginning. For many purposes, therefore, the invariant
amplitudes are the most convenient ones to use.

A general procedure for obtaining kinematic singu-
larity- and zero-free invariant amplitudes for photon
processes was proposed in a recent publication. 4 In the
present paper, we apply this method to the case of
Compton scattering on a spin-one particle. In Sec. II,
we derive these kinematic singularity- and zero-free
amplitudes. In Sec. III, we derive the complete set of
low-energy theorems for this process. It is shown that in
addition to the familiar first-order low-energy theorems
there exist eight new low energy theorems to second
order and four new ones to third order in the photon
energy. In Sec. IV we write down single and double
spectral representations for the invariant amplitudes.

By a careful examination of the asymptotic behavior of
these amplitudes, we also discuss possible sum rules and
superconvergence relations that can be derived.

The notation we adopt in this paper is the same as in
Ref. 4, which we shall refer to henceforth as A.

II. INVARIANT AMPLITUDES

We consider Compton scattering on a target particle
of spin one and mass m. Let the momenta of the initial
and final photon be denoted by k, k' and those of the
target particle by p, p', respectively. The physical
scattering amplitude can be written

where the $'s are the polarization vectors for the various
particles involved and M&"' &" is the M function for
this process. M is an analytic function of the four-
momentum components except for dynamical singu-
larities. ' There are three independent four-vectors in
this problem; we shall take them to be

6=k —k'= p' —p,
K=5(&+&') P=2(p+p')

A set of invariant amplitudes can be obtained by
expanding M in terms of a tensor basis {2;}with 2;
satisfying the correct Lorentz transformation properties
(including space- and time-reversal invariance) as well

as gauge invariance,

M«», »v(/i KP) P Z.» v, ».(BKP)A.(s/) (3)

The A s are free from kinematic singularities if {2;}
corresponds to a minima/ po/ynoniia/ basis. '

4 W. A. Bardeen and Wu-Ki Tung, Phys. Rev. 173, 1423 (1968).
' H. P. Stapp, Phys. Rev. 125, 2139 (1962).
6 A polynomial tensor basis is said to be minimal if any other

such basis can be expressed in terms of this without introducing
kinematic singularities. For more precise discussions see Ref. 4.

We then impose gauge invariance by means of a simple
projection operator I», defined as

I»» =g» k«k'—«/k k'.

It has the following properties:

k'„ I~ ~= I~ ~k„=0,
I~ .M v'vI ~=M~" ~".T' T

(5)

(6)

(7)

Equation (7) follows from the gauge-invariance condi-
tion on the M function:

k'.M~" ~"=Sf~" 'vk =0./I

From Eqs. (4) and (7) we obtain

M=IMI= Q;(I/, I)B;,
where the vector indices are suppressed and (IMI)
=I»', M'"'""I,». On the right-hand side of Eq. (9), the
new tensor basis {I/;I}is now explicitly gauge-invariant
because of Eq. (6).However, because of the momentum-
dependent denominator appearing in (5), this basis is
not a po/ynoniia/ basis In A, a .procedure to obtain a
minimal polyn. omial basis from {I/;I} by taking ap-
propriate linear combinations is outlined. We follow this
procedure here. First we write down the simple tensors~

{/'}:
—gP /gV V

l =g P"P"

l =g»E" E"
/ =g» «(P" K"+K"P")

/, =P~ P~g""

l6= P/" P&P" P"

/ =P P E'E'
/8= P» P»(P" K"+K"P"),

gP V g(t(V

~io= g" Vg"V,

/» g» "P»P"+g»"P» P-—",
/ =g» "P»K"+g»"P»K"

/ =g» "P»P" +g»" P» P"

/ =g "P K" +g "P K"

(10)

~ There are 27 simple tensors satisfying the required Lorentz
transformation and space, time-rever'sal properties. We have not
written down the ones containing k&' or k'& because they auto-
matically drop out when the new basis (Il;I} is formed as a
consequence of (6).

