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IV. SUMMARY

Glauber's approximation has been obtained from
Watson's multiple-scattering equation. The approxima-
tion necessary to do this have been noted.

Two attitudes towards such an analysis may be
taken. First, one may not believe in the relevance of
this approach. This means that the assumptions in the
6rst category of Sec. III are thought to invalidate use
of Watson's equation for a particular class of phe-
nomena under consideration.

On the other hand, it is possible to accept, at least
to first order, the primary assumptions. We feel that
those remaining are physically different from one another
so that it is unlikely that there is cancellation between,

say, impulse approximation corrections and corrections
to the propagator which relates to events between col-
lisions. This is, of course, just opinion. If this is accepted,
then the magnitude of the effect is indicated in the
model calculation would require one not to make the
Glauber approximation of d=dz, if more than qualita-
tive results are desired outside the erst diffraction
minimum. An alternative approximation has been
suggested.

It should be stressed that the validity of the trunca-
tion of the multiple-scattering series is independent of
the Glauber approximation. This is the most important
simplifying feature of high-energy collisions in com-

posite systems.
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A crude bootstrap model is constructed, based on forward-direction unitarity and the multi-Regge hypoth-
esis. The Pomeranchuk trajectory is generated by iteration of lower-meson trajectories, whose average
residue is correlated with average trajectory height. Iteration of the Pomeranchuk turns out to be a small
but nonvanishing perturbation that requires the effective average height of the Pomeranchuk trajectory
to be slightly less than 1.The model yields a two-parameter formula for multiple-production cross sections
that agrees satisfactorily with nucleon-nucleon data up to 30 GeV.

I. INTRODUCTION

'HE qualitative success of the Regge-pole hy-
pothesis for high-energy reactions with two-

hadron 6nal states requires serious attention to the
multi-Regge hypothesis for multiple production. ' One
may here be motivated simply by the desire to correlate
high-energy experimental data or by the deeper im-
pulse to understand something about the role of multi-
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particle unitarity in the hadronic bootstrap. The hadron
bootstrap supposes the existence of a unique analytic
relativistic S matrix in which all poles are Regge poles,
an S matrix that approximates the actual behavior of
hadrons, the principal error being the neglect of
electromagnetism. The nonlinearity of the unitarity
condition has frustrated, and will continue to frustrate,
theoretical attempts to construct a complete S matrix
satisfying all bootstrap conditions. (It is not even
certain that such a matrix exists. ) The only recourse
for theorists at present seems to cheat —peeking at
experiments to get hints of the mechanism by which
nature has achieved self-consistency. By this approach
theorists have in the past discovered certain small
ratios upon which rough models for limited regions of
the S matrix can be based, the incomplete character of
the models being manifested by a number of arbitrary
parameters. This paper describes one such model—
dealing with the multiperipheral region —that is, high
energies and low momentum transfers.

It is characteristic of bootstrap model construction
that the number of arbitrary parameters is not apparent
at the beginning of the task, nor is the degree of self-
consistency that will be achieved. One might state as
the bootstrap principle: the greater the model's con-

sistency, the fewer the parameters. The model to be
constructed in this paper is crude and contains three or
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four parameters. A remarkable feature, however, is that
by the unitarity constraint the magmitgdes of certain
pole residues (or coupling constants) turn out to be
determined by the locutioe of trajectories. The model
bases its rough self-consistency on three small quan-
tities with the dimensions of energy: Taking 1 GeV as a
"characteristic" hadronic energy, the pion mass may
be considered small and so may the mean momentum
transfer in a high-energy collision. The third small
quantity on which we shall lean heavily is the displace-
ment of the Pomeranchuk trajectory from unity.

Unitarity is employed only through the optical theo-
rem, relating the total cross section to the imaginary
part of the forward elastic amplitude. We make no
attempt to satisfy unitarity at nonforward directions or
in inelastic processes. We also largely ignore analyticity
properties in momentum transfers. Inclusion of such
constraints is an obvious objective for future improve-
ment of this type of model.

