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The theoretical expressions for experimentally determined parameters for K — 2 decays are used to deter-
mine solutions for various theoretical parameters. This is accomplished by first assuming CP conservation
and then treating the CP-nonconserving parts of the theoretical expressions as small corrections. We find
two types of solutions: one type for which |A7| =3 dominance is valid, and one type for which |AI|=3%
dominance is not valid. There are two solutions of each type, but only one solution (|AI|=4} type) yields
the original data when substituted in the exact equations. All four solutions are used as input in a least-
squares fit to the data, and are thereby transformed into exact solutions. No other exact solutions were found
in a large number of random-input searches. Two of the four solutions agree with values of Ree determined in
leptonic decays; however, they give different predictions for the phase of 5.

I. INTRODUCTION

ECENT calculations! of K — 27 decay param-
eters have involved several approximations: e.g.,
(|AI| =3)>(AT=%)>(AI=%).Other calculations® have
used information from other K decays to aid in deter-
mining the K — 27 decay parameters. In the calcu-
lation reported here, we use only K — 2 decay experi-
mental information and the approximation that CP
violation is a small effect for all possible | AI| values.

We begin with Kenny’s® formulation of K — 27
decays in terms of reduced matrix elements for | AI| =%,
2 and $ in the decays. By means of the experimental
values of various decay ratios, we are able to derive
values for the ratio (bs) of the complex | AT|=§ ampli-
tude to the |AI|=% amplitude, the ratio (bs) of the
complex |AI| =% amplitude to the | AT| =% amplitude,
and the complex K°—K° mixing parameter ().

The CP-conserving parameters are the ratio of the
real part of the |AI|=3% amplitude to the |AI|=3
amplitude, Rebs, and the ratio of the real part of the
|AI| =% amplitude to the |AI|=3% amplitude, Rebs.
Since we assume that violation of CP conservation is a
small effect, the CP-conserving parameters are first
calculated assuming CP conservation. Then they are
used to calculate the CP-nonconserving parameters.
Finally, these parameters are used as input in a lf:a,st-
squares fit to the data by means of the exact equations.

In the first, or CP-invariant, part of the calculation
we obtain two solutions for these two parameters; one
is approximately unity in magnitude and the other is
approximately 102 in magnitude. The latter solution
satisfies the |AI| =% dominance rule while the former
does not. For each of these two solutions for the CP-
conserving parameters, we obtain two solutions for the
CP-nonconserving parameters, Imbs, Imbs, Ree, and
Ime, for a total of four solutions. One each of the
|AI| =21 dominance satisfying and nonsatisfying solu-
tions agrees with values of Ree determined elsewhere.*

1For example, see B. G. Kenny, Ann. Phys. (N. Y.) 43, 2§
(1967), and S.p L. Glashow, Phys. Rev. Letters 18, 524 (1967).

2 B. R. Martin and E. de Rafael, Phys. Rev. 162, 1453 (1967).

3B. G. Kenny, Ann, Phys. (N.Y.) 43, 25 (1967). .

¢D. Dorfan et al., in Proceedings of the 1967 International
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Random numbers between —100 and 100 were
used as input in a least-squares fitting of the data to
the exact equations in search of other solutions.
Approximately 100 such random-input searches yielded
only the four solutions mentioned above.

II. THEORY AND DATA

We begin with the formulation developed by Kenny?
with two changes. Instead of writing, for example, the
reduced matrix element for |AI| =3 as

bse~ %" where by is real,
we write it as
b3= Rebg-l—z Imbs .

Likewise, the reduced matrix element for |AI|=3 is
b5= Reb5+l Imb5 .

If time-reversal (T') invariance holds,3 Imb;=Imb;=0.
We assume CPT invariance, and, therefore, T in-
variance implies CP invariance. Also, instead of using
the complex parameter 7 in

|Ks,)=(1+]7[5)72(|KO)%r|KY),
we use the complex parameter ¢ in

[Ks,Ly=[2(14]¢|2%) T2 i
XL K%)= | RO)+e(| KO | K]

The relation between » and ¢ is e= (1—r)/(147). It is
obvious that we are using the convention CP|K°)
= |K®). If CP invariance holds, e=0.

The isotopic-spin amplitudes are?