To find the appropriate {2;},we follow the procedure
of A. We first expand M in terms of a simple polynomial
basis {l;}which transforms properly under Lorentz
transformations (including space and time reversal):

M«'"' »"=P /, »'"' «"B;(s,t).
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L2PgKg (P .E)g]x (Pg+ 2Kg) x Pgx

+ (P 'E)X4+ (P 'E)xg —2E xg+2Egxg
—P'E'Xzz+E'Xzg= 0. (13)

These relations allow us to eliminate two redundant
linear combinations of X;. These must be chosen in a
way such that all the 14 X s can be expressed in terms
of the remaining 12 independent ones with polynomial
coefFicients. This then ensures that the 6nal tensor
basis, called {2;},is a minima/ polynomial basis The.
result is"0

Z1= X1, Z2= Xg, Z3= X2,
24= Xg+2Xg —2Xg+P Xyz —Xzg —P Xz,

zg=x4+ xp, &p ——xz—(P E)xg,
7 X11 Xlp 8 X8 g~ Xlp

Zg ——Xzp ——,'P'Xp+-g'Xg,

210= X1g—2X2,

Zzz ——Xzg —2(P E)Xzz+2(P E)Xz—X4$

12 X14 g+ X2 ~

(14)

8 This has its origin in the fact that the (l;) are not all indepen-
dent. Among the 27 simple tensors that one can write down, there

Forming {I/~I} and using the procedure of A, we

obtain the following set of minimal polynomial tensors:

X =E'Il;I, i= 1, 2, 3, 4

Xg=I(K (lg leap)+14]I &

Xp=ILEg(ized —ling)+2(P It)lg]I,
Xz—ILEg(lzg —lz4)+ (P K)l4]I,
Xg ——ILE'lg+-g' (P E')'l,]I,
Xg=I/(lp+lz)+ g (P 'E) (lg+lzp) —

g (P 'E) (&zz izg)

——,
' (P.E)(lzg+lg4)]I ) (11)

Xzp ——Iglg+-,'(P E)'(lg —l,p)
—-,'(P E)(lgz+lzg)

——',(P E) (lz, —lz4)]I,

Xgz ——ILE'(lg+

leap)+

(l,+lg)]I,
Xzg ——I(E'(lzz+173)+ (P K)l4]I,
Xzg ——ILE'(lzg+lg4)+2(P E)lg]I,
X&4——ILE'lp+-,' (P K)'lg]I.

The X s are not completely independent because from
a helicity count one finds there should be only 12
independent amplitudes. Indeed, there exist two linear
relations among the X;.' They are

2(P E)x,—Pgx,+P gKg —(P E)g]x,—Kgx,

+(P E)Xz=0 (12)
and

In constructing this basis {2;},we have taken into
account Lorentz invariance, space- and time-reversal

invariance, and gauge invariance. A final requirement
is that of s-I crossing symmetry or, equivalently, Bose
symmetry of the two-photon states in the t channel.
This demands

M~'"''"(a E P) =M~"'''"(& —E P). (15)

A quick loop at definitions (10), (11), and (14) reveals

that Z2, Z5, 29, and 211 are odd under s-I crossing
while the rest a,re even. To satisfy (15), the usual

practice would demand that the invariant amplitudes
associated with the odd Z, be odd under s-I crossing. It
is much more natural, however, to have crossing sym-

metry built in from the beginning by using a tensor
basis satisfying (15) and otherwise still minimal. Such
a basis, cal1ed {2,'},consists of

2 = (P E)Z;, i=2, 5, 9, 11

otherwise.

The fact that {2,'} is, indeed, the right choice can be
seen in another way. As mentioned before, if {2;}were

used, the invariant amplitudes corresponding to i = 2, 5,
9, and 11 would be odd under s-I crossing. Hence these
amplitudes must vanish when s= u (or P.E = ~(s—+)
=0]. In other words, they must have a kinematic sero

when I' E=O. Removing this kinematic zero amounts
to choosing {2 }as our tensor basis.