A prerequisite for our model is Dolen-Horn-Schmid
duality, ' which we assume justifies a rough multi-
Regge description of high-energy multiple production
that ignores resonance production and concentrates on
those 6nal particles that are stable with respect to
strong interactions. We further assume that in addition
to the Pomeranchuk the most important trajectories
are those containing the least massive hadrons, the 0
and 1 mesons, together with their exchange-degenerate
partners whose 6rst physical points are 1+ and 2+. It
follows that at the internal vertices in a multiperipheral
"chain" only 0 mesons are emitted with appreciable
probability. For the same reason, at end vertices baryon
number tends to be conserved. Thus the bulk, of any
high-energy reaction amplitude should be representable
by diagrams of the type of Fig. 1.

For simplicity, in most of this paper we shall pretend
that there is only one kind of stable meson. Appeal to
SUS might improve the model, but we wish to avoid
indices that obscure essential features. At the same
time two different types of meson trajectory must be
recognized. For a Axed 6nal multiplicity, Pomeranchuk
exchange inevitably dominates at sufficiently large total
energy. We shall see, however, that the bulk of the
total inelastic cross section at any given energy is
dominated by lower trajectories. In our model we com-

FIG 2 The two types of internal
vertex in the model.

(b)

and

a limit so small that for many purposes g&' can be set
equal to zero and o,& equal to 1, leaving only three
parameters. The magnitudes of elastic and total cross
sections will determine G~ and G~, and all questions of
energy dependence and multiplicity distribution will
devolve onto the one re~aining parameter.

The model studied here is similar in many ways to a
model of Chan, k,oskiewicz, and Allison, ' which in-
cludes two diferent meson trajectories as well as a
baryon trajectory, and which is designed to describe
individual reactions, rather than to investigate boot-
strap constraints. We are encouraged by the success of
the Chan-I' oskiewicz-Allison model, but for us to include
so many trajectories would preclude simple closed
forms for total cross sections and obscure the essential
bootstrap aspects of the problem.

bine the eR'ect of all lower meson trajectories into a
single trajectory.

At this stage, then, the model contains two trajec-
tories n~ and n~ and two internal vertex functions, f~
representing the vertex of Fig. 2(a) and fr representing
that of Fig. 2 (b). Each internal vertex function depends
on the two adjacent momentum transfers as well as the
Toiler angle; but subsequent approximations will inte-
grate over these variables and reduce the discussion to
"vertex constants, " g~ and g~. The other parameters
of the model are associated with the end vertices. Again
by integration these will be representable by constants,
G~ and G~.

Consistent with forthcoming approximations that
will average over momentum transfers, we shall neglect
the slopes of the trajectories nI and n~ and employ
average (constant) values of these quantities. At such
a stage, therefore, our model will contain a total of six
real parameters for a definite choice of initial particles;
only two of these parameters, G~ and G~, depend on the
initial particles. Unitarity will turn out to require

B or

Mor Mar
p p

M or
P

Of p,

Of p,

II. KINEMATICAL PRELIMINARIES

The cross section for production of e mesons when
particle u collides with particle b may be written

Fxo. i. Multiperipheral diagram for a "dominant" high-
energy reaction. The symbol 8 denotes a stable baryon and p a
stable meson; M denotes a meson trajectory and I' the Pomeran-
chuk trajectory. where

do "= (2„'('dC„
SlIlhgp

cosh' e ——(s—m, 2—mq')/2m, mq

(2.1)

(2.2)
'R. Dolen, D. Horn, and C. Schmid, Phys. Rev. 166, 1768

(1968); G. F. Chew and A. Pignotti, Phys. Rev. Letters 20, 1078
(1968).

Chan Hong-Mo, J. k.oskiewicz, and &, Q', M. A]lison,
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if s is the total c.m. energy squared. In terms of Toiler
variables the phase space dC „is4

dc = coshq. coshqp g sinhq;dip; g dt;d cosh&,

5 (cosh2t —cosh' p)
x . (2 3)

sinhg0

In this expression there is, for each internal vertex j, an
angle co; and a boost q; given by

p,
2—

t~
—t

coshgg =
2 (—tt)"'(—tt')"'

(2.4)

where t; and t are the invariant squares of the mo-

mentum transfers adjacent to the jth vertex. The end

vertices have no associated angles, and the boosts are
given by

coshq = (1—tg/4222 2)'t2,

coshq&= (1—t„+,/4m p2)U2.
(2.5)

cosh2t=coshq coshqp g (coshq, +cospp, ) g cosh);. (2.7)

Let us now dehne

X;—= (coshq; q+cosip; ~)'i2(coshq;+cosip;)'~2 (2.g)

e*'—=X,cosh);.

