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The theoretical expressions for experimentally determined parameters for E~ 2x decays are used to deter-
mine solutions for various theoretical parameters. This is accomplished by 6rst assuming CP conservation
and then treating the CP-nonconserving parts of the theoretical expressions as small corrections. We 6nd
two types of solutions: one type for which

~
ttI [

=-', dominance is valid, and one type for which
~
sI

~

=
2

dominance is not valid. There are two solutions of each type, but only one solution (~ SI
~

=-', type) yields
the original data when substituted in the exact equations. All four solutions are used as input in a least-
squares Qt to the data, and are thereby transformed into exact solutions. No other exact solutions were found
jn a large number of random-input searches. Two of the four solutions agree with values of Res determined in
leptonic decays; however, they give different predictions for the phase of happ.

I. INTRODUCTION

ECENT calculations' of E—+ 2m decay param-
eters have involved several approximations: e.g. ,

(I ItI
I

= -', )))(AI= -', ))&(AI= —', ).Other calculations' have
used information from other E decays to aid in deter-
mining the E~ 2m decay parameters. In the calcu-
lation reported here, we use only E~ 2~ decay experi-
mental information and the approximation that CP
violation is a small effect for all possible

I
AI

I
values.

We begin with Kenny's' formulation of E —+ 2~
decays in terms of reduced matrix elements for

I
AI

I
= —',,

-'„and —', in the decays. By means of the experimental
values of various decay ratios, we are able to derive
values for the ratio (bs) of the complex

I
ItI

I

=-', ampli-
tude to the AII =s amplitude, the ratio (bo) of the
complex

I
DI = s amplitude to the

I
It,I

I
= s amplitude,

and the complex E'—Zo mixing parameter (e).
The CP-conserving parameters are the ratio of the

rett/ part of the I VIII
=-', amplitude to the IAII =-',

amplitude, Reb3, and the ratio of the rea/ part of the

IVIII =ss amplitude to the
I

It,II =—', amplitude, Re5, .
Since we assume that violation of CP conservation is a
small effect, the CP-conserving parameters are first
calculated assuming CP conservation. Then they are
used to calculate the CP-nonconserving parameters.
Finally, these parameters are used as input in a least-
squares 6t to the data by means of the exact equations.

In the first, or CP-invariant, part of the calculation
we obtain two solutions for these two parameters; one
is approximately unity in magnitude and the other is

approximately 10' in magnitude. The latter solution
satisfies the

I
It,I

I
= isdominance rule while the former

does not. For each of these two solutions for the CP-
conserving parameters, we obtain two solutions for the
CP-nonconserving parameters, Imb3, Imb5, Re&, and
Ime, for a total of four solutions. One each of the

I
AI

I
=-,'dominance satisfying and nonsatisfying solu-

tions agrees with values of Res determined elsewhere. 4

~ For example, see 3. G. Kenny, Ann. Phys. (N. Y.) 43, 25
(1967), and S.L. Glashow, Phys. Rev. Letters 18, 524 (1967).

' B. R. Martin and E. de Rafael, Phys. Rev. 162, 1453 (1967).
3 B. G. Kenny, Ann. Phys. (N. Y.) 43, 25 (1967).
4D. Dorfan et al., in Proceedings of the IW7 International
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Random numbers between —100 and +100 were
used as input in a least-squares 6tting of the data to
the exact equations in search of other solutions.
Approximately 100 such random-input searches yielded
only the four solutions mentioned above.

II. THEORY AND DATA

We begin with the formulation developed by Kenny'
with two changes. Instead of writing, for example, the
reduced matrix element for

I
ItI

I
=-', as

bae '»' where bs is real,
we write it as

bs Rebs+——i Imbo.

Likewise, the reduced matrix element for IVIII =os is

bo
——Rebo+i Imbo.

If time-reversal (T) invariance holds, ' Imbs ——Imbo ——0.
We assume CPT invariance, and, therefore, T in-
variance implies CP invariance. Also, instead of using
the complex parameter r in

I&s,r)= (1+Iris) its(IEo)+rlE )),
we use the complex parameter e in

The relation between r and e is e= (1—r)/(1+r). It is
obvious that we are using the convention CPIIP)
= IEo). If CP invariance holds, e=0.