If we now define the invariant functions by the
expansion

12
3f""'~"=p z,'""' ~"A;(s,&), (17)

the A s are free of all kinematic singularities and zeros.
In particular, all the A s are even under s-u crossing.

It is straightforward, although somewhat tedious, to
compare our results with recent. analyses of the kine-

matic-singularity structure of the helicity amplitudes.
It sufFices to write down the relation between the A; and
the t-channel helicity amplitudes:

exist two complicated linear relations. For our purpose it is
necessary to keep all the l; until the end because all of them are
needed in constructing f X;} to satisfy the requirement of gauge
invariance. Only after arriving at fX;}can we decide which two
particular combinations of l; can be eliminated to yield a minimal
gauge-invariant polynomial basis, as we shall demonstrate in the
following.

9The linear combinations Z4 and Z5 are the essential ones
formed to effect the elimination of redundant tensors as explained
in the text. The other combinations Zq, Z7, . . . , 21' are formed for
later convenience.

' See the last reference in Ref. 2.



2130 WU —Kr TU NG

f», »'+f—i-i, »'= (1/p')( —2P'K'A i—(P'+K')LP'K' —(P 'K)']A 4)

fii, ii —f i i,ii = 2 (k/p) {—(P 'K) A 2+P K A 6) &

(sing) 'ffio, ii'+f io, ii']= (v2/m)k(P K)( K—'Am P—'A4 P—'K'As),

(»nest) 'Lfio, »' f—io, ii']= (~/m)(k2/P)(P'K)( P'A—, K'—A4 P'K—As),

(sing) 'fl—i, ii gm'k'(A 4},

fo, ii' ——(1/m'p')(P'K'(P'+K')A i+2P'K'(P K)'A i+P'K'A i

+DP'+K') (P K)' P'K'—]A4+ 2P'K'(P'+K') (P K)'A 5)

10,1—1 —10,1—1

(sinter)
' +

1+cosf 1—coqk
= (K2/m)k'{ Ai —P'A—ip),

(18)

10,1—1 —10,1—1

(sinful)
'

1+cosf 1—cosf
= (1/V2m)pk'(P K)(—P'Ag —2K'Aii},

1—1,1—1 —11,1—1
+ =k'{—A7},

(1+cosP)' (1—cosP)'

1—1,1—1 —11,1—1 = 2k'p (P K) (A ii),
(1+cosf)' (1—cosset)'

(sing) 'fil, i—i —k'{——,'A +i-,' P'A )8,

(sjntp) foo, i i = (k /m )(—K Ai iP (P +K—)As—2P KiAio —~gP K Aim) ~

In the above equations P denotes the t-channel c.m.
scattering angle and k and p are the magnitudes of the
3-momenta of the photon and the target particle,
respectively. The curly brackets on the right-hand side
of these equations correspond to the regularized helicity
amplitudes. "Notice that with our choice of (2 ) the
first six 2; are related only to t-channel amplitudes with
photon helicity (X,X')= (1,1), while the last six are
related to those with photon helicity (1, —1). In the
s channel, the 6rst group corresponds to photon helicity-
Qip amplitudes and the second group corresponds to
photon helicity-nonQip amplitudes.

III. LOW-ENERGY THEOREMS

The fact that the invariant amplitudes A; are free
of kinematic singularities and zeros inunediately implies
a complete set of low-energy theorems' for Compton
scattering of a spin-one particle. These are obtained by
observing that in the limit of zero photon energy (at
Axed scattering angle) the only singularities in A; are the
dynamical singularities due to the single-particle inter-
mediate states in the s and I channels. "The contribu-
tion of these pole terms to A; can be calculated un-

ambiguously in terms of the static moments of the

~~ Note that the kinematic zero at I'.I@=0 due to s—I crossing
is not considered in the analysis of Ref. 2.