Then the constraint (2.7) becomes

(2.9)

n+1
Xp ——Px;, (2.10)

cosh'
~xp

(coshq coshq&)'"

At the same time the phase space (2.3) becomes

(2.11)

In (2.3) the variable $; is a boost associated with the
ith momentum transfer and is related to the corre-

sponding two-particle subenergy squared by

Si= t; +It' I++—2( t;—&) ( t'+1)

X (sinhq; & sinhq; cosh/;1 coshq; & coshq;) . (2.6)

The quantity rt depends on all 322+2 Toiler variables,
but the dependence factorizes when each f; is large:

the outgoing meson mass squared is smaller than or of
the same order as the average t, the quantity X; is on
the average of order unity, regardless of the values
taken by the angles ~;. We are thus led to make the
basic and greatly simplifying assumption that the lower
limit for any x; is zero.

The preceding formulas are general, simply repre-
senting kinematics. Multiperipheralism is injected by
assuming for the production amplitude 2„the factored
form

&."-&.(t2)S (t.+ ) Q r;(t, ,t,„,~,) g (cosh~;)-*«'),
(2.13)

with the vertex functions 5 large only for small values
of the t's.

Substituting (2.13) and (2.12) into (2.1) and inte-
grating over the d~'s, we have

d~-"= e ' '~(Xo 2*i)f'—(t )fp2(t.+ )

e n+1

Xg f,'(t, ,t;„)g dt;dx;e"**', (2.14)

where fp is the product of
~ f, (t;,t;+2,pp;) ~2 and known

functions of the same three variables, integrated over
d07p.

f.'(t2)dtgf2'(t2, t2)dtp f '(t, t +2)dt +2fp'(t )

G 2g 2ig 2(m—i)G 2 (3 1)

III. THE MODEL

As explained in the Introduction, the model includes

two trajectories, to be labeled P (for Pomeranchuk)
and M (for meson). Interference between E and M for
the same momentum transfer will be ignored on the
basis that large values of a particular s; will be domi-

nated by P and small values by M. Internal degrees of
freedom, such as charge, of the actual outgoing mesons

also help to wash out interference eBects.
There are thus two diferent "end-vertex" functions,

f. (t2)2and f,Q(t), and two different "internal-vertex"
functions, f2i2r2(t, t') and f2rr 2(t,t'). A basic assumption
of the model is that we can approximate the integral
of the internal vertex functions over the kinematically
allowed region of momentum transfers in the following

way:

Here x and y represent the erst and the last Regge poles
exchanged and stand for either P or 3f. The exponent i
is the number of times that an internal vertex of the

type shown in Fig. 2(a) occurs; and, correspondingly,
22 —i is the number of internal vertices ofjthe type shown

in Fig. 2(b). Equation (3.1) follows if the integrations
over the t's are performed between — and zero, and

According to (2.10) the lower limit on x; is ink;; but if

4N. F. Bali, G. F. Chew, and A. Pignotti, Phys. Rev. Letters
19, 614 (1967).

slIlhgg'd~g &+1
dc„= g g dt, dx;8(Xp Qx;). —

sinh2tp i &coshq, +cos=pp; ~&
(2.12)
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FIG. 3. A possible contribution to four-meson production.

the vertex functions have the form

and

where g;, 6„,and Gb„are constants depending on the
nature of the lines linked at the vertex and f(t) is an
arbitrary universal momentum transfer dependence.
Finally, we replace 42, (t;) by a suitable average value
eg or nM when performing the t integrations in Eq.
(2.14).

Yo illustrate the model, consider the diagram in
Fig. 3, corresponding to the production of four mesons
in a collision between particles u and b. In our model the
cross section is given by

do aPMMPMb g p2gb 2(gp2)3gM2

&Cexp{2L(2PX1+(2MX2+42MX3+(KPX4+(KMX5 Xp])

)(dx2dxpdxbdx4dxbl(Xp x& x2 x3 x4 x5) ~ (3 3)

We ignore Bose statistics because the regions of phase
space occupied by diferent outgoing mesons tend not
to overlap. Furthermore, if we alter the ordering of M
and P trajectories in the chain, we populate a diferent
region of phase space. In other words, each linear ar-
rangement of I' and M trajectories gives a separate
additive contribution'to the cross section. Observe that,
as emphasized in the,.Introduction, only two of our six
parameters depend on the initial particle types.