The isotopic-spin amplitudes are'

(O,OIAIEo&=Poe'", (0,0IAIKo&=Poe"o,

(2,0IA IEo&=pse"s (2,0IA lgo)=ps*e'"

(2,1I A
I
E+)=P e*" (2, —1I A

I
E &=Pi'e'"-

Symposium on Electron and Photon Interactions at High Energies
(Stanford Linear Accelerator Center, Stanford, Calif. , 1968),
p. 484; S. Bennett et al , in Proceedings .of the 1967 Interrratiortat
Symposium on E/ectron and Photon Interactions at High Energies
(Stanford Linear Accelerator Center, Stanford, Calif. , 1968),
p. 494.
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where
A+5 ——p,e'»,

n=2e'55)6(1+
I el )p I'

The experimental quantities are:

(i) the Es branching ratio'

&8&I2p &8&

R= =2.17+0.08,
IA«'"I'pop"'

where

pp=bt/K2, p2 —(b3+b5)/K2, and pt=g-,'I-b3 (3)bpj.

Here b„ is the reduced matrix element for ILU I
=-,'I,

Bg is the I=0 ~-x scattering phase shift at 500 Mev
total c.m. energy, and 82 is the corresponding I=2
phase shift. The arbitrary phase has been chosen such
that Pp (or bt) is real. CET conservation is assumed.
For CP conservation, p2 and pt (or bs and bp) are real. p

That is, pp, Rept, and Reps are CE-conserving param-
eters, while Impt and Imps are CP-nomconserving
parameters. The parameters Re& and Ime are also
CE-eonconserving parameters.

We deQne:
bp=bs/bt, bs=b5/bt,

P2 ~2P2/bl b3+b59 Pl "/spl/bl b3 (3)b5i

therefore,

b3 (2P2+5pl)/5 and 55 3(p2 pt)/5.

The physical amplitudes are

A~& &=(w+~ IAIEB)=nt-Wgpp+e'&33 "& Rep2
+5(ie'&"—"& ImP2) j,

A-&'&=(m+n. —
IA IEz)=aLie'&53-3P& ImP,

+e(v2P5+e'&52 —'3& ReP, )j,
Ap, &s& (novrplA IEz) =nI-Pp —%2e'&32—' & Rep,

+5( vogie'—&52 pp& Irn—p )j
App' =(m m IAIEz, )=ng V2ie'&3-—3P& I P2

+e(pp —vive'&5"55& Reps)g,
and

where the phase-space ratio' is

ppp /3fa 4—555'&

I

= 1.015~0.00006
p~&s& (Ms2 —4m+21

where the phase-space ratio is

p~o Ms(l-~' (m+—mp) jL3II~ —(m++mp) j)
p+ &8& &+2( 3fs' —4m+'

M+ being the X+ mass;
= 1.004&0.073,

(iii) the Eg~ ~++m- to Es~ ~++~- ratio'

In+ I= IA-~'"I/IA+-'"I =(1 91~0.09)XI~',

(iv) the E'~ m'+x' to EB +m'+m'-ratio'

lapel = IA55' 'I/IApp' 'I =(4.17+0.30)X10 ',

(v) the phase'of q+,

)Im'~q
a~=tan 'I

&Reg~]

/ImA~&'& ReA~&s& —ReA~&'& In&~&8&)

'ReA~&'& ReA~&8&+ImA+ &'& ImA+ &»)

=(65+11)'.

The theoretical expressions for the experimental
quantities are:

in terms of the E8 mass MB, the x+ mass m+, and the
m' mass neo,

(ii) the EB~m++n. to E+-+ m++m partial-decay-
rate ratio'

&s&

X= =462&17,
IA+ol'p~p

where

and

Rppp A —2ImsReP2ImP2 —2V2P5ImP2(g Res+ f Imp)+lel (ImP2)2
8—

p~ 8—4Ime Rep2Imps+2V2pp Imps(g Res+f™)+2Iel2(Imp, )2

f=cos(82—bp), g=sin(82 —bp), A=2P5'+(ReP2) +2~2fPp ReP2,

B=pos+2(Reps)2 —2~2fpo RePs;

Xp+o 2A —2Ime ReP2ImP2 —2v2P5I1YJP2(g Res+f Imp)+ Iel'(ImP2)'I (2)() 3 (1+ I el') I ptl'
' The world average is used as given by A. Rosenfeld et al. , Rev. Mod. Phys. 40, 77 (1968).