'~ This statement is true only if intermediate states involving
photon are excluded or, in other words, electromagnetic inter-
action are treated only to the lowest order.

target particles involved. We shall label these pole
terms by A;& and refer to A '=A;—2;"as the continuum
coetribltion to A;. The 3 are 6nite in the low-energy
limit because both kinematic and dynamical singu-
larities are absent. If we express the physical scattering
amplitudes (for instance, the helicity amplitudes) in
terms of (A;}, A only contributes to terms of higher
order in the photon energy. The lower-order terms are
completely determined by A;& and thus by the static
moments.

Although the explicit form of the low-energy theorems
is most useful when expressed in terms of the s-channel

physical scattering amplitudes, the main features of
these theorems can be seen more easily from the
t-channel helicity amplitudes given in the previous
section. We note that in the low-energy limit sing, cosP,

p, and P' remain constant while k =g(—K') and P K
go to zero as single powers of the photon energy (in the
s channel). Inspection of (18) reveals that Ai', A4', A7',
and A8' contribute to terms of second or higher orders
in the photon energy, A 2', A6', A 9', and 310' contribute
to terms of third or higher orders while A3', A5', 311',
and 212' contribute to terms of fourth or higher orders.
This means that, to first order in the (s-channel)
photon energy, all the 12 scattering amplitudes are
determined by the static moments of the target particle;
to second order, eight linear combinations of the

scattering amplitudes depend only on the static mo-

ments, and to third order, four linear combinations are
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where vo denotes the inelastic threshold. We remark that
provided the helicity amplitudes do not grow like v' or
faster, the unsubtracted form of the dispersion relations
(25) is justified for all A; except for i= 1, 3, and 6 )see
Eqs. (19) and (20)j. In the rest of this section, we shall
only use Eq. (25) for At, As, ~, A».

We now turn to discussions of possible sum rules that
can be derived for Compton scattering of spin-one
particles. The conventional method" for deriving sum
rules depends on two inputs. The first is a low-energy
theorem for a certain scattering amplitude. (This may
follow from considerations similar to those discussed
above or from some dynamical model like current
algebra. ") The second ingredient is the assumption of
an unsubtracted dispersion relation for the same
amplitude. We have seen in the last section that when
the Compton scattering is described in terms of the
invariant amplitudes A;, the low-energy theorems are
immediate consequences of the fact that these ampli-
tudes are free of kinematic singularities. '7 The only
assumption needed for the derivation of sum rules is,
therefore, that concerning the asymptotic behavior of
the A;. Here, an unsubtracted dispersion relation is not
sufficient as the value of A is not known anywhere
a priori. Ie order to satisfy a sum rute, A; must be super
convergent. This condition is equivalent to those neces-
sary for the derivation of sum rules in the conventional
method mentioned above. The reason is obvious; when
the physical scattering amplitudes are expressed in
terms of A;, there must be momentum factors which
cancel the singularity of the pole term in (23) or (25) at
threshold (thus giving rise to low-energy theorems for
these amplitudes); these same momentum factors make
the relevent A; superconvergent when the physical am-

plitude satisfies an unsubtracted dispersion relation and
vice versa. The advantage of using the A; in deriving
sum rules lies in the fact that a systematic and complete
discussion is made easier because all the kinematical
effects are already taken care of in advance.

Instead of arbitrarily assuming a certain asymptotic
behavior for the A; and deriving many sum rules of un-

certain significance, we shall try to start with specific
models for the asymptotic behavior and see what sum
rules are expected to arise. In this way, it will be clear
what is being tested when it becomes possible to com-

pare the sum rules with experiment. As it turns out, we
are forced to rely heavily on Regge phenomenology
which can either be regarded as consequences of a
fundamental theory or, more appropriately for our
purpose at least, as a convenient parametrization of
high-energy scattering phenomenology which is not
inconsistent with existing experimental data.