IV. TOTAL CROSS SECTIONS: THE OPTICAL
THEOREM AS A BOOTSTRAP CONDITION

Let us begin the bootstrap analysis with the subset
of peripheral diagrams containing only meson tra-
jectories. Designating by 0„M-™the associated cross
section for production of g mesons, our model gives

do. aM ~ ~ Mb G 2g. 2(g 2)ae2(aM 1)Xpdx-
)&dx2 dx~25(x2+ x~2—Xp), (4.1)

or, after integration over the dh;,

(gM'Xp)"
eM ~ Mb 6 2Q 2 &(paM—2) X'3 (4 2)

FIG. 4. The most general diagram with Pomeranchuk tra-
jectories at both end vertices, after contraction of meson
trajectories.

—223bj/t4, where the model must fail. It is then physically
meaningful to sum (4.2) over all 23, obtaining

r~ ~oM"' =G ~'G 'e&' ~3 "xo wi)
2(2M' = 2QM+ gM ~ (4.3)

Since ex&~s, the Froissart limit prohibits O.M; from
being greater than 1 and. thus gM' from being greater
than 2(1—(2M). This unitarity limitation on the magni-
tude of a coupling constant is a crucial aspect of the
bootstrap. Analysis of self-consistency will be seen below
to convert the upper limit on gM2 into a rough equality.

The upper limit is already suKcient to justify u
posteriori our having neglected the energy-conservation
constraint on multiplicity. By a short calculation, the
average number of mesons within the distribution (4.2)
is found to be

(4 4.)25aM ~ Mb g+X
the single parameter gM' controlling multiplicity.

The result (4.3) may evidently be generalized into
the following contraction rule: The cross section from
summing over all numbers of M trajectories occurring
either between two I' trajectories, between a I' tra-
jectory and an end vertex, or between the two end
vertices (as in 4.3), is obtained by replacing the
"cluster" of M trajectories with a single new trajectory
at nM =(2M+pgM2. The general problem is thereby
reduced to one of alternating E and M' trajectories, with
internal vertex constants all equal to g&'.

The total cross section is thus composed of four parts:
ab ~ aP ~ .Pb~~ aP. - M'b

aM' ~ ~ Pb+~ aM' ~ ~ M'5 (4 5)
proportional, respectively, to G,P2G»2, G.P2gbM,
G,M Gbp, and G,M'GbM2, and the optical theorem re-
lates this sum to the imaginary part of the forward
elastic amplitude, which we suppose to be dominated
by the Pomeranchuk trajectory with nP(0)=1. Thus
our basic bootstrap requirement is that at high energy
(4.5) should approach a nonvanishing constant. Let us
examine separately each of the four components. De-
noting by 0-~ ~'"~b the cross section for both end
vertices to be connected to I' trajectories, with X
intermediate clusters as shown in Fig. 4, we have

Xo &N—1
aP Pb gpgb 2(gP2)2N—&2(ap—1)xp

p (l)t'—1)!
Ke tentatively assume this Poisson distribution in n to
suKciently depress high multiplicities so that (4.2)
yields a negligible contribution from N&L(s)'(2 —223~

(Xp—s)~
X 2(aP a24~)z (4 6)— —
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Realizing that the elastic cross section in our model is

P M' P M' P P M' P
we rewrite (4.12) as

2G 2&2 (az—I)XO
) (4.14)

gp +2—&p—&m & (4.8)

which exhibits the above-mentioned smallness of gp'.
Looking next at the contribution where the u vertex

connects to P and the b vertex to 3II', we find

O'N
' ' = +p bM gpsp. . Mb G. 2G 2 /ap2)2N+le2(aP l)xe—

sN (X, ,)N
)( ds e

—2(ap —au M) z (4 9)
Ã! ¹!

where now E has the significance shown in Fig. 5. If
o,~. is close to np in the above sense,

P. ~ .M'b —G P Gb e( P+ M' ) slllll(gp Xo) ~ (4.1O)

similar result is obtained for the contribution where
the g vertex connects to M' and the b vertex to P'.