W. Koch and O. Skjeggestad, in Proceedings of the 1964 Easter School for Physics, CERN, Geneva (unpublished).
P V. L. Fitch, R. F. Roth, J. Russ, and W. Vernon, Phys. Rev. 164, 1711 (1967).
J. W. Cronin et al. , in Proceedings of the Rochester Conference on Elementary Particles and Fields, 1967 (unpublished). Recent

measurements of (happ(seem to indicate a smaller value (Cronin, private communication). We use (3.0+0.30)X10 in our calcu-
lations as a representative smaller (happ[ to indicate how it would change our solutions.' Since the few values available vary between 25' and 84' with large errors, we use the world average given in Ref. 5.
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l elsA+(ImPs)s —2V2Po ImPs(g Ree—f Ime)+2 Ime RePs ImP,

A —2 Ime RePs ImPs —2&Po ImPs(g Res+f Ime)+ l el (ImPo)'

I oI'Il+2(ImP2) +2~POImP2(g Res f Ime)+41moRePs IIDPs

Il—4 Imc Reps Imps+2VZpo Imps(g Res+f Imo)+2l ol s(Imps)'

|'(1—
l el ) Imps(Reps+V2fpo)+AIme —(Imps}s Imo

8+ =tan 'l —(1+l.ls)~gpo I~,+ARe.—(Imp, )s Re,

(3)

(4)

When using Eq. (5) to determine the parameters, one would 6nally check that the parameters put 8+ in the
correct quadrant.

Note that Rep~ and Imp~ occur in Eq. (2) only, and therefore cannot be determined separately. For this reason
we use the parameter

I p& I
.

All five equations above can be divided top and bottom by b& (or po), which leaves six parameters to be deter-
mined: two CI'-conserving parameters (Reps, Repq) and four CI'-nonconserving parameters (Imps, Impr, Res,
Imo). However, we have

l pr l'= (Repr)'+ (Impt)s, a mixture of the two parameter types. So there are Gve param-
eters and 6ve equations. In principle, one could solve for the Gve parameters. A more feasible procedure is to
arrive at values for the parameters by some reasonable approximation and then do a least-squares fit with these
values as input.

Another possible experimental quantity is the phase of /pe,

(1—
l
el') Imps(2 Reps —VZfpo)+BIme —2(Imps)' Ime)

Hop=tan '
(1+ l el ')v2gpo Impo+BReo —2(Imps)' Res

No experimental data are available for 800 yet. We
shall calculate 800 using our final parameters.

GI. APPROXIMATION OF SMALL CI'

NONCONSERVATION

It is known" " that Rec and
l el are 10 o and,

since [ri+ l lgool 10 ', most probably Rec, Ime, and

ImPs are all 10 '. [See Eqs. (3) and (4) above. ]
Because g—2= 0.20+0.08&&10-', we surmise that most
probably RePs»10 ' or RePs» Ime and ReP&)ImPs.

l
See Eq. (1) above. j The latter inequality states that

T noninvariance, and therefore CI' noninvariance, is a
small effect for l EIl )xs. Using the inequalities above,
we can make certain approximations and solve for the
theoretical parameters.

The 6rst approximation is

R=A/8, (1')
where

A =2+ (RePs)'+2V2f RePs

8=1 +(2Re P)'s—2&f RePs.
Then

Rep, = (%2f(R+1)
~L2fs(R+1)s—(2R—1)(R—2)/Is j/(2R —1)

= 1.60&0.40 or 0.037&0.017.

We have used~ 8s ho= (—52&11)—'.Thus, we have one

"V. L. Fitch, in Proceedings of the Second Hawaii Topical
Conference, 196'I (unpublished).

» H. Primakoff, Orsay Report No. TH/204, 1967 (unpublished).
» W. D. Walker, J. Carroll, A. Garfinkei, and B.K Oh, Phys

solution (the latter) which agrees with the lhIl =-,'
dominance rule, and one which does not. The require-
ment that Reps be real restricts 5s—5o to the ranges
(—79.4+2.1)'~&(8s—6o) &~(79.4&2.1)' and (100.6&2.1)'
&~ (8s—8o) &~ (259.4+2.1)'.