We have a final remark before entering into the
actual derivation of sum rules. We note that all A, in

'6 See, for example, S. Drell and A. Hearn, Phys. Rev. Letters
16, 908 (1966};and M. A. B.B48, ibid 17, 333 (1966). .

'7 The fact that A; are also free of kinematic zeros enabled us to
derive more higher-order low-energy theorems than one can obtain
from other sets of kinematic singularity-free amplitudes.

YQ

dv" ImA (v",t), i =9, 11. (26)

G. Mahoux and A. Martin, Phys. Rev. 1?4, 2140 (1968).
"This agrees with the conclusion of Ref. 18.
0 This sum rule has previously been obtained by H. Pagels,

Phys. Rev. 158, 1566 (1967); and A. Pais, Nnovo Cimento 53A,
433 (1968}.

our problem are even functions of v for fixed t. As a
consequence, they satisfy a trivial superconvergence
relation in v. Nontiivial results can be obtained only if
the odd function vA; is superconvergent or, in other
words, if A; converges faster than v ' ' where c&0.
Similarly, the superconvergence relation for v'A; is
trivial; the next nontrivial relation can be obtained
only if A; converges faster than v 4 '.

We start from the least restrictive of asymptotic be-
haviors for the scattering amplitude —the Froissart
bound for the helicity amplitudes. (It has been proved's

from axiomatic field theory that all two-body helicity
amplitudes not ievolv&sg massless particles satisfy the
Froissart bound. Similar proof does not exist for photon
processes. Therefore, we have to take this as an
assumption. ) We then find, from Eq. (20), that the
most convergent of the invariant amplitudes behave
like v ' lnv (C(s) =s lnsj for fixed t. According to our
discussion in the preceding paragraph, this is just short
of being superconvergent. Similarly, from Eqs. (22) we

find the most convergent amplitudes in the variable t

(for fixed s) behave like t 'lnt, again just short of

being superconvergent. We conclude then that no sum
rule exists if only the Froissart bound is applied. "

We therefore look for stronger bounds on the in-

variant amplitudes by assuming Regge asymptotic
behavior. Here one is confronted from the beginning
with the problem of the existence of fixed poles" in the
complex angular momentum plane. If fixed poles exist
at nonsense right signature values in the J plane, in
particular at J= 1, then asymptotically all the Compton
scattering amplitudes would be dominated by this
fixed pole. This means C(s) s in Eq. (19) and again no

superconvergence relations can be derived. To go
further, therefore, one has to assume that fixed poles do
not exist for J&1. One then may look for the contribu-
tions of the moving (Regge) poles to the various ampli-

tudes. It is not hard to see that among the six photon
helicity-nonQip amplitudes A7, A8, A &0, and A» receive
contributions from Regge poles with even charge con-

jugation and normal parity L (—1)~P = 1), while

Ag and A~~ receive contributions from Regge poles
with even charge conjugation and abnormal parity

L(—1)~P= —1$. The leading trajectory in the first

group is the Pomeranchuk trajectory with n(t)&1,
n(0) = 1. There is no well-established trajectory in the
second group; all the possible candidates are expected
to have n(t)(0 (for example, i1 and n trajectories).
Therefore, we can derive the following sum rules for
Ag and Agg..



176 COM P TON SCATTERING BY SP IN —ONE PARTICLES 2133

The residue functions R " are given in the Appendix.
Of special interest is the f=0 limit of (26) because in
that limit the integrand may be related to total cross
sections through the optical theorem. A glance at
Eq. (A2), however, reveals that A ii decouples from the
physical scattering amplitudes in the forward direction.
The only total cross-section sum rule that can be
derived under the assumed asymptotic behavior for A;
is therefore the f=O limit of (26) for Ap. From results
given in the Appendix, it is easy to verify that this sum
rule takes the form'0

dvL(o„+o.—op)++ (o,+o.—op)

—2(o„+o.—op')P)=0, (28)