{0,0] 4| K°)=Beid, {0,0] 4| Ky =Beito,
(2,0] 4| K°)=Bse?,, (2,0] 4| K%)=Bs*eit2
(2:1|A]K+>=:Blei827 (2: —1|A]K—>=ﬁ1*ei‘”,

Symposium _on Electron and Photon Interactions at High Energies
(Stanford Linear Accelerator Center, Stanford, Calif., 1968),
p. 484; S. Bennett ef al., in Proceedings of the 1967 International
Symposium _on Eleciron and Photon Interactions at High Energies
(Stanford Linear Accelerator Center, Stanford, Calif., 1968),

p. 494
2120



176 K—2 PHENOMENOLOGY WITH

where
Bo=b1/V2, B2=(bs+b5)/V2, and B1=+/3[bs— (3)bs].
Here b, is the reduced matrix element for |AI| =%,
do is the I=0 m-7 scattering phase shift at ~500 MeV
total c.m. energy, and &, is the corresponding I=2
phase shift. The arbitrary phase has been chosen such
that 8o (or d,) is real. CPT conservation is assumed.
For CP conservation, 8; and 8; (or b and bs) are real.?
That is, B0, ReB;, and ReB; are CP-conserving param-
eters, while ImB; and ImB, are CP-nonconserving
parameters. The parameters Ree and Ime are also
CP-nonconserving parameters.
We define: )
bs=0b3/b1, bs=0bs/b1,
B2=V2Bs/b1=bs+bs, Br=4/4B1/b1=bs— (3)bs;
therefore,
53’: (252+381)/5 and 65=3(52—B1)/5.
The physical amplitudes are
A =(rtr~| 4| Kg)=0a[V2Bo+e'® Rep
+e(iei® Tmgy)],
A, D= (7r+7r"]A IKL)=a[iei("2"5°) Imp.
+e(V2Bo+ei®:00) Regy) ],
Aop®= <7r°1r°lA l Ks) = aEBo—eri(52“0) RegB:
+ e(—V21e#®2—00) Tmps) ],
Agp®P = (1r°1r°|A IKL>=a|:__\/2‘iei(sz—60) Imﬂz
+e(80—V2ei 30 Regy)],
and
A+0=ﬁ 1692 ’
where
a=2e[6(1+ | €|2) 2.

The experimental quantities are:

(i) the K g branching ratio®

[44-® |2, ®

= =2.1740.08
[ A00® |2000® 7£0.08,

.Rpoo(S) A—2TIme Reﬁ2 Imﬁz"— 2\/2[30 Imﬁz(g Re€+f Ime)+ l él 2(Imﬁ2)2
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where the phase-space ratio® is

POO(S) (MS2_4m02

12
= ) =1.0154-0.00006
M g*—4m,?

p—

in terms of the K g mass M s, the 7t mass m,, and the
w0 mass mo;
(ii) the Kg— 7t~ to K+ — 7t7° partial-decay-

rate ratio®
[44 ®][2%p,

=462417,
IA+0[2P+0

where the phase-space ratio is

pro Mg ( LM 2= (my—mo)* LM 12— (my+ m0)2])” 2
p+_(S) M+2\ M —4m. 2

=1.0040.073,
M, being the K+ mass;

(iii) the Ky — 747 to Kg— w47 ratio”
I | = [44-P[/] 44 = (1.91£0.09) X 10~%;
(iv) the Kp— m+7° to Kg— 7%+}a0 ratio®
[100] = | A oo™ | /]| A00*S| = (4.17£0.30) X 10-3;

(v) the phase® of 74—,

Imﬂ+—)

0, = tan“(
= Reny—

_ tan.l(rmgh Red, (9—Red, @ ImA+_<S>)
Red, ) Red ®+ImAd, ©Im4,

= (65+11)°.

The theoretical expressions for the experimental
quantities are:

- B T B4 Tme Regy Impot 2v30 Tmfia(s Reet f Tme) 2] e 2(Tmpa)t 6))
f=cos(@:—80), g=sin(62—3c), A=280"+(ReBs)*+2V2/Bs ReBz,
and B=p¢+2(ReB:)*—2V2 f8, ReBz;
g Xpu _24—2Tme Refs Tmfs— 21280 Imfs(g Reert/ Imdt | of*(Img)" @)
i ® 3 (A+el?)]8a]?

& The world average is used as given by A. Rosenfeld ef al., Rev. Mod. Phys. 40, 77 (1968). .