Finally, the total cross section with ~' at b«h ends «
the chain is

sM " ' -G,M GbM'e '+ ~
'—' cosh(gp'Xo) ) (4.11)

so that (4.5) becomes

(r„tsb- [(G,P2Gbp2+G, M'GbM') cosh(gp'Xo)

+ (Gsp'GbM +GsM'GbP')

&&sinh(gp'Xo)5e(ap+ M' ')~e (4.12)

lf ~(bp —(2M, ~X0&&1. The desired constant high-energy
limit follows if (4.8) becomes an equality, that is, if

(4.13)gp =2—o.'p —Q~I ~

Fio. 5. The most general diagram with a Pomeranchuk tra-
jectory at vertex u and a meson trajectory at vertex b, after
contraction of meson trajectories.

We are unable to give a general closed form for the sum
of (4.6) over cV, that is, for o.tot P'"p', but we shall
Qnd the total cross-section consistency requirement to
demand that n~' be close to np, in which case an ap-
proximate closed form can be obtained. The Froissart
limit on f7&,&'p"'pb so severely constrains the magnitude
of gp, given np close to 1, that repetition of the
Pomeranchuk trajectory is highly improbable. Most of
the inelastic cross section must then arise from chains
containing no Pomeranchuk trajectories, whose sum is
given by (4.3). Since the total inelastic cross section
must be approximately independent of energy, it fol-
lows that 0,~ =I. If np and 0.~. are so close to each
other that ~(2P—nM.

~
Xo&&1, one can easily derive that

ot t " '=G p'Gbp'e( p+ bI' " e cosh(gp'Xo). (4.7)

Evidently if we do not want the total cross section to
increase in this region, we must demand

eN 0 eel 7b(gP X0) ~ (4.15')

7. EXPERIMENTAL CONTENT OF TWO-
PARAMETER MODEL FOR INELASTIC

CROSS SECTIONS WITH gp'=0

A simple version of our model sets gp' ——0 and 0.~.
=np 1. Reca——ll that gM'=2(1 —aM), and

~,l'=G.P2Gbp2

The total cross section (4.12') becomes

0 tot (1+rsvb)0 el p

(5.1)

(5.2)

telling us immediately that y =2 if a refers to pions,
kaons, or nucleons. The basic forlnula (4.2), now
simplified to

(gM'Xo)"
ab ~ Pb& l~b g-g~2XO

(gM'Xo)"= fTtot inel

(5.3)

gives the cross section leading to the production of n
mesons. This formula is supposed to describe the
multiplicity and energy variation for all possible inci-
dent-particle combinations. For a given initial state it
contains only two paralneters: the coupling gM and
the constant value of the total inelastic cross section
fT«t,„ei . In the expression of Xo as a function of the
total energy squared s through Eqs. (2.2) and (2.11),
we set

cosh', =coshgb =1,
if the initial masses m, and mb are much larger than the
average momentum transfer (such as in the nucleon-
nucleon case). Otherwise, an additional parameter equal
to the average momentum transfer may have to be
introduced in Eq. (2.5).

oto't (Tel [(1+ra'rb) COS11(gp X())

+ (y +yb) Sinh(gp Xo)5e(ab(' ap) ' (4.12')

where y z= G, M2/G zp2. It is also useful to identify the
cross section for "diGractive dissociation" of particle b
[see Eq. (4.9)5:

2 (aP—a3E') XQ

O.N
ape'b G 2Gb 2g 2~2 (az—1)Xo

2(~p —~M )
(4.15)

&
—2(a~—a~ )Xp

&el PbgP
2((2p (2M )

I'or mode~ate lab energies and (2M. close to (2P, (4.15)
can be approximated by
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In the Appendix we describe a confrontation of Eq.
(5.3) with experimental values for proton-proton colli-
sions. In this case we have