The sum rules that one obtains for 6, and 6, can
therefore be expressed in terms of linear combinations
of Compton amplitudes on targets in different charge
states. In particular, in taking the limit t ~ 0 in the
sum rules for 8,72 and 0',8', we obtain the following total
cross-section sum rules:

(2m@—2)'=
m2

00

0'y V 0~ V

0 V

(27) diL(o„+o.)++(o~+o.) —2(o,+o.)Pj=8prsn, (29)

where O„and cr are the total photoabsorption cross
sections for polarized photons on a polarized target with
their spins parallel and antiparallel to each other,
respectively. Also, in the above equation, e stands for
the fine-structure constant and p is the magnetic
moment of the target particle. It is quite obvious that
Eq. (27) is the analog of the familiar Drell-Hearn sum
rule" for nucleon Compton scattering. We note in
particular that the quadrupole moment Q cannot
satisfy a total cross-section sum rule. In the forward
direction Q only enters A» and A», but neither of these
amplitudes contributes to the physical scattering ampli-
tudes. "Of course, Q does enter the general sum rules
(26) for both Ap and A ii, however, they are rather hard
to test experimentally away from the forward direction.

Adhering to Regge asymptotic behavior, the only
possible way to obtain additional sum rules is when the
target particle carries isotopic spin. Let us consider the
case of I=1.Each amplitude can be decomposed into
three parts corresponding to I=0, 1, 2 in the 3 channel.
The dominant trajectory in the I=0 and 1 pieces of the
amplitudes corresponding to normal parity (A 7, A s, A ip,
and A is) are the Pomeranchuk and the A, trajectories,
respectively. There is no known trajectory with I=2.
Asymptotically, these amplitudes behave like v '+~&'&

for fixed t. We only obtain sum rules if n(t)(0. This
presumably is true for the I= 2 amplitudes; it may also
be true for the I=1 amplitudes at large momentum
transfers P—f&0.5 (GeV/c)sj. Let us denote by 8;r
(I=0, 1, 2) the f-channel amplitudes with isotopic spin
I and by A, rs (Is——+, 0, —) the amplitudes for scatter-
ing of photon on a target with given I3 in the s channel;
then

&"=(el)A'"—(el)A"+(e-')A'
e = (Q-,')A;+—(g-', )A;—,
ff"= (V'p)A "+(V's)A*'+(V'p)A;

s' Bardairci and Pagels (Ref. 1) obtained a sum rule for Q in
terms of an amplitude which decouples from the physical scatter-
ing amplitudes at forward direction. A closer examination of their
result reveals that the amplitudes they used are related to Ajz.
Since the Pomeranchuk pole contributes to 312, their assumption
about the asymptotic behavior does not seem to be justified.

where the subscripts p, a, and 0 denote the spin states
of the target particle as before and the superscripts
+, —,0 denote the charge states of the target particle.
We shall not write down the explicit form of the more
general sum rules involving the nonforward scattering
amplitudes. They are much less likely to be susceptible
to experimental test than the total cross-section sum
rules given above.

So far we have only discussed sum rules with fixed
momentum transfer in the s channel. Similar con-
siderations apply to possible sum rules with fixed s for
scattering amplitudes evaluated in the t-channel physi-
cal region. As a function of t, the invariant functions do
not have definite symmetry properties. The invariant
amplitudes become superconvergent if they behave like
t ' ' with e&0. This, together with the fact that there
is no moving pole with n(/) = 1 in this channel, means
many sum rules can be derived if the assumption of
no fixed pole at J= 1 is made. Although it is a straight-
forward matter to write them down, we shall not do it
here because it is rather unlikely that these sum rules
will become experimentally testable in the near future.
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APPENDIX

With our choice of minimal tensor basis {2 ), the
connection between the invariant amplitudes A; and
the s-channel helicity amplitudes is rather involved. In
this appendix we give the s-channel photon helicity-
nonAip amplitudes in terms of the A;. We also write
down the pole terms of these amplitudes in terms of
the electromagnetic static moments of the target
particle.