6 W. Koch and O. Skjeggestad, in Proceedings of the 1964 Easter School for Physics, CERN, Geneva (unpublished).

7V. L. Fitch, R. F. Roth, J. Russ, and W. Vernon, Phys. Rev. 164, 1711 (1967). )

8J. W. Cronin ef al., in Proceedings of the Rochester Conference on Elementary Particles and Fields, 1967 (unpublished). Recent
measurements of |7q| seem to indicate a smaller value (Cronin, private communication). We use (3.04:0.30)X107% in our calcu-
lations as a representative smaller |70| to indicate how it would change our solutions. . .

9 Since the few values available vary between 25° and 84° with large errors, we use the world average given in Ref. 5.
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Iy | |24 + (ImB2)?— 2V2Bo ImB2(g Ree— f Ime)+2 Ime ReBz ITmp,
M| *= ; 3
T 4—2Tme Ref: ImBs— 2V2B30 ImB,(g Ree+ f Ime)+ | €] 2(ImB,)? ®)

l € ! ZB+2(Im62)2+2\/Z80 Imﬁg(g R€€’°f Ime)+4 Ime Reﬁz Imﬁz

2. : 4
o= e ReB: ImBa+2v280 ImBs(g Reet f Ime)+2 | ¢|2(Tmg,)? @
(1— | ¢|?) ImBa(ReB2+V2 fB0)+ ATme— (ImB:)? Ime
0= tan‘l( ) . ©)
— (14| €|2)V2gBo ImBs+ ARee— (ImBs)? Ree

When using Eq. (5) to determine the parameters, one would finally check that the parameters put 6, in the
correct quadrant.

Note that ReB; and ImpB; occur in Eq. (2) only, and therefore cannot be determined separately. For this reason
we use the parameter |B1].

All five equations above can be divided top and bottom by &; (or o), which leaves six parameters to be deter-
mined: two CP-conserving parameters (ReBs, ReB:) and four CP-nonconserving parameters (ImfBs, ImBi, Ree,
Ime). However, we have |B1|2= (ReB1)?+ (ImBy1)? a mixture of the two parameter types. So there are five param-
eters and five equations. In principle, one could solve for the five parameters. A more feasible procedure is to
arrive at values for the parameters by some reasonable approximation and then do a least-squares fit with these

values as input.

Another possible experimental quantity is the phase of 7,

Goo= tan‘l(

No experimental data are available for fo yet. We
shall calculate 6 using our final parameters.

III. APPROXIMATION OF SMALL CP
NONCONSERVATION

It is known21%!1 that Ree and |¢| are ~10~% and,
since | 74|~ [n00| ~10%, most probably Ree, Ime, and
ImB, are all ~103. [See Egs. (3) and (4) above.]
Because R—2=0.20--0.08>>10"3, we surmise that most
probably Ref;3>>10~% or Refz>Ime and ReBo>Imps.
[See Eq. (1) above.] The latter inequality states that
T noninvariance, and therefore CP noninvariance, is a
small effect for |AI|>3%. Using the inequalities above,
we can make certain approximations and solve for the
theoretical parameters.

The first approximation is

R=~A/B, 1"
where _ .
A= 2+ (Reﬁ2)2+2\/7f REBz
and
B= 142 (Re}éz)L— 2\/7f RCBz .
Then

Refy=(VZf(B+1)
+[2f(R+1)*~ 2R—1)(B—2)1"}/(2R—1)
=1.60=:0.40 or 0.037=:0.017.

We have used?? §;— 8o= (— 524-11)°. Thus, we have one

0V, L. Fitch, in Proceedings of the Second Hawaii Topical
Conference, 1967 (unpublished).

11 {, Primakoff, Orsay Report No. TH/204, 1967 (unpublished).

12 W, D. Walker, J. Carroll, A. Garfinkel, and B. Y. Oh, Phys.

(1— I 6'2> Im[32(2 Reﬁz—\/ffﬁo)+BIme—2(Imﬂz)2 Ime)
. 6
(14 [ €| 2)VZgBo TmBy-t BRee— 2 (Tmps)? Ree ©)

solution (the latter) which agrees with the |AI|=3%
dominance rule, and one which does not. The require-
ment that ReB; be real restricts 8:—8o to the ranges
(—79.4:£2.1)°< (62— 80) <(79.424-2.1)°and (100.6:2.1)°
< (82— 80) < (259.42.1)°.

