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It is shown that the SU(2) XSU(2) current-algebra results for three- and four-point functions are broadly
consistent with dispersion relations and the present saturation scheme, provided one writes once-subtracted
dispersion relations for some of the form factors occurring in the virtual-photon —pion scattering amplitude.

ECENTLY Chanda, Mohapatra, and Okubo
(CMO)' have obtained low-energy sum rules for

virtual-photon-pion scattering (four-point function in
the forward direction), utilizing both current algebra'
and dispersion relations. Saturating the sum rules by
low-lying intermediate states, they obtained results in-
consistent with those given by sum rules of vertex func-
tions. ' We know that the latter have led to good results
for the decay widths of both vector and axial-vector
mesons. ' CMO concluded that the inconsistency
observed by them arose most likely because of incom-
plete saturation. We would like to raise a few points
regarding their calculation.

(i) CMO worked in the soft-pion limit; now we can
obtain hard-pion four-point-function sum rules, utilizing
the recently developed technique of Ward identities. 4

(ii) CMO assumed unsubtracted dispersion rela-
tions. ' This may be justified on the basis of the high-
energy behavior given by the Regge pole exchanged in
the t channel. However, this is true only if one neglects
the possible Regge cut contribution coming from the
two-p exchange. Furthermore, we notice that the
present problem of virtual-photon-pion scattering is
intimately related to the problem of the x+-xo electro-
magnetic mass difference. It has been clearly established
that a hard-pion current-algebra calculation of this
mass diBerence7 is logarithmically divergent, and hence
requires a cutoB. Now, we adopt the viewpoint that a
cutoff in the ~+-x' mass-difference calculation is
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reflected as requiring a subtraction in the virtual-
photon —pion scattering problem.

Thus, we aim to show in this paper that the hard-pion
SU(2)XSU(2) current-algebra results for three- and
four-point functions are consistent with dispersion
relations and with the present saturation scheme (of
including up to spin-1 states) within the limits of the
current-algebra approach, provided that one introduces
a subtraction in the dispersion relations for the form
factors Fi and Fs (defined below) occurring in the
virtual-phonon —pion scattering amplitude.

We define'

(2keV)i d'sc e"*((sr+,k
~
T(V„s(x),V„'(0))~sr+,k)

—(sr+ ~ sr'))

=F„„(k,q) = h„„F&+q„q„Fs+ (q„k„+k„q„)Fs

+i (q„k„k„q„)F4+k—„k„F„(1)
where k and q are the four-momenta of the pion and
the photon, respectively, and the F&'s are functions of
q' and v with v= —k q. Crossing symmetry and current
conservation lead to the following relations:

F,+q'Fs= vFs, q'Fs ——i Fs, F4——0. (2)

Utilizing the Ward identities for SU(2) )&SU(2) algebra
of currents, crossing symmetry, vector-current con-
servation, smooth dependence on the momentum, and
saturation by x, A &, and p states only, Schnitzer and
Weinberg and Gerstein and Schnitzer4 have recently
obtained quite general expressions for three- and four-
point functions, respectively. It is interesting to note

8 Thus, e.g., in the present calculation, current algebra leads us
to G„~=O, whereas experimentally we know that P(ay ~ny)
=1.16~0.11 MeV. This discrepancy arises since at no stage in
the SU(2) )&SU(2) current-algebra calculation for three- and four-
point functions does the co state contribute. We further notice that
such a contribution is also absent in the phenomenological SU(2)
XSU(2) chiral Lagrangian approach; see, e.g., D. A. Gegen
and S. Gasiorowicz, Argonne National Laboratory Report, 1968
(unpublished).' As mentioned in Ref. 1, this choice of the amplitude automatic-
ally removes the I=0 scalar term arising ~ the current-algebra
approach, since such a term will contribute equally to &m-+ and
garo amplitudes.
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Ft(v, q') =—2mp2

m, '+-', q'
q'+mp'

that the latter lead to results identical with those
obtained from the chiral Lagrangian approach. "Making
use of the results of Gerstein and Schnitzer, we obtain"

where V0 is the subtraction point. The ImF s are easily
calculated by expanding the absorptive part on the
left-hand side in Eq. (1), and saturating the inter-
mediate states by z, A» and eu states only. " The
couplings used are dered as
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F;(v,q') —F;(pp, q') =
IrnF;(v', q')dv', (4)

V V V V0

4mp'v'( q'(1+3) '-
+ I 1+, (3b)

q' —4p'k 4mp'

where v~ ——ts (2m,'—m '+q') and 5 is a free Parameter
s 4

Expressions for Ii3 and F& are readily obtained from
Eqs. (2) and (3).

Now, we assume that for fixed q', F; (i = 1,2) satisfy
once-subtracted dispersion relations (OSDR):

(s,k I V'(0)
I
A P,P)

&abc

{I3„(P'—k')+(P+k)„k jC(q')
V(4Pp&p)"'

+L~.-q'+ (P—&).&-Ã(q')}e-"'(P), (5c)

with qs= (k—p)' and e, b, c being the isospin indices.
We Bnd that whereas x and A ~ contribute to the z+ term
in Eq. (1), the only contribution to the s.s term comes
from eo state. Substituting the absorptive parts in
Eqs. (4), we obtain
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where v~, „=-', (m~, „'—m~'+q'). Substituting for the
left-hand sides in Eqs. (6a) and (6b) from Eqs. (3a)
and (3b), respectively, and comparing, we obtain

m s
t q'(1+5))

F.(q') =
I
1+

qs+m sk 4m s

»See, e.g., J. Schwinger, Phys. Letters 24B, 473 (1967);
S.Weinberg, Phys. Rev. 166, 1568 (1968);J.Mess and B.Zumino,
ibid. 163, 1727 (1967);B.W. Lee and H. T. Nieh, ibid. 166, 1507
(1968).