The second approximation is

h—4A/9l p, ls. (2')

where

The g.ext is

ImPs =Z(8 Res —Imo),

Z=A/t ReP, +V2(f+.g8)7.

l 0+- l
'=L

l
e

l
'A+ (Imps}' 2~& Imp—s(g Res f Imo)—

+2 Imc ReP, ImPs]/A. (3')

Upon using the expression for ImPs in (5') above we can
rewrite this expression as

An(Res)'+Ar(Ime)'+Asr Res Irne= Iq+ I'A=&r

where
A a ——2+Z8 (Z8—2v2g),

A r=A+2 (Z 2RePo —2%2f), —
Rev. Letters 18, 630 {1967);W. D. Walker, Rev. Mod. Phys. 39,
695 (196/).

I pr I
= lA/&=0 0g4~0 015 or 0.0445+0.0009.

The third approximation is

8—= tan8+ —LImPs (RePs+V2 f)+A Imeg/

l
—V2gImPs+ARee J, (5')

or
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TmLE I. Calculated and measured experimental parameters for E -+ 22' decay.

A. Approximate solutionslSolution I AI j ~$ dominance
Parameter

Input data
B. Final solutions obtained by least-squares fits to the data'

(d,I( =$ dominance I~I &k

103 XRepm

101 X )Pi(
10~ XImP~
10~ XRee
103XIme
101X)e)

8e (deg)

Hop (deg)

e+ (deg)
iol X )n+-I
103X )goo )

R
X

37.1
44.5
-1.19

1.45

2.26

2.68
57.3
48.7
65

1.91
4.35

2.17

462

1

37.1
44.5
3.22

-0.929
0.317
0.982

161.2
—153.1

1.91
5.33
2.17

462

2

1601

83.9
—18.2

3.57
7.86
8.63

1601

83.9
11.2
-0.894
-2.04

2.46

—26.8

1.91
10.8
2.17

462

3

128.7
65

1.91
7.43
2.17

462

65.6 -113.6

65 +11
1.91+ 0.09

4.17& 0.30
2.17~ 0.08

462 + 17

Solution No.

37 &17
44. 5+ 0.9
-1.11& 0.20

1.41& 0.40
2.22& 0.25

2.63& 0.15

58 +10
49 &10

1.91
4.17

2.17

462

37 &17
44.5 & 0.9
2.67+ 0.25

-0.63& 0.40
0.56+ 0.50
0.84~ 0.50

139 &25
-156 &20

65

1.91
4.17

2.17

462

2

1600 &400
84 & 15

-7 + 12

1.8~ 1.2
4.0& 4.0
4.4~ 4.5

65 & 30
—11 & 20

1.91
4.17

2.17

462

1600 &400
84 ~ 15

5. 5& 40
-0.03 & 0.30
—0.12& 1.4

0.13& 1.5
—103 &175

117 & 10
6S

1.91
4.17

2.17

462

a The errors are the usual least-squares-fit errors that cause an increase in g~ of 1, except that the bs-bp error is accounted for roughly by doing the calcu-
lation with 8&-bo at its limits since it does not enter into the x' error calculation. Where the errors are large, they are usually due to the 8&—80 error. An
error is given for 888 in order that future measurements of this parameter may be easily compared to these solutions.

and
A =2ZL8(ReP, +vlf —Z)yv2g].

The last is

Impel'=CI I'B+2(I P.)'+2v2 Imp (g Re —f Izn )
+4 Im, ReP, ImP, j/B.

Upon using the expression for ImP& in Eq. (5') above
we can rewrite this expression as

B~(Ree)'+Bz(Imp)'+Bzjz Ree Imp = ('gpp (
B=+p,

where
Bzz

=B+Z8 (Z8+ 2%2g),

Bz=B+Z(Z 4RePs+2V2 —f),
and

Bsr 2Z(8 (2 RePs ——K2f Z) —V2g] .— —

Fquation (3') and (4') can be combined to yield

C(Ree)'+D(Res)' —E'= 0, (3")
where

C=v'(A szs —4A zA zz)
—w'

D= 4e'A IE1—2m'E,
E=Bz/t/Az —Ep,
v= (Bsz BzAsz/Az)/2Az—,

m =Bn+ (A sz'Bz/A z 2A gBz A—jzBsz)/2A—
z .