The second approximation is

X=44/9|4:2. @)

Then
|81 =24 /X =0.0844-0.015 or 0.04452-0.0009.

The third approximation is

f=tanf, =[Tmp,;(Ref;+V2f)+AIme]/
[—V2gImB,+ARee], (5)
or
ImB.=Z (0 Ree—1Ime),
where _
Z==A/[Re[32+\/7(f—l—g0)] .
The next is

(74— |22 | €] 2A+ (ImBs)2— 2v2 ImB, (g Ree— f Ime)
+2 Ime ReB: ImB: J/A. (3")

Upon using the expression for ImB; in (5’) above we can
rewrite this expression as

Ar(Ree+Ar(Ime)+A » Ree Ime= |9, |24 =Ny,

where

Ar=A+26(Z26—2V2g),
A1=A-.+Z(Z—2 Reﬁz—-Z\/ff) )

Rev. Letters 18, 630 (1967); W. D. Walker, Rev. Mod. Phys. 39,
695 (1967).
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TasBLE I. Calculated and measured experimental parameters for X — 27 decay.

A. Approximate solutions

B. Final solutions obtained by least-squares fits to the data®

Qlution |AI| =% dominance |AT| #3 Input data |AI| =% dominance |AI| #3%
Parameter
103 XReBz 37.1 37.1 1601 1601 37  +17 37 =17 1600 =400 1600 =-400
102X |B1] 44.5 4.5 83.9 83.9 44. 5+ 0.9 44.5 += 0.9 84 + 15 84 415
103 XImB: —-1.19 3.22 —18.2 11.2 —1.114 0.20 2.67+ 0.25 -7 £ 12 5.5+ 4.0
103 XRee 1.45 —0.929 3.57 —0.894 141+ 0.40 —0.63 = 0.40 1.8+ 1.2 —0.03+ 0.30
10 XIme 2.26 0.317 7.86 —2.04 2.224 0.25 0.56+ 0.50 4.04 4.0 —0.124+ 1.4
102X | €] 2.68 0.982 8.63 2.46 2.63+ 0.15 0.84+ 0.50 44+ 4.5 0.134 1.5
fe (deg) 57.3 161.2 65.6 —113.6 58 10 139 +25 65 =+ 30 —103  *175
600 (deg) 48.7 -153.1 —26.8 128.7 49 =+10 —156 420 —-11 + 20 117 =+ 10
04~ (deg) 65 65 65 65 65 11 65 65 65 65
108 X [ 74-] 1.91 1.91 1.91 1.91 1.91+ 0.09 1.91 1.91 1.91 1.91
102 X | 700| 4.35 5.33 10.8 7.43 4.174 0.30 4.17 4.17 4.17 4.17
R 2.17 2.17 2.17 217 2.174 0.08 2.17 2.17 217 2.17
X 462 462 462 462 462 = 17 462 462 462 462
1 2 3 4 Solution No. 1 2 3 4

= The errors are the usual least-squares-fit errors that cause an increase in x?of 1, except that the §2—éo error is accounted for roughly by doing the calcu-
lation with é2—d at its limits since it does not enter into the x2 error calculation. Where the errors are large, they are usually due to the 82— error. An
error is given for foo in order that future measurements of this parameter may be easily compared to these solutions.

and )
Au=2Z[0(ReB+V2 f—2Z)+V2g].

The last is

|00 222[ | |2B+2 (ImB2)*+2V2 Imp: (g Ree— f Ime)
+4 Ime ReB: ImB,]/B. (4)

Upon using the expression for Imf, in Eq. (5) above
we can rewrite this expression as

BR(RC(:)2+B[(IH1€)2+BM Ree Ime= {7100|2B=N0 B

where _
Br=B+20(Z6+2V2g),
Br=B+Z(Z—4 Refo+2V2f),
and
Bu=2Z[0(2 ReBy—V2f—2Z)—V2g].

Equation (3’) and (4’) can be combined to yield

C(Ree)*+D(Ree)*— E2=0, 3"
where
C=v*(Ay?—441AR)—v?,
D=4v?4N,—2wE,
E=BiN/A1—N,,

= (BM—BIAM/AI)/ZAI:

and
w=BR+ (AMzBI/AI-—ZARB[—AMBM)/ZA[.