VI. MODEL WITH SMALL BUT
NONVANISHING g~~

-- The so-called "diffractive-dissociation" cross section
is predicted by (4.15) to be zero if g~'=0, but the
experimental magnitude of diffractive-dissociation,
while small, is nonvanishing. In proton-proton colli-
sions, for example, a small and roughly constant cross
section is observed for production of E~~~* resonances
of masses 1400, 1520, 1690, and 2190 MeV. Over a
range of incident momenta between 10 and 30 GeV/c,
the combined cross section for these processes is approxi-
mately equal to 1.5 mb. ' If we take this value as an
estimate for the diffractive-dissociation cross section,
Eq. (4.15') yields (after introducing a factor of 2 to
allow for the possibility of diffractive dissociation of
either one of the initial particles)

g 2~0 02 (6.1)

This number is sufficiently small as not to disturb
the predictions discussed above in Sec. V, but it permits
several interesting inferences. If

1—ng+1 —n~,
then the order of magnitude of 1—nJ is given by gJ'.
This allows an estimate of the slope of the Pomeranchuk
trajectory 0,&', since

(6.2)

if t is an average value of the momentum transfer
squared. We are in this manner led. to expect g~s/~ t~

as the order of magnitude of the Pomeranchuk slope,
a number equal to 0.2 GeV 'if ~t~ is taken as 0.1 GeV.'
The small value of the slope thus appears correlated
with the small value of the internal Pomeranchuk
coupling. 6

' E. W. Anderson et al. , Phys. Rev. Letters 16, 855 (1966).
s J. Finkelstein and K. Kajantie LPhys. Letters 268, 305 (1968lg

have shown that violation of the Froissart limit results from
multi-Pomeranchuk exchange. Analysis of their result, however,
reveals that the degree of violation is an order of magnitude more
remote than the sects considered here. Our model requires major
refinement before the tiny Finkelstein-Kajantie mechanism be-
comes signi6cant. Moreover, a zero in the Pomeranchuk internal
coupling when the momentum transfer of the Pomeranchuk line
vanishes is enough to avoid the violation. If the conQict is re-
solved in this fashion, our model would still describe the inte-
grated Pomeranchuk coupling by the nonvanishing constant g&'.

&tot inel.

and a reasonable success is achieved through the choice
g~'=1. This corresponds to n~=0.5, a plausible aver-
age height for meson trajectories. Note that the average
number of mesons produced in an inelastic collision
between any two hadrons is predicted by (4.4) to be
approximately Xo.

FIG. 6. Deck model for the reaction a+b —& a+b*+w.

The reader may well be puzzled as to why g&' is so
small compared to g~' when G,~' and G~~' differ only
by a factor =2. It seems required after all Lreferring
back to (2.13)) that when particle a happens to be a
meson the end-vertex function P, (tt) should be equal
to the analytic continuation of an appropriate internal
vertex function &j(ij ij+J Mj), evaluated at t, =m, '. Part
of the explanation for the seeming paradox lies in the
fact that many different meson trajectories are being
represented in our model by o.~, and one expects the
most important generally to be those whose erst
physical points correspond to unstable 1 or 2+ mesons,
not the stable 0 mesons which may couple at the end
vertices. Note, however, that for the internal Pomeran-
chuk vertex of Fig. 2(b) the only important meson
trajectory is likely to be that containing a 0 meson
of precisely the type emerging from the vertex. That is
to say, by analytic continuation to a physical point on
the M trajectory, Fig. 2(b) describes either elastic
scattering or diffractive dissociation, depending on
whether or not M and p are identical mesons; it has
been seen that diffractive dissociation is small compared
to elastic scattering.

The upshot of the above reasoning is the absence of
any simple relationship between G ~' and g~'. At the
same time we do expect a direct relation between G ~'
and g~'. Satisfaction of this relation is implicit in the
success of calculations with the Deck model, which
corresponds to I'ig. 6 with the internal vertex taken to
be a continuation of that which controls elastic vr

scattering on particle a.7 The compatibility of this
latter assumption with the small cross section for the
process of Fig. 6 (a special example of diffractive dis-
sociation) demonstrates the absence of any confhct
between gg '=0.02 and the known values of pion elastic
cross sections.

To sum up, once given the mugeitlde of a pion elastic
cross section, multiperipheral bootstrap reasoning leads
to a small value of g&' and thereby makes plausible the
small slope of the Pomeranchuk trajectory. At the same
time, a zero slope is excluded. So far, of course, the
Regge approach provides no explanation for the magni-
tude of an elastic cross section.