When using Eq. (3") and, say, Eq. (3') to obtain
solutions for Res and Ime, one must check to see which
solutions satisfy Eq. (4') since extraneous solutions
have been introduced by squaring in the process of
obtaining Eq. (3").

After obtaining Ree and Imp, we can use Eq. (5') to
obtain Imps.

All four solutions are then put into the exact equa-
tions to calculate values for the experimental quantities.
All but one do not agree with the measured value of
(r)pp(. All four solutions are shown in Table I, along
with the calculated and. measured. experimental numbers.
Errors have not been propagated through the calcu-
lation because they are much more easily obtained in
the least-squares Gt described belovr.

These four solutions are used as input in a least-
squares Gt to the data. A very fast search procedure"
developed by Amdt for the scattering phase™shift
analyses at Livermore and Virginia Polytechnic In-
stitute was used. The results are shown in Table I.

TABLE II. Comparison between the two final solutions in this work that agree with recent
determinations of Res, and other solutions obtained elsewhere.

Par

103)&Ree
1OIX (e(
e, (deg)
8pp (deg)

1.41+ 0.40
2.63& 0.15

58 &10
49 &10

No. 3

1.8+ 1.2
4.4~ 4.0

65 +30
—11 &20

Bennett
et al.

1.11+0.18

Dorfan
et al.

2.0+0.7

Fitch
Sol. 1

43~15
33

Martin and
de Rafael

Sol. a

1.90~ 0.51

36 &9
12 +25

PrimakoG
Sol. 1

2.8
6$
52

» R. A. Amdt and M. H. MscGregor, Methods Comp. Phys. 6, 253 (1966).
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lution ( d.I (
=so dominance fbi fr~

TAnLE III. Solutions for [goo ~

= (3.0&0 3)X IO
as a representative smaller value.

Solution

1a
1b

10'XReb3
—4.5

48.9

10'XRebs
41.5

—11.9
Parame

10'XReP~
10 x fg [

10'XImp2
10'XRes
10'XIme
10oX fo/

e, (deg)
coo (deg)
Solution No.

37
44.5

—0.55
1.10
1.97
2.26

61
54

1

37
44.5
2.11
0.33
0.80
0.87

112
—171

2

1600

—4.51
1.49
3.24
3.57

65
2
3

1600
84
3.23
0.32
0.64
0.72

64
105

4

IV. CONCLUSION

Only solutions 1 and 3 of Table I are within the
errors of the two recent determinations of Re& by
means of kaon leptonic decays. Dorfan et ul. ' deter-
mined Ree in the Ez, -+ or+p+v decay and Bennett
et al.' determined Ree in the E~~or+e+v decay.
Their values, along with values for ~ and opp obtained
in other calculations, are compared to our solutions 1
and 3 in Table II.

From E-+ 2~ decays alone we are not able to say
that IVIII

=-', is dominant. Our preference is for solu-
tion 1 because it is the I VIII =s dominance solution,
because it fitted the data very well before searching,
and because it is in better agreement with other calcu-
lations than is solution 3. Future measurements of Opp

may help select between the two, depending on the
precision of the measurement. An experimental value
for Opp would allow 8~—5p to be searched in the least-
squares fit.

If ReP&&ImPt, the values of Rebs and Rebs for
solution 1 are:

»us, es&h« lbsl & Ibsl or lbsl) Ibsl ~ We cannot state
which is the actual case.

Our solutions were obtained by first assuming that
CE nonconservation is small for

I
AII )—',, and then

achieving least-squares fits to the data. The fact that
one of the approximate solutions (No. 1) was almost
an exact fit, and that it agrees with Res measured in
kaon leptonic decays, indicates that the assumption of
small CI' nonconservation is possibly correct. Of course,
there are many other possible solutions. However, most
or all of the other solutions may not be real. %e have
tried to find other solutions by starting the search
from random numbers between —100 and +100. In
about one hundred such random-input searches, we

always obtained one of the four solutions already found
above.

Because recent measurements of
I o)opl seem to

indicate a smaller value than we have used above, '
we list in Table III the values of the parameters for the
four solutions for Ir)ppl = (3.0&0.30)X10 ' as a repre-
sentative smaller value. The errors are essentially the
same as for Table I. It is seen that our conclusions are
not altered by this smaller

I
r)pp I

~
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