Let us denote by 8, q, and E& the scattering angle, the
magnitude of the 3-momentum, and the energy of the
target particle, respectively, in the c.m. system of the
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s channel. We have

f»»'= q'{2 sin'(-', 8)A 7+-,'s cos'(-', 8)A p+-,'(gs) q cos'(-', 8)LE+q cos'(-', 8)]L2E sin'(-', 8)+ (gs) cos'(~p8) 1A p

p(+$)q slI1 8 Ayp+igsq slI1 8 cos (p8)A»
+2q'[E+q cos'(-', 8)jL2E sin'(-,'8)+ (gs) cos'(-,'8)) sin'(-', 8)A»},

fop, »'= (1/%2m)q sin8{ (gs)A7 psE cos'(-,'8)Ap —p, sEq' sin'8 A»
,'qpE—+—q cos'(-,'8)]L2 (gs)E'+m'q cos'(-'8))A p+-,'(gs) qp2E sin'p8) —(gs) cos'(-'8) jA ~p

——',(Qs)q'[E+q cos'(-'8)]L(4E—2q) sin'(-,'8)+ (gs) cos'(-'8) jA»} &

f»»' =
,,' (Qs-)q' sin'8{-', (gs)As —&EqLE+ q cos'(-,'8))A p

—qA &p

+q LE+q cos (p8))A» —-', (Qs)q' cos'(-', 8)A»},
fop, ip'= (1/m') (gs)q' cos'(p8) {—(gs)Az+ (gs)(—q' sinP(p'8)+mP cos'(-', 8))A p

+Eq)E+q cos'(-,'8)j sin'(-,'8)Ap —2(gs)Eq sin'(-', 8)A &p

+2mPqP/E+q cosP(~8)] sinP(-'8)A ~~
—

p (Qs)E'q' sin4(p8)A gp},

fq q, n' ——(1/292m)sq' sin8 cos(p8) {—EA p+-,'q(2E —q)LE+q cos'(p8) jAp
—qAtp+q LE+q cos (p8) jAyy —pEq slI1 (p8)A»},

f»,»' ———',sq' cos'(-,'8){Ap—qLE+q cos'(-', 8)]Ap+-', q' sin'(-', 8)A»} .

(A1)

In the forward direction, there are three nonvanishing spin-nonRip amplitudes. The above equations reduce to

f», »'(s, cos8= 1)= -',sq'LA p+ (gs)qA pj,
fio, xp'(s, cos8= 1)= (1/m')sq'( —A7+m'As),

f»,»'(s, cos8=1)=-',sq'LAp —(gs)qApj.

(A2)

Inverting these relations, we get

Av= (m'/~q') (f»,» +f1—1,1—1 flp, lp ), A p= (1/~q') (f».»'+ fi-i.i-i') &
Ap= (1/~"q') (f»,»' —fi-~.i-~') (A3)

Next, we write down the pole-term contribution to these amplitudes. We have

A p =e'R /f (s—mp) (I—m') j,
where R;= (1/e')R'"; then

t2 t3

RT= 2t( m'~'+—m'Q)+ Pb'+—2a(my+ m'Q) j+ b',
4m' Sm4

4t t2

Rp=16+—(m'p'+m'Q)+ b'
m2 2m4

4 2t
Rp= a'+ b', — —

t2

Rgp ———16m@+—a(1+m'Q) — b',
m2 2m'

(A4)

R~~———a(my+ m'Q) ——b',
m' m

Rgp ——(32/m, ')b.

In the above equations, e, p, and Q are the charge, magnetic dipole moment, and electric quadrupole moment of the
target particle, respectively, and

a= 2m' —2, b= —1+2mp+mPQ.

We have not written down possible poles in the t channel corresponding to the pseudoscalar mesons. These pole
terms satisfy gauge invariance by themselves and do not enter the low-energy theorems and sum rules discussed
in the text.