7 See E. Berger, Phys. Rev. 166, T525 (1968), for a Reggeized
Deck calculation, and references to previous works. Note that Eq.
(4.].5) corresponds to the cross section for the process of Fig. 6,
summed over all possible b*. The Deck model is usually applied to
a particular b* resonance.
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VII. CONCLUSION ACKNOWLEDGMENTS

In the 1961 reasoning which led Chew and Frautschi
to the Regge-pole hypothesis, a key element was a
mechanism by which high-energy power behavior is
achieved for a two-particle amplitude by an infinite
sum of increasing powers of logarithms, each power of
logarithm being associated with a particular inelastic
multiplicity. Their reasoning was motivated by the
strip model and the analogous "ladder" mechanism by
which Regge poles are generated through Mandelstam
iteration in potential scattering. The same idea was
explored further by Amati, Stanghellini, and Fubini.
The ladder mechanism has constituted the basis for the
present paper, but with the important distinction from
early work that the "sides" of the ladder here consist of
two Regge trajectories, rather than two individual
hadrons. Furthermore, it is comp/eke unitarity in the
direct reaction, not two-particle unitarity in the crossed

reaction, that now provides the dynamics. The possi-

bility of "laddering" a power through direct-reaction
unitarity has previously been observed by Verdiev

et al. ,
' but with no attempt to construct a concrete

model.
The approximate nature of the self-consistency

achieved in the model of this paper cannot be empha-

sized too strongly. We are not proposing a way to avoid

cuts in angular momentum, the phenomenon Inost

often associated with a combination of two Regge
trajectories. What we are proposing is that for reason-

able energies it may be possible to approximate the
actual amplitude by pure powers and to investigate on

this basis a new kind of bootstrap constraint.
The reader may question our use of the adjective

"bootstrap" to describe the model of this paper, since

meson trajectories have here been employed only to
generate the Pomeranchuk and not to generate them-

selves. Extension of forward unitarity to a charge-

exchange reaction, however, would lead to a consistency

requirement on the average Regge coupling strength

analogous to that demanded here for elastic scattering.
The difference is that the final power for a charge-

exchange amplitude should correspond to n~ rather

than to n~. (A simple calculation reveals that such an

objective is achieved if the average internal Regge
coupling for the charge-exchange unitarity integral is

half of that denoted in this paper by gQ. ) Thus a
simple extension of the basic considerations of this

paper will lead to "self-generating" mechanisms for

meson trajectories,

We want to express our gratitude to Dr. Jared A.
Anderson, Dr. Janos Kirz, Dr. Dennis B. Smith, and
Dr. Robert Sprafka for having let us use their pre-
liminary data prior to publication. We are also indebted
to Dr. Naren F.Bali for many helpful discussions during
the early stages of this work.

APPENDIX

We want here to confront the model described in this
paper with some recent data for particle production in
proton-proton collisions. ""Before doing so, we should
point out the unorthodoxy of our approach. In con-
ventional multi-Regge analysis one usually chooses a
particular process, performs various cuts in order to
select the "pure" multi-Regge events, and tries to fit
distributions corresponding to an integrated cross sec-
tion of a few tenths of microbarns. Detailed fits of this
type are of great interest, and we expect them to be-
come more and more meaningful as more abundant
experimental information becomes available. In con-
trast to this approach, we propose here to account in a
gross way for most of the total inelastic cross section
in an energy range 12—29 GeV residing in inelastic
events exhibiting between two and eight prongs.
Although the two-parameter formula (5.3) depended on
various averages and kinematic approximations, we
take the fact of a reasonable fit as an indication that
the multi-Regge model can account for the bulk of the
inelastic cross section.

Because of the experimental difhculty in detecting
neutral particles and in identifying charged particles,
the data to be analyzed are expressed as cross sections
for events characterized by a given number of final
prongs. To translate the previous results into prongs,
Eq. (5.3) must be augmented with a specification of the
charges of the final particles. We assume for simplicity
that only pions are produced and that the effective
meson Regge pole has the following properties.