When using Eq. (3”) and, say, Eq. (3') to obtain
solutions for Ree and Ime, one must check to see which
solutions satisfy Eq. (4’) since extraneous solutions
have been introduced by squaring in the process of
obtaining Eq. (3").

After obtaining Ree and Ime, we can use Eq. (5’) to
obtain Imp,.

All four solutions are then put into the exact equa-
tions to calculate values for the experimental quantities.
All but one do not agree with the measured value of
[n00]. All four solutions are shown in Table I, along
with the calculated and measured experimental numbers.
Errors have not been propagated through the calcu-
lation because they are much more easily obtained in
the least-squares fit described below.

These four solutions are used as input in a least-
squares fit to the data. A very fast search procedure'®
developed by Arndt for the scattering phase-shift
analyses at Livermore and Virginia Polytechnic In-
stitute was used. The results are shown in Table I.

TaBLE II. Comparison between the two final solutions in this work that agree with recent
determinations of Ree, and other solutions obtained elsewhere.

Solution Martin and
Bennett Dorfan Fitch de Rafael Primakoff
No. 1 No. 3 et al. et al. Sol. 1 Sol. a Sol. 1
Parameter
103X Ree 141+ 0.40 1.8+ 1.2 1.1140.18 2.040.7 1.90+ 0.51
103X | e 2.63+£ 0.15 4.4+ 4.0 2.8
9 (deg) 58 +10 65 +30 43415 36 *x9 65
oo (deg) 49 10 —11 =+20 33 12 25 52
BR. A. Arndt and M. H. MacGregor, Methods Comp. Phys. 6, 253 (1966).
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TasLE ITI. Solutions for |79| = (3.040.3)X 1073
as a representative smaller value.

\{)lution |AI'| =% dominance |AI| =%

Parameter
103X ReB: 37 37 1600 1600
108X |3y 45 45 84 84
103X Imp, —0.55 2.11 —4.51 3.23
103X Ree 1.10 — 033 1.49 0.32
103X Ime 1.97 0.80 3.24 0.64
108X | ¢ 2.26 0.87 3.57 0.72
0. (deg) 61 112 65 64
600 (deg) 54 —171 2 105
Solution No. 1 2 3 4

IV. CONCLUSION

Only solutions 1 and 3 of Table I are within the
errors of the two recent determinations of Ree by
means of kaon leptonic decays. Dorfan et al.* deter-
mined Ree in the K — 7+pu+v decay and Bennett
el al! determined Ree in the Kp— w+e+v decay.
Their values, along with values for e and 6y obtained
in other calculations, are compared to our solutions 1
and 3 in Table II.

From K — 27 decays alone we are not able to say
that |AI| =% is dominant. Our preference is for solu-
tion 1 because it is the |AI|=% dominance solution,
because it fitted the data very well before searching,
and because it is in better agreement with other calcu-
lations than is solution 3. Future measurements of 6o
may help select between the two, depending on the
precision of the measurement. An experimental value
for g0 would allow 8,—8o to be searched in the least-
squares fit.

If Refr>Imp;, the values of Reb; and Rebs for
solution 1 are:

L. DAVID ROPER
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Solution 108X Rebs 103X Rebs
1a — 4.5 41.5
ib 48.9 —11.9

Thus, either |bs| <|bs| or |bs| > |bs|. We cannot state
which is the actual case.

Our solutions were obtained by first assuming that
CP nonconservation is small for |AI|>$%, and then
achieving least-squares fits to the data. The fact that
one of the approximate solutions (No. 1) was almost
an exact fit, and that it agrees with Ree measured in
kaon leptonic decays, indicates that the assumption of
small CP nonconservation is possibly correct. Of course,
there are many other possible solutions. However, most
or all of the other solutions may not be real. We have
tried to find other solutions by starting the search
from random numbers between —100 and -+100. In
about one hundred such random-input searches, we
always obtained one of the four solutions already found
above.

Because recent measurements of |no| seem to
indicate a smaller value than we have used above,?
we list in Table III the values of the parameters for the
four solutions for |noo] = (3.0£0.30)X10~% as a repre-
sentative smaller value. The errors are essentially the
same as for Table L. It is seen that our conclusions are
not altered by this smaller |700|.
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