"Throughout this paper, we make use of both the spectral-
function sum rules g,'/m, s=gars/ming+ f ' and g,'=gz and rsthe

KSRF relation g~~=2mp f . For these, see Ref. 2 and the follow-
ing: K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16,

nSp (2—5) mpC(q')=, D(q')= (8)
2v2 q'+mp' 2&2 q'+m '

V„G„„'=0.

First, we observe that the results obtained above are
independent of the choice of the subtraction point.
Secondly, we see that they are identical with those
obtained from hard-pion current-algebra calculations

255 (1966); Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071
(1966);J. J. Sakurai, Phys. Rev. Letters 19, 803 (1967).

~ Note that the p pole does not contribute because of G-parity
considerations and that @ contribution is negligible since G~ ~=0.
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for three-point functions. " Since our results do not
depend upon the subtraction constant, we may take,
for simplicity, vs=0. With this choice, from Eqs. (2)
and (4) it at once follows that Fs(v,q') satisfies an
unsubtracted dispersion relation and that Ii5 leads to a
superconvergent relation.

To sum up, we have shown that the current-algebra
results for virtual-photon-pion scattering are consistent
with dispersion relations, provided that we write OSDR
for the amplitudes F1 and Ii ~. In other words, we have
shown that hard-pion results for a four-point function
in the forward direction can be easily obtained by
writing OSDR, and by determining the subtraction
constant from the soft-pion current algebra'4 for the

"For the 6rst three sum rules, see papers quoted in Ref. 3.
For the last sum rule, see Ref. 8 and D. G. Sutherland, Nucl.
Phys. B2, 433 (1967)."The 6rst successful application of current algebra to determine
the subtraction constant in OSDR was made by S. Okubo et el. ,
Phys. Rev. Letters 19, 407 (1967) for the decay E ~ 2n. Later,

four-point function and the dispersion integral from the
hard-pion three-point function. The only anomaly is
that with the neglect of the Regge cuts, it is expected'
that Ii& and F2 should satisfy unsubtracted dispersion
relations. Thus, the algebra of currents and Regge
pole theory (without cuts) lead us to different results.
Similar calculations are in progress for xA1 and mp

scattering amplitudes, and perhaps these will help in
reaching a more definite conclusion.
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Kinematic singularity- and zero-free invariant amplitudes for Compton scattering of spin-one particles
are derived, Gauge invariance is automatically satisfied. A complete set of low-energy theorems is obtained.
In addition to the well-known erst-order theorems, higher-order theorems also exist. It is shown that up to
second order in the photon energy the 12 independent amplitudes are determined by the static moments of
the target particle plus four dynamic structure-dependent constants; up to third order they are determined
by the static moments plus eight additional constants. Dispersion relations may be written down for the
invariant amplitudes without any ad hoc subtractions. The asymptotic behavior of these amplitudes is
carefully examined, leading to a systematic derivation of possible sum rules and superconvergence relations.
Generalizations of previously known sum rules as well as new ones are obtained.

I. INTRODUCTION

ECENTLY, there has been much interest in
studying the analytic structure of the scattering

amplitude due to Lorentz transformation properties of
the externu/ particle states involving spin. Detailed
analysis of these kinematic singularities and zeros of
the scattering amplitude has led to physically interest-

ing results. In particular, for processes involving photons
these analytic properties are intimately related to gauge
invariance. Detailed analysis of these analytic proper-
ties has helped in clarifying the meaning of the well-

known low-energy theorems as well as in deriving new
ones for various photon processes. '

The kinematic structure of the two-body helicity

*Present address: Institute for Advanced Study, Princeton,
N. J. 08540.

'H. Abarbanel and M. Goldberger, Phys. Rev. 165, 1594
(1968); K. Bardakci and H. Pagels, ibid. 166, 1783 (1968); S.
Choudhury and D. Z. Freedman, ib/d. 168, 1739 (1968).

amplitudes has been extensively studied recently 2 It is
shown that regularized helicity amplitudes can be de-
6ned such that they are free of kinematic singularities.
However, they must satisfy certain kinematic con-
straints which make their use in certain applications
rather cumbersome. For example, if one wants to write
down dispersion relations for these amplitudes, one
must make ad hoc subtractions in order to ensure that
these constraints are satis6ed.

Qn the other hand, there exist invariant amplitudes
which, if properly chosen, are free of both kinematic
singularities and zeros' (constraints). In obtaining these

' Y. Hara, Phys. Rev. 136, B507 (1964); L. L. (:, +fang ib/d,
142, 1187 (1965); H. P. Stapp, ibid. 160, 1251 (196/); G. Cphen-
Tannoudji, A. Morel, and H. Navelet, Ann. Phys. (N. p.) 46, 239
(1968); J. P. Ader, M. Capdeville, and H. Navelet, Nupvp Ci
mento 55A, 315 (1968). The last reference deals with twp-body
scattering amplitudes involving at least one massless particle.

e A. C. Hearn, Nuovo Cimento 21, 333 (1961);K. Hepp, Helv.
Phys. Acta 36, 355 (1963); D. N. Williams (unpublished).
D. Zwanziger, in Lectssres in Theoretica/ Physics (The University of
(".olorado Press, Boulder, Colorado, 1965), Vpl, QIg A.