(i) It carries either isospin zero or one. (ii) It occurs
with equal probabilities at the ends of the multi-Regge
chain with isospin zero and one. (iii) It occurs with
alternating values of the isospin along the multi-Regge
line. As a consequence, two thirds of the pions produced
will in average be charged. It also follows from the
above assumptions that the inelastic cross section for
processes with 2(i+1) prongs can be written

00

o'2(i+() pronsspp= g C(Int(s's), s)
e =nsnfn', a) 2

s Q. F. Chew and S. C. Frautschi, Phys. Rev. 123, 1478 (1961).
D. Amati, A. Stanghellini, and S. Fubini, Nuovo Cimento 26,

896 (1962).' I. A. Verdiev, O. V. Kancheli, S. G. Matinyan, A. M. Popova,
and K. A. Ter-Martirosyan, Zh. Eksperim. i Teor. I'iz. 46, 1700
(1964) LKnglish transl. :Soviet Phys. —JETP 19, 1148 (1964)g.

"J.Anderson, J. Kirz, D. Smith, and R. Spraiira (private
communication).

~ P. L. Connolly et a/. , Brookhaven National Laboratory Report
No. BNL 11980 (unpublished).
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Tmr.E I. Total inelastic cross section, and inelastic cross sec- TmLE II. Predicted cross sections for production of one, two,
tions for two-, four-, six-, and eight-prong events, at 6ve values and three pions in pp collisions at 28.5 GeV/c. The experimental
of the incident momentum for proton-proton collisions. values are from Ref. 12.

+&fLb 'tot inel.
(GeV/c) (mb)

&2 pr. inel,

(mb)
&4 pr.
(mb)

&6 pr.
(mb) (mb) Final state

Predicted cross Experimental
section (mb) value (mb)

12.88 Ex: 29.0
Th: 29.7 Th: 11.2

Ex: 13.5
Th: 12.0

Ex: 4.1
Th: 4.5

Kx: 0.60
Th: 0.86

18.00 Kx: 29.7 Ex: 12.5 Ex: 5.2 Ex: 1.29
Th: 29.7 Th: 9.7 Th: 12.2 Th: 5.6 Th: 1.31

1.44
1.21
1.80

1.5+O.i
1.1~0.2
1.6~0.3

24.12 Ex: 29.9 Ex: 13.3
Th: 29.7 Th: 8.5 Th: 12.1

28.44 Ex: 29.8 Ex: 10.6
Th: 29.7 Th: 7.9 Th: 12.0

Ex: 7.1
Th: 6.5

Ex: 6.4
Th: 6.9

Kx: 2.44
Th: 1.79

Ex: 2.54
Th: 2.08

21.08 Ex: 29.9 Kx: 12.4 Ex: 6.2 Kx: 1.81
Th: 29.7 Th: 9.0 Th: 12.2 Th: 6.1 Th: 1.56 four, six, and eight prongs, "at the 6ve different energies

used to check our model. We do not attempt to 6t
events with 10 or more prongs, for which threshold
eGects are likely to play a major role at the energies
considered. A best fit to the experimental values gives
for our parameters

where
n;„(i)= max(2i, 1)

Int(x) =integer part of x,
ns!

if m&i

if m&i

and o „» is given by Eq. (5.3).
In Table I we give the experimental values of the

total inelastic cross section" and the cross sections for

» The experimental value for the total inelastic cross section is
obtained by subtracting the total elastic cross section from the
total cross section. The former is obtained by interpolation among
the data reported in Fig. 1 of the compilation by G. Alexander,
O. Benary, and U. Maor, Nucl. Phys. BS, 1 (1968); the latter is
chosen to be the 6t by W. Rarita, R. J. Riddell, Jr., C. B. Chiu,
and R. J. N. Phillips, Phys. Rev. 165, 1615 (1968),which interpo-
lates nicely the existing data.

and
Otot inel

gMs ——1.14 (corresponding to nsr= 0 43) . .
The theoretical values for the cross sections are also
given in Table I, where we include the prediction for
the two-prong inelastic cross section, still unmeasured.
We see that in spite of all our approximations, we come
within 15% of the experimental value, except in the
case of the comparatively smaller eight-prong cross
section.

Having thus determined the parameters in our model,
it is easy to make various kinds of predictions. As an
example, we show in Table II the partial cross sections
for production of one, two, and three pions predicted
by our model at 28.5 GeV/c, compared with the
experimental results by Connolly et al."The agreement
ls good